1 /* 2 * edac_mc kernel module 3 * (C) 2005-2007 Linux Networx (http://lnxi.com) 4 * 5 * This file may be distributed under the terms of the 6 * GNU General Public License. 7 * 8 * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com 9 * 10 * (c) 2012-2013 - Mauro Carvalho Chehab 11 * The entire API were re-written, and ported to use struct device 12 * 13 */ 14 15 #include <linux/ctype.h> 16 #include <linux/slab.h> 17 #include <linux/edac.h> 18 #include <linux/bug.h> 19 #include <linux/pm_runtime.h> 20 #include <linux/uaccess.h> 21 22 #include "edac_mc.h" 23 #include "edac_module.h" 24 25 /* MC EDAC Controls, setable by module parameter, and sysfs */ 26 static int edac_mc_log_ue = 1; 27 static int edac_mc_log_ce = 1; 28 static int edac_mc_panic_on_ue; 29 static int edac_mc_poll_msec = 1000; 30 31 /* Getter functions for above */ 32 int edac_mc_get_log_ue(void) 33 { 34 return edac_mc_log_ue; 35 } 36 37 int edac_mc_get_log_ce(void) 38 { 39 return edac_mc_log_ce; 40 } 41 42 int edac_mc_get_panic_on_ue(void) 43 { 44 return edac_mc_panic_on_ue; 45 } 46 47 /* this is temporary */ 48 int edac_mc_get_poll_msec(void) 49 { 50 return edac_mc_poll_msec; 51 } 52 53 static int edac_set_poll_msec(const char *val, const struct kernel_param *kp) 54 { 55 unsigned long l; 56 int ret; 57 58 if (!val) 59 return -EINVAL; 60 61 ret = kstrtoul(val, 0, &l); 62 if (ret) 63 return ret; 64 65 if (l < 1000) 66 return -EINVAL; 67 68 *((unsigned long *)kp->arg) = l; 69 70 /* notify edac_mc engine to reset the poll period */ 71 edac_mc_reset_delay_period(l); 72 73 return 0; 74 } 75 76 /* Parameter declarations for above */ 77 module_param(edac_mc_panic_on_ue, int, 0644); 78 MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on"); 79 module_param(edac_mc_log_ue, int, 0644); 80 MODULE_PARM_DESC(edac_mc_log_ue, 81 "Log uncorrectable error to console: 0=off 1=on"); 82 module_param(edac_mc_log_ce, int, 0644); 83 MODULE_PARM_DESC(edac_mc_log_ce, 84 "Log correctable error to console: 0=off 1=on"); 85 module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_int, 86 &edac_mc_poll_msec, 0644); 87 MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds"); 88 89 static struct device *mci_pdev; 90 91 /* 92 * various constants for Memory Controllers 93 */ 94 static const char * const dev_types[] = { 95 [DEV_UNKNOWN] = "Unknown", 96 [DEV_X1] = "x1", 97 [DEV_X2] = "x2", 98 [DEV_X4] = "x4", 99 [DEV_X8] = "x8", 100 [DEV_X16] = "x16", 101 [DEV_X32] = "x32", 102 [DEV_X64] = "x64" 103 }; 104 105 static const char * const edac_caps[] = { 106 [EDAC_UNKNOWN] = "Unknown", 107 [EDAC_NONE] = "None", 108 [EDAC_RESERVED] = "Reserved", 109 [EDAC_PARITY] = "PARITY", 110 [EDAC_EC] = "EC", 111 [EDAC_SECDED] = "SECDED", 112 [EDAC_S2ECD2ED] = "S2ECD2ED", 113 [EDAC_S4ECD4ED] = "S4ECD4ED", 114 [EDAC_S8ECD8ED] = "S8ECD8ED", 115 [EDAC_S16ECD16ED] = "S16ECD16ED" 116 }; 117 118 #ifdef CONFIG_EDAC_LEGACY_SYSFS 119 /* 120 * EDAC sysfs CSROW data structures and methods 121 */ 122 123 #define to_csrow(k) container_of(k, struct csrow_info, dev) 124 125 /* 126 * We need it to avoid namespace conflicts between the legacy API 127 * and the per-dimm/per-rank one 128 */ 129 #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \ 130 static struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store) 131 132 struct dev_ch_attribute { 133 struct device_attribute attr; 134 int channel; 135 }; 136 137 #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \ 138 static struct dev_ch_attribute dev_attr_legacy_##_name = \ 139 { __ATTR(_name, _mode, _show, _store), (_var) } 140 141 #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel) 142 143 /* Set of more default csrow<id> attribute show/store functions */ 144 static ssize_t csrow_ue_count_show(struct device *dev, 145 