1 /* 2 * edac_mc kernel module 3 * (C) 2005-2007 Linux Networx (http://lnxi.com) 4 * 5 * This file may be distributed under the terms of the 6 * GNU General Public License. 7 * 8 * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com 9 * 10 * (c) 2012-2013 - Mauro Carvalho Chehab 11 * The entire API were re-written, and ported to use struct device 12 * 13 */ 14 15 #include <linux/ctype.h> 16 #include <linux/slab.h> 17 #include <linux/edac.h> 18 #include <linux/bug.h> 19 #include <linux/pm_runtime.h> 20 #include <linux/uaccess.h> 21 22 #include "edac_mc.h" 23 #include "edac_module.h" 24 25 /* MC EDAC Controls, setable by module parameter, and sysfs */ 26 static int edac_mc_log_ue = 1; 27 static int edac_mc_log_ce = 1; 28 static int edac_mc_panic_on_ue; 29 static int edac_mc_poll_msec = 1000; 30 31 /* Getter functions for above */ 32 int edac_mc_get_log_ue(void) 33 { 34 return edac_mc_log_ue; 35 } 36 37 int edac_mc_get_log_ce(void) 38 { 39 return edac_mc_log_ce; 40 } 41 42 int edac_mc_get_panic_on_ue(void) 43 { 44 return edac_mc_panic_on_ue; 45 } 46 47 /* this is temporary */ 48 int edac_mc_get_poll_msec(void) 49 { 50 return edac_mc_poll_msec; 51 } 52 53 static int edac_set_poll_msec(const char *val, const struct kernel_param *kp) 54 { 55 unsigned long l; 56 int ret; 57 58 if (!val) 59 return -EINVAL; 60 61 ret = kstrtoul(val, 0, &l); 62 if (ret) 63 return ret; 64 65 if (l < 1000) 66 return -EINVAL; 67 68 *((unsigned long *)kp->arg) = l; 69 70 /* notify edac_mc engine to reset the poll period */ 71 edac_mc_reset_delay_period(l); 72 73 return 0; 74 } 75 76 /* Parameter declarations for above */ 77 module_param(edac_mc_panic_on_ue, int, 0644); 78 MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on"); 79 module_param(edac_mc_log_ue, int, 0644); 80 MODULE_PARM_DESC(edac_mc_log_ue, 81 "Log uncorrectable error to console: 0=off 1=on"); 82 module_param(edac_mc_log_ce, int, 0644); 83 MODULE_PARM_DESC(edac_mc_log_ce, 84 "Log correctable error to console: 0=off 1=on"); 85 module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_int, 86 &edac_mc_poll_msec, 0644); 87 MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds"); 88 89 static struct device *mci_pdev; 90 91 /* 92 * various constants for Memory Controllers 93 */ 94 static const char * const mem_types[] = { 95 [MEM_EMPTY] = "Empty", 96 [MEM_RESERVED] = "Reserved", 97 [MEM_UNKNOWN] = "Unknown", 98 [MEM_FPM] = "FPM", 99 [MEM_EDO] = "EDO", 100 [MEM_BEDO] = "BEDO", 101 [MEM_SDR] = "Unbuffered-SDR", 102 [MEM_RDR] = "Registered-SDR", 103 [MEM_DDR] = "Unbuffered-DDR", 104 [MEM_RDDR] = "Registered-DDR", 105 [MEM_RMBS] = "RMBS", 106 [MEM_DDR2] = "Unbuffered-DDR2", 107 [MEM_FB_DDR2] = "FullyBuffered-DDR2", 108 [MEM_RDDR2] = "Registered-DDR2", 109 [MEM_XDR] = "XDR", 110 [MEM_DDR3] = "Unbuffered-DDR3", 111 [MEM_RDDR3] = "Registered-DDR3", 112 [MEM_DDR4] = "Unbuffered-DDR4", 113 [MEM_RDDR4] = "Registered-DDR4" 114 }; 115 116 static const char * const dev_types[] = { 117 [DEV_UNKNOWN] = "Unknown", 118 [DEV_X1] = "x1", 119 [DEV_X2] = "x2", 120 [DEV_X4] = "x4", 121 [DEV_X8] = "x8", 122 [DEV_X16] = "x16", 123 [DEV_X32] = "x32", 124 [DEV_X64] = "x64" 125 }; 126 127 static const char * const edac_caps[] = { 128 [EDAC_UNKNOWN] = "Unknown", 129 [EDAC_NONE] = "None", 130 [EDAC_RESERVED] = "Reserved", 131 [EDAC_PARITY] = "PARITY", 132 [EDAC_EC] = "EC", 133 [EDAC_SECDED] = "SECDED", 134 [EDAC_S2ECD2ED] = "S2ECD2ED", 135 [EDAC_S4ECD4ED] = "S4ECD4ED", 136 [EDAC_S8ECD8ED] = "S8ECD8ED", 137 [EDAC_S16ECD16ED] = "S16ECD16ED" 138 }; 139 140 #ifdef CONFIG_EDAC_LEGACY_SYSFS 141 /* 142 * EDAC sysfs CSROW data structures and methods 143 */ 144 145 #define to_csrow(k) container_of(k, struct csrow_info, dev) 146 147 /* 148 * We need it to avoid namespace conflicts between the legacy API 149 * and the per-dimm/per-rank one 150 */ 151 #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \ 152 static struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store) 153 154 struct dev_ch_attribute { 155 struct device_attribute attr; 156 int channel; 157 }; 158 159 #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \ 160 static struct dev_ch_attribute dev_attr_legacy_##_name = \ 161 { __ATTR(_name, _mode, _show, _store), (_var) } 162 163 #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel) 164 165 /* Set of more default csrow<id> attribute show/store functions */ 166 static ssize_t csrow_ue_count_show(struct device *dev, 167 struct device_attribute *mattr, char *data) 168 { 169 struct csrow_info *csrow = to_csrow(dev); 170 171 return sprintf(data, "%u\n", csrow->ue_count); 172 } 173 174 static ssize_t csrow_ce_count_show(struct device *dev, 175 struct device_attribute *mattr, char *data) 176 { 177 struct csrow_info *csrow = to_csrow(dev); 178 179 return sprintf(data, "%u\n", csrow->ce_count); 180 } 181 182 static ssize_t csrow_size_show(struct device *dev, 183 struct device_attribute *mattr, char *data) 184 { 185 struct csrow_info *csrow = to_csrow(dev); 186 int i; 187 u32 nr_pages = 0; 188 189 for (i = 0; i < csrow->nr_channels; i++) 190 nr_pages += csrow->channels[i]->dimm->nr_pages; 191 return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages)); 192 } 193 194 static ssize_t csrow_mem_type_show(struct device *dev, 195 struct device_attribute *mattr, char *data) 196 { 197 struct csrow_info *csrow = to_csrow(dev); 198 199 return sprintf(data, "%s\n", mem_types[csrow->channels[0]->dimm->mtype]); 200 } 201 202 static ssize_t csrow_dev_type_show(struct device *dev, 203 struct device_attribute *mattr, char *data) 204 { 205 struct csrow_info *csrow = to_csrow(dev); 206 207 return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]); 208 } 209 210 static ssize_t csrow_edac_mode_show(struct device *dev, 211 struct device_attribute *mattr, 212 char *data) 213 { 214 struct csrow_info *csrow = to_csrow(dev); 215 216 return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]); 217 } 218 219 /* show/store functions for DIMM Label attributes */ 220 static ssize_t channel_dimm_label_show(struct device *dev, 221 struct device_attribute *mattr, 222 char *data) 223 { 224 struct csrow_info *csrow = to_csrow(dev); 225 unsigned chan = to_channel(mattr); 226 struct rank_info *rank = csrow->channels[chan]; 227 228 /* if field has not been initialized, there is nothing to send */ 229 if (!rank->dimm->label[0]) 230 return 0; 231 232 return snprintf(data, sizeof(rank->dimm->label) + 1, "%s\n", 233 rank->dimm->label); 234 } 235 236 static ssize_t channel_dimm_label_store(struct device *dev, 237 struct device_attribute *mattr, 238 const char *data, size_t count) 239 { 240 struct csrow_info *csrow = to_csrow(dev); 241 unsigned chan = to_channel(mattr); 242 struct rank_info *rank = csrow->channels[chan]; 243 size_t copy_count = count; 244 245 if (count == 0) 246 return -EINVAL; 247 248 if (data[count - 1] == '\0' || data[count - 1] == '\n') 249 copy_count -= 1; 250 251 if (copy_count == 0 || copy_count >= sizeof(rank->dimm->label)) 252 return -EINVAL; 253 254 strncpy(rank->dimm->label, data, copy_count); 255 rank->dimm->label[copy_count] = '\0'; 256 257 return count; 258 } 259 260 /* show function for dynamic chX_ce_count attribute */ 261 static ssize_t channel_ce_count_show(struct device *dev, 262 struct device_attribute *mattr, char *data) 263 { 264 struct csrow_info *csrow = to_csrow(dev); 265 unsigned chan = to_channel(mattr); 266 struct rank_info *rank = csrow->channels[chan]; 267 268 return sprintf(data, "%u\n", rank->ce_count); 269 } 270 271 /* cwrow<id>/attribute files */ 272 DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL); 273 DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL); 274 DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL); 275 DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL); 276 DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL); 277 DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL); 278 279 /* default attributes of the CSROW<id> object */ 280 static struct attribute *csrow_attrs[] = { 281 &dev_attr_legacy_dev_type.attr, 282 &dev_attr_legacy_mem_type.attr, 283 &dev_attr_legacy_edac_mode.attr, 284 &dev_attr_legacy_size_mb.attr, 285 &dev_attr_legacy_ue_count.attr, 286 &dev_attr_legacy_ce_count.attr, 287 NULL, 288 }; 289 290 static const struct attribute_group csrow_attr_grp = { 291 .attrs = csrow_attrs, 292 }; 293 294 static const struct attribute_group *csrow_attr_groups[] = { 295 &csrow_attr_grp, 296 NULL 297 }; 298 299 static void csrow_attr_release(struct device *dev) 300 { 301 struct csrow_info *csrow = container_of(dev, struct csrow_info, dev); 302 303 edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev)); 304 kfree(csrow); 305 } 306 307 static const struct device_type csrow_attr_type = { 308 .groups = csrow_attr_groups, 309 .release = csrow_attr_release, 310 }; 311 312 /* 313 * possible dynamic channel DIMM Label attribute files 314 * 315 */ 316 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR, 317 channel_dimm_label_show, channel_dimm_label_store, 0); 318 DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR, 319 channel_dimm_label_show, channel_dimm_label_store, 1); 320 DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR, 321 channel_dimm_label_show, channel_dimm_label_store, 2); 322 DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR, 323 channel_dimm_label_show, channel_dimm_label_store, 3); 324 DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR, 325 channel_dimm_label_show, channel_dimm_label_store, 4); 326 DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR, 327 channel_dimm_label_show, channel_dimm_label_store, 5); 328 DEVICE_CHANNEL(ch6_dimm_label, S_IRUGO | S_IWUSR, 329 channel_dimm_label_show, channel_dimm_label_store, 6); 330 DEVICE_CHANNEL(ch7_dimm_label, S_IRUGO | S_IWUSR, 331 channel_dimm_label_show, channel_dimm_label_store, 7); 332 333 /* Total possible dynamic DIMM Label attribute file table */ 334 static struct attribute *dynamic_csrow_dimm_attr[] = { 335 &dev_attr_legacy_ch0_dimm_label.attr.attr, 336 &dev_attr_legacy_ch1_dimm_label.attr.attr, 337 &dev_attr_legacy_ch2_dimm_label.attr.attr, 338 &dev_attr_legacy_ch3_dimm_label.attr.attr, 339 &dev_attr_legacy_ch4_dimm_label.attr.attr, 340 &dev_attr_legacy_ch5_dimm_label.attr.attr, 341 &dev_attr_legacy_ch6_dimm_label.attr.attr, 342 &dev_attr_legacy_ch7_dimm_label.attr.attr, 343 NULL 344 }; 345 346 /* possible dynamic channel ce_count attribute files */ 347 DEVICE_CHANNEL(ch0_ce_count, S_IRUGO, 348 channel_ce_count_show, NULL, 0); 349 DEVICE_CHANNEL(ch1_ce_count, S_IRUGO, 350 channel_ce_count_show, NULL, 1); 351 DEVICE_CHANNEL(ch2_ce_count, S_IRUGO, 352 channel_ce_count_show, NULL, 2); 353 DEVICE_CHANNEL(ch3_ce_count, S_IRUGO, 354 channel_ce_count_show, NULL, 3); 355 DEVICE_CHANNEL(ch4_ce_count, S_IRUGO, 356 channel_ce_count_show, NULL, 4); 357 DEVICE_CHANNEL(ch5_ce_count, S_IRUGO, 358 channel_ce_count_show, NULL, 5