struct device_attribute *mattr, char *data) 146 { 147 struct csrow_info *csrow = to_csrow(dev); 148 149 return sprintf(data, "%u\n", csrow->ue_count); 150 } 151 152 static ssize_t csrow_ce_count_show(struct device *dev, 153 struct device_attribute *mattr, char *data) 154 { 155 struct csrow_info *csrow = to_csrow(dev); 156 157 return sprintf(data, "%u\n", csrow->ce_count); 158 } 159 160 static ssize_t csrow_size_show(struct device *dev, 161 struct device_attribute *mattr, char *data) 162 { 163 struct csrow_info *csrow = to_csrow(dev); 164 int i; 165 u32 nr_pages = 0; 166 167 for (i = 0; i < csrow->nr_channels; i++) 168 nr_pages += csrow->channels[i]->dimm->nr_pages; 169 return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages)); 170 } 171 172 static ssize_t csrow_mem_type_show(struct device *dev, 173 struct device_attribute *mattr, char *data) 174 { 175 struct csrow_info *csrow = to_csrow(dev); 176 177 return sprintf(data, "%s\n", edac_mem_types[csrow->channels[0]->dimm->mtype]); 178 } 179 180 static ssize_t csrow_dev_type_show(struct device *dev, 181 struct device_attribute *mattr, char *data) 182 { 183 struct csrow_info *csrow = to_csrow(dev); 184 185 return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]); 186 } 187 188 static ssize_t csrow_edac_mode_show(struct device *dev, 189 struct device_attribute *mattr, 190 char *data) 191 { 192 struct csrow_info *csrow = to_csrow(dev); 193 194 return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]); 195 } 196 197 /* show/store functions for DIMM Label attributes */ 198 static ssize_t channel_dimm_label_show(struct device *dev, 199 struct device_attribute *mattr, 200 char *data) 201 { 202 struct csrow_info *csrow = to_csrow(dev); 203 unsigned chan = to_channel(mattr); 204 struct rank_info *rank = csrow->channels[chan]; 205 206 /* if field has not been initialized, there is nothing to send */ 207 if (!rank->dimm->label[0]) 208 return 0; 209 210 return snprintf(data, sizeof(rank->dimm->label) + 1, "%s\n", 211 rank->dimm->label); 212 } 213 214 static ssize_t channel_dimm_label_store(struct device *dev, 215 struct device_attribute *mattr, 216 const char *data, size_t count) 217 { 218 struct csrow_info *csrow = to_csrow(dev); 219 unsigned chan = to_channel(mattr); 220 struct rank_info *rank = csrow->channels[chan]; 221 size_t copy_count = count; 222 223 if (count == 0) 224 return -EINVAL; 225 226 if (data[count - 1] == '\0' || data[count - 1] == '\n') 227 copy_count -= 1; 228 229 if (copy_count == 0 || copy_count >= sizeof(rank->dimm->label)) 230 return -EINVAL; 231 232 strncpy(rank->dimm->label, data, copy_count); 233 rank->dimm->label[copy_count] = '\0'; 234 235 return count; 236 } 237 238 /* show function for dynamic chX_ce_count attribute */ 239 static ssize_t channel_ce_count_show(struct device *dev, 240 struct device_attribute *mattr, char *data) 241 { 242 struct csrow_info *csrow = to_csrow(dev); 243 unsigned chan = to_channel(mattr); 244 struct rank_info *rank = csrow->channels[chan]; 245 246 return sprintf(data, "%u\n", rank->ce_count); 247 } 248 249 /* cwrow<id>/attribute files */ 250 DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL); 251 DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL); 252 DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL); 253 DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL); 254 DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL); 255 DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL); 256 257 /* default attributes of the CSROW<id> object */ 258 static struct attribute *csrow_attrs[] = { 259 &dev_attr_legacy_dev_type.attr, 260 &dev_attr_legacy_mem_type.attr, 261 &dev_attr_legacy_edac_mode.attr, 262 &dev_attr_legacy_size_mb.attr, 263 &dev_attr_legacy_ue_count.attr, 264 &dev_attr_legacy_ce_count.attr, 265 NULL, 266 }; 267 268 static const struct attribute_group csrow_attr_grp = { 269 .attrs = csrow_attrs, 270 }; 271 272 static const struct attribute_group *csrow_attr_groups[] = { 273 &csrow_attr_grp, 274 NULL 275 }; 276 277 static void csrow_attr_release(struct device *dev) 278 { 279 struct csrow_info *csrow = container_of(dev, struct csrow_info, dev); 280 281 edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev)); 282 kfree(csrow); 283 } 284 285 static const struct device_type csrow_attr_type = { 286 .groups = csrow_attr_groups, 287 .release = csrow_attr_release, 288 }; 289 290 /* 291 * possible dynamic channel DIMM Label attribute files 292 * 293 */ 294 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR, 295 channel_dimm_label_show, channel_dimm_label_store, 0); 296 DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR, 297 channel_dimm_label_show, channel_dimm_label_store, 1); 298 DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR, 299 channel_dimm_label_show, channel_dimm_label_store, 2); 300 DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR, 301 channel_dimm_label_show, channel_dimm_label_store, 3); 302 DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR, 303 channel_dimm_label_show, channel_dimm_label_store, 4); 304 DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR, 305 channel_dimm_label_show, channel_dimm_label_store, 5); 306 DEVICE_CHANNEL(ch6_dimm_label, S_IRUGO | S_IWUSR, 307 channel_dimm_label_show, channel_dimm_label_store, 6); 308 DEVICE_CHANNEL(ch7_dimm_label, S_IRUGO | S_IWUSR, 309 channel_dimm_label_show, channel_dimm_label_store, 7); 310 311 /* Total possible dynamic DIMM Label attribute file table */ 312 static struct attribute *dynamic_csrow_dimm_attr[] = { 313 &dev_attr_legacy_ch0_dimm_label.attr.attr, 314 &dev_attr_legacy_ch1_dimm_label.attr.attr, 315 &dev_attr_legacy_ch2_dimm_label.attr.attr, 316 &dev_attr_legacy_ch3_dimm_label.attr.attr, 317 &dev_attr_legacy_ch4_dimm_label.attr.attr, 318 &dev_attr_legacy_ch5_dimm_label.attr.attr, 319 &dev_attr_legacy_ch6_dimm_label.attr.attr, 320 &dev_attr_legacy_ch7_dimm_label.attr.attr, 321 NULL 322 }; 323 324 /* possible dynamic channel ce_count attribute files */ 325 DEVICE_CHANNEL(ch0_ce_count, S_IRUGO, 326 channel_ce_count_show, NULL, 0); 327 DEVICE_CHANNEL(ch1_ce_count, S_IRUGO, 328 channel_ce_count_show, NULL, 1); 329 DEVICE_CHANNEL(ch2_ce_count, S_IRUGO, 330 channel_ce_count_show, NULL, 2); 331 DEVICE_CHANNEL(ch3_ce_count, S_IRUGO, 332 channel_ce_count_show, NULL, 3); 333 DEVICE_CHANNEL(ch4_ce_count, S_IRUGO, 334 channel_ce_count_show, NULL, 4); 335 DEVICE_CHANNEL(ch5_ce_count, S_IRUGO, 336 channel_ce_count_show, NULL, 5); 337 DEVICE_CHANNEL(ch6_ce_count, S_IRUGO, 338 channel_ce_count_show, NULL, 6); 339 DEVICE_CHANNEL(ch7_ce_count, S_IRUGO, 340 channel_ce_count_show, NULL, 7); 341 342 /* Total possible dynamic ce_count attribute file table */ 343 static struct attribute *dynamic_csrow_ce_count_attr[] = { 344 &dev_attr_legacy_ch0_ce_count.attr.attr, 345 &dev_attr_legacy_ch1_ce_count.attr.attr, 346 &dev_attr_legacy_ch2_ce_count.attr.attr, 347 &dev_attr_legacy_ch3_ce_count.attr.attr, 348 &dev_attr_legacy_ch4_ce_count.attr.attr, 349 &dev_attr_legacy_ch5_ce_count.attr.attr, 350 &dev_attr_legacy_ch6_ce_count.attr.attr, 351 &dev_attr_legacy_ch7_ce_count.attr.attr, 352 NULL 353 }; 354 355 static umode_t csrow_dev_is_visible(struct kobject *kobj, 356 struct attribute *attr, int idx) 357 { 358 struct device *dev = kobj_to_dev(kobj); 359 struct csrow_info *csrow = container_of(dev, struct csrow_info, dev); 360 361 if (idx >= csrow->nr_channels) 362 return 0; 363 364 if (idx >= ARRAY_SIZE(dynamic_csrow_ce_count_attr) - 1) { 365 WARN_ONCE(1, "idx: %d\n", idx); 366 return 0; 367 } 368 369 /* Only expose populated DIMMs */ 370 if (!csrow->channels[idx]->dimm->nr_pages) 371 return 0; 372 373 return attr->mode; 374 } 375 376 377 static const struct attribute_group csrow_dev_dimm_group = { 378 .attrs = dynamic_csrow_dimm_attr, 379 .is_visible = csrow_dev_is_visible, 380 }; 381 382 static const struct attribute_group csrow_dev_ce_count_group = { 383 .attrs = dynamic_csrow_ce_count_attr, 384 .is_visible = csrow_dev_is_visible, 385 }; 386 387 static const struct attribute_group *csrow_dev_groups[] = { 388 &csrow_dev_dimm_group, 389 &csrow_dev_ce_count_group, 390 NULL 391 }; 392 393 static inline int nr_pages_per_csrow(struct csrow_info *csrow) 394 { 395 int chan, nr_pages = 0; 396 397 for (chan = 0; chan < csrow->nr_channels; chan++) 398 nr_pages += csrow->channels[chan]->dimm->nr_pages; 399 400 return nr_pages; 401 } 402 403 /* Create a CSROW object under specifed edac_mc_device */ 404 static int edac_create_csrow_object(struct mem_ctl_info *mci, 405 struct csrow_info *csrow, int index) 406 { 407 csrow->dev.type = &csrow_attr_type; 408 csrow->dev.groups = csrow_dev_groups; 409 device_initialize(&csrow->dev); 410 csrow->dev.parent = &mci->dev; 411 csrow->mci = mci; 412 dev_set_name(&csrow->dev, "csrow%d", index); 413 dev_set_drvdata(&csrow->dev, csrow); 414 415 edac_dbg(0, "creating (virtual) csrow node %s\n", 416 dev_name(&csrow->dev)); 417 418 return device_add(&csrow->dev); 419 } 420 421 /* Create a CSROW object under specifed edac_mc_device */ 422 static int edac_create_csrow_objects(struct mem_ctl_info *mci) 423 { 424 int err, i; 425 struct csrow_info *csrow; 426 427 for (i = 0; i < mci->nr_csrows; i++) { 428 csrow = mci->csrows[i]; 429 if (!nr_pages_per_csrow(csrow)) 430 continue; 431 err = edac_create_csrow_object(mci, mci->csrows[i], i); 432 if (err < 0) { 433 edac_dbg(1, 434 "failure: create csrow objects for csrow %d\n", 435 i); 436 goto error; 437 } 438 } 439 return 0; 440 441 error: 442 for (--i; i >= 0; i--) { 443 csrow = mci->csrows[i]; 444 if (!nr_pages_per_csrow(csrow)) 445 continue; 446 put_device(&mci->csrows[i]->dev); 447 } 448 449 return err; 450 } 451 452 static void edac_delete_csrow_objects(struct mem_ctl_info *mci) 453 { 454 int i; 455 struct csrow_info *csrow; 456 457 for (i = mci->nr_csrows - 1; i >= 0; i--) { 458 csrow = mci->csrows[i]; 459 if (!nr_pages_per_csrow(csrow)) 460 continue; 461 device_unregister(&mci->csrows[i]->dev); 462 } 463 } 464 #endif 465 466 /* 467 * Per-dimm (or per-rank) devices 468 */ 469 470 #define to_dimm(k) container_of(k, struct dimm_info, dev) 471 472 /* show/store functions for DIMM Label attributes */ 473 static ssize_t dimmdev_location_show(struct device *dev, 474 struct device_attribute *mattr, char *data) 475 { 476 struct dimm_info *dimm = to_dimm(dev); 477 478 return edac_dimm_info_location(dimm, data, PAGE_SIZE); 479 } 480 481 static ssize_t dimmdev_label_show(struct device *dev, 482 struct device_attribute *mattr, char *data) 483 { 484 struct dimm_info *dimm = to_dimm(dev); 485 486 /* if field has not been initialized, there is nothing to send */ 487 if (!dimm->label[0]) 488 return 0; 489 490 return snprintf(data, sizeof(dimm->label) + 1, "%s\n", dimm->label); 491 } 492 493 static ssize_t dimmdev_label_store(struct device *dev, 494 struct device_attribute *mattr, 495 const char *data, 496 size_t count) 497 { 498 struct dimm_info *dimm = to_dimm(dev); 499 size_t copy_count = count; 500 501 if (count == 0) 502 return -EINVAL; 503 504 if (data[count - 1] == '\0' || data[count - 1] == '\n') 505 copy_count -= 1; 506 507 if (copy_count == 0 || copy_count >= sizeof(dimm->label)) 508 return -EINVAL; 509 510 strncpy(dimm->label, data, copy_count); 511 dimm->label[copy_count] = '\0'; 512 513 return count; 514 } 515 516 static ssize_t dimmdev_size_show(struct device *dev, 517 struct device_attribute *mattr, char *data) 518 { 519 struct dimm_info *dimm = to_dimm(dev); 520 521 return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages)); 522 } 523 524 static ssize_t dimmdev_mem_type_show(struct device *dev, 525 struct device_attribute *mattr, char *data) 526 { 527 struct dimm_info *dimm = to_dimm(dev); 528 529 return sprintf(data, "%s\n", edac_mem_types[dimm->mtype]); 530 } 531 532 static ssize_t dimmdev_dev_type_show(struct device *dev, 533 struct device_attribute *mattr, char *data) 534 { 535 struct dimm_info *dimm = to_dimm(dev); 536 537 return sprintf(data, "%s\n", dev_types[dimm->dtype]); 538 } 539 540 static ssize_t dimmdev_edac_mode_show(struct device *dev, 541 struct device_attribute *mattr, 542 char *data) 543 { 544 struct dimm_info *dimm = to_dimm(dev); 545 546 return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]); 547 } 548 549 static ssize_t dimmdev_ce_count_show(struct device *dev, 550 struct device_attribute *mattr, 551 char *data) 552 { 553 struct dimm_info *dimm = to_dimm(dev); 554 u32 count; 555 int off; 556 557 off = EDAC_DIMM_OFF(dimm->mci->layers, 558 dimm->mci->n_layers, 559 dimm->location[0], 560 dimm->location[1], 561 dimm->location[2]); 562 count = dimm->mci->ce_per_layer[dimm->mci->n_layers-1][off]; 563 return sprintf(data, "%u\n", count); 564 } 565 566 static ssize_t dimmdev_ue_count_show(struct device *dev, 567 struct device_attribute *mattr, 568 char *data) 569 { 570 struct dimm_info *dimm = to_dimm(dev); 571 u32 count; 572 int off; 573 574 off = EDAC_DIMM_OFF(dimm->mci->layers, 575 dimm->mci->n_layers, 576 dimm->location[0], 577 dimm->location[1], 578 dimm->location[2]); 579 count = dimm->mci->ue_per_layer[dimm->mci->n_layers-1][off]; 580 return sprintf(data, "%u\n", count); 581 } 582 583 /* dimm/rank attribute files */ 584 static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR, 585 dimmdev_label_show, dimmdev_label_store); 586 static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL); 587 static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL); 588 static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL); 589 static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL); 590 static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL); 591 static DEVICE_ATTR(dimm_ce_count, S_IRUGO, dimmdev_ce_count_show, NULL); 592 static DEVICE_ATTR(dimm_ue_count, S_IRUGO, dimmdev_ue_count_show, NULL); 593 594 /* attributes of the dimm<id>/rank<id> object */ 595 static struct attribute *dimm_attrs[] = { 596 &dev_attr_dimm_label.attr, 597 &dev_attr_dimm_location.attr, 598 &dev_attr_size.attr, 599 &dev_attr_dimm_mem_type.attr, 600 &dev_attr_dimm_dev_type.attr, 601 &dev_attr_dimm_edac_mode.attr, 602 &dev_attr_dimm_ce_count.attr, 603 &dev_attr_dimm_ue_count.attr, 604 NULL, 605 }; 606 607 static const struct attribute_group dimm_attr_grp = { 608 .attrs = dimm_attrs, 609 }; 610 611 static const struct attribute_group *dimm_attr_groups[] = { 612 &dimm_attr_grp, 613 NULL 614 }; 615 616 static void dimm_attr_release(struct device *dev) 617 { 618 struct dimm_info *dimm = container_of(dev, struct dimm_info, dev); 619 620 edac_dbg(1, "Releasing dimm device %s\n", dev_name(dev)); 621 kfree(dimm); 622 } 623 624 static const struct device_type dimm_attr_type = { 625 .groups = dimm_attr_groups, 626 .release = dimm_attr_release, 627 }; 628 629 /* Create a DIMM object under specifed memory controller device */ 630 static int edac_create_dimm_object(struct mem_ctl_info *mci, 631 struct dimm_info *dimm, 632 int index) 633 { 634 int err; 635 dimm->mci = mci; 636 637 dimm->dev.type = &dimm_attr_type; 638 device_initialize(&dimm->dev); 639 640 dimm->dev.parent = &mci->dev; 641 if (mci->csbased) 642 dev_set_name(&dimm->dev, "rank%d", index); 643 else 644 dev_set_name(&dimm->dev, "dimm%d", index); 645 dev_set_drvdata(&dimm->dev, dimm); 646 pm_runtime_forbid(&mci->dev); 647 648 err = device_add(&dimm->dev); 649 650 edac_dbg(0, "creating rank/dimm device %s\n", dev_name(&dimm->dev)); 651 652 return err; 653 } 654 655 /* 656 * Memory controller device 657 */ 658 659 #define to_mci(k) container_of(k, struct mem_ctl_info, dev) 660 661 static ssize_t mci_reset_counters_store(struct device *dev, 662 struct device_attribute *mattr, 663 const char *data, size_t count) 664 { 665 struct mem_ctl_info *mci = to_mci(dev); 666 int cnt, row, chan, i; 667 mci->ue_mc = 0; 668 mci->ce_mc = 0; 669 mci->ue_noinfo_count = 0; 670 mci->ce_noinfo_count = 0; 671 672 for (row = 0; row < mci->nr_csrows; row++) { 673 struct csrow_info *ri = mci->csrows[row]; 674 675 ri->ue_count = 0; 676 ri->ce_count = 0; 677 678 for (chan = 0; chan < ri->nr_channels; chan++) 679 ri->channels[chan]->ce_count = 0; 680 } 681 682 cnt = 1; 683 for (i = 0; i < mci->n_layers; i++) { 684 cnt *= mci->layers[i].size; 685 memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32)); 686 memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32)); 687 } 688 689 mci->start_time = jiffies; 690 return count; 691 } 692 693 /* Memory scrubbing interface: 694 * 695 * A MC driver can limit the scrubbing bandwidth based on the CPU type. 696 * Therefore, ->set_sdram_scrub_rate should be made to return the actual 697 * bandwidth that is accepted or 0 when scrubbing is to be disabled. 698 * 699 * Negative value still means that an error has occurred while setting 700 * the scrub rate. 701 */ 702 static ssize_t mci_sdram_scrub_rate_store(struct device *dev, 703 struct device_attribute *mattr, 704 const char *data, size_t count) 705 { 706 struct mem_ctl_info *mci = to_mci(dev); 707 unsigned long bandwidth = 0; 708 int new_bw = 0; 709 710 if (kstrtoul(data, 10, &bandwidth) < 0) 711 return -EINVAL; 712 713 new_bw = mci->set_sdram_scrub_rate(mci, bandwidth); 714 if (new_bw < 0) { 715 edac_printk(KERN_WARNING, EDAC_MC, 716 "Error setting scrub rate to: %lu\n", bandwidth); 717 return -EINVAL; 718 } 719 720 return count; 721 } 722 723 /* 724 * ->get_sdram_scrub_rate() return value semantics same as above. 725 */ 726 static ssize_t mci_sdram_scrub_rate_show(struct device *dev, 727 struct device_attribute *mattr, 728 char *data) 729 { 730 struct mem_ctl_info *mci = to_mci(dev); 731 int bandwidth = 0; 732 733 bandwidth = mci->get_sdram_scrub_rate(mci); 734 if (bandwidth < 0) { 735 edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n"); 736 return bandwidth; 737 } 738 739 return sprintf(data, "%d\n", bandwidth); 740 } 741 742 /* default attribute files for the MCI object */ 743 static ssize_t mci_ue_count_show(struct device *dev, 744 struct device_attribute *mattr, 745 char *data) 746 { 747 struct mem_ctl_info *mci = to_mci(dev); 748 749 return sprintf(data, "%d\n", mci->ue_mc); 750 } 751 752 static ssize_t mci_ce_count_show(struct device *dev, 753 struct device_attribute *mattr, 754 char *data) 755 { 756 struct mem_ctl_info *mci = to_mci(dev); 757 758 return sprintf(data, "%d\n", mci->ce_mc); 759 } 760 761 static ssize_t mci_ce_noinfo_show(struct device *dev, 762 struct device_attribute *mattr, 763 char *data) 764 { 765 struct mem_ctl_info *mci = to_mci(dev); 766 767 return sprintf(data, "%d\n", mci->ce_noinfo_count); 768 } 769 770 static ssize_t mci_ue_noinfo_show(struct device *dev, 771 struct device_attribute *mattr, 772 char *data) 773 { 774 struct mem_ctl_info *mci = to_mci(dev); 775 776 return sprintf(data, "%d\n", mci->ue_noinfo_count); 777 } 778 779 static ssize_t mci_seconds_show(struct device *dev, 780 struct device_attribute *mattr, 781 char *data) 782 { 783 struct mem_ctl_info *mci = to_mci(dev); 784 785 return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ); 786 } 787 788 static ssize_t mci_ctl_name_show(struct device *dev, 789 struct device_attribute *mattr, 790 char *data) 791 { 792 struct mem_ctl_info *mci = to_mci(dev); 793 794 return sprintf(data, "%s\n", mci->ctl_name); 795 } 796 797 static ssize_t mci_size_mb_show(struct device *dev, 798 struct device_attribute *mattr, 799 char *data) 800 { 801 struct mem_ctl_info *mci = to_mci(dev); 802 int total_pages = 0, csrow_idx, j; 803 804 for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) { 805 struct csrow_info *csrow = mci->csrows[csrow_idx]; 806 807 for (j = 0; j < csrow->nr_channels; j++) { 808 struct dimm_info *dimm = csrow->channels[j]->dimm; 809 810 total_pages += dimm->nr_pages; 811 } 812 } 813 814 return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages)); 815 } 816 817 static ssize_t mci_max_location_show(struct device *dev, 818 struct device_attribute *mattr, 819 char *data) 820 { 821 struct mem_ctl_info *mci = to_mci(dev); 822 int i; 823 char *p = data; 824 825 for (i = 0; i < mci->n_layers; i++) { 826 p += sprintf(p, "%s %d ", 827 edac_layer_name[mci->layers[i].type], 828 mci->layers[i].size - 1); 829 } 830 831 return p - data; 832 } 833 834 /* default Control file */ 835 static DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store); 836 837 /* default Attribute files */ 838 static DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL); 839 static DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL); 840 static DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL); 841 static DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL); 842 static DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL); 843 static DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL); 844 static DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL); 845 static DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL); 846 847 /* memory scrubber attribute file */ 848 static DEVICE_ATTR(sdram_scrub_rate, 0, mci_sdram_scrub_rate_show, 849 mci_sdram_scrub_rate_store); /* umode set later in is_visible */ 850 851 static struct attribute *mci_attrs[] = { 852 &dev_attr_reset_counters.attr, 853 &dev_attr_mc_name.attr, 854 &dev_attr_size_mb.attr, 855 &dev_attr_seconds_since_reset.attr, 856 &dev_attr_ue_noinfo_count.attr, 857 &dev_attr_ce_noinfo_count.attr, 858 &dev_attr_ue_count.attr, 859 &dev_attr_ce_count.attr, 860 &dev_attr_max_location.attr, 861 &dev_attr_sdram_scrub_rate.attr, 862 NULL 863 }; 864 865 static umode_t mci_attr_is_visible(struct kobject *kobj, 866 struct attribute *attr, int idx) 867 { 868 struct device *dev = kobj_to_dev(kobj); 869 struct mem_ctl_info *mci = to_mci(dev); 870 umode_t mode = 0; 871 872 if (attr != &dev_attr_sdram_scrub_rate.attr) 873 return attr->mode; 874 if (mci->get_sdram_scrub_rate) 875 mode |= S_IRUGO; 876 if (mci->set_sdram_scrub_rate) 877 mode |= S_IWUSR; 878 return mode; 879 } 880 881 static const struct attribute_group mci_attr_grp = { 882 .attrs = mci_attrs, 883 .is_visible = mci_attr_is_visible, 884 }; 885 886 static const struct attribute_group *mci_attr_groups[] = { 887 &mci_attr_grp, 888 NULL 889 }; 890 891 static void mci_attr_release(struct device *dev) 892 { 893 struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev); 894 895 edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev)); 896 kfree(mci); 897 } 898 899 static const struct device_type mci_attr_type = { 900 .groups = mci_attr_groups, 901 .release = mci_attr_release, 902 }; 903 904 /* 905 * Create a new Memory Controller kobject instance, 906 * mc<id> under the 'mc' directory 907 * 908 * Return: 909 * 0 Success 910 * !0 Failure 911 */ 912 int edac_create_sysfs_mci_device(struct mem_ctl_info *mci, 913 const struct attribute_group **groups) 914 { 915 int i, err; 916 917 /* get the /sys/devices/system/edac subsys reference */ 918 mci->dev.type = &mci_attr_type; 919 device_initialize(&mci->dev); 920 921 mci->dev.parent = mci_pdev; 922 mci->dev.groups = groups; 923 dev_set_name(&mci->dev, "mc%d", mci->mc_idx); 924 dev_set_drvdata(&mci->dev, mci); 925 pm_runtime_forbid(&mci->dev); 926 927 edac_dbg(0, "creating device %s\n", dev_name(&mci->dev)); 928 err = device_add(&mci->dev); 929 if (err < 0) { 930 edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev)); 931 goto out; 932 } 933 934 /* 935 * Create the dimm/rank devices 936 */ 937 for (i = 0; i < mci->tot_dimms; i++) { 938 struct dimm_info *dimm = mci->dimms[i]; 939 /* Only expose populated DIMMs */ 940 if (!dimm->nr_pages) 941 continue; 942 943 #ifdef CONFIG_EDAC_DEBUG 944 edac_dbg(1, "creating dimm%d, located at ", i); 945 if (edac_debug_level >= 1) { 946 int lay; 947 for (lay = 0; lay < mci->n_layers; lay++) 948 printk(KERN_CONT "%s %d ", 949 edac_layer_name[mci->layers[lay].type], 950 dimm->location[lay]); 951 printk(KERN_CONT "\n"); 952 } 953 #endif 954 err = edac_create_dimm_object(mci, dimm, i); 955 if (err) { 956 edac_dbg(1, "failure: create dimm %d obj\n", i); 957 goto fail_unregister_dimm; 958 } 959 } 960 961 #ifdef CONFIG_EDAC_LEGACY_SYSFS 962 err = edac_create_csrow_objects(mci); 963 if (err < 0) 964 goto fail_unregister_dimm; 965 #endif 966 967 edac_create_debugfs_nodes(mci); 968 return 0; 969 970 fail_unregister_dimm: 971 for (i--; i >= 0; i--) { 972 struct dimm_info *dimm = mci->dimms[i]; 973 if (!dimm->nr_pages) 974 continue; 975 976 device_unregister(&dimm->dev); 977 } 978 device_unregister(&mci->dev); 979 980 out: 981 return err; 982 } 983 984 /* 985 * remove a Memory Controller instance 986 */ 987 void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci) 988 { 989 int i; 990 991 edac_dbg(0, "\n"); 992 993 #ifdef CONFIG_EDAC_DEBUG 994 edac_debugfs_remove_recursive(mci->debugfs); 995 #endif 996 #ifdef CONFIG_EDAC_LEGACY_SYSFS 997 edac_delete_csrow_objects(mci); 998 #endif 999 1000 for (i = 0; i < mci->tot_dimms; i++) { 1001 struct dimm_info *dimm = mci->dimms[i]; 1002 if (dimm->nr_pages == 0) 1003 continue; 1004 edac_dbg(0, "removing device %s\n", dev_name(&dimm->dev)); 1005 device_unregister(&dimm->dev); 1006 } 1007 } 1008 1009 void edac_unregister_sysfs(struct mem_ctl_info *mci) 1010 { 1011 edac_dbg(1, "Unregistering device %s\n", dev_name(&mci->dev)); 1012 device_unregister(&mci->dev); 1013 } 1014 1015 static void mc_attr_release(struct device *dev) 1016 { 1017 /* 1018 * There's no container structure here, as this is just the mci 1019 * parent device, used to create the /sys/devices/mc sysfs node. 1020 * So, there are no attributes on it. 1021 */ 1022 edac_dbg(1, "Releasing device %s\n", dev_name(dev)); 1023 kfree(dev); 1024 } 1025 1026 static const struct device_type mc_attr_type = { 1027 .release = mc_attr_release, 1028 }; 1029 /* 1030 * Init/exit code for the module. Basically, creates/removes /sys/class/rc 1031 */ 1032 int __init edac_mc_sysfs_init(void) 1033 { 1034 int err; 1035 1036 mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL); 1037 if (!mci_pdev) { 1038 err = -ENOMEM; 1039 goto out; 1040 } 1041 1042 mci_pdev->bus = edac_get_sysfs_subsys(); 1043 mci_pdev->type = &mc_attr_type; 1044 device_initialize(mci_pdev); 1045 dev_set_name(mci_pdev, "mc"); 1046 1047 err = device_add(mci_pdev); 1048 if (err < 0) 1049 goto out_put_device; 1050 1051 edac_dbg(0, "device %s created\n", dev_name(mci_pdev)); 1052 1053 return 0; 1054 1055 out_put_device: 1056 put_device(mci_pdev); 1057 out: 1058 return err; 1059 } 1060 1061 void edac_mc_sysfs_exit(void) 1062 { 1063 device_unregister(mci_pdev); 1064 } 1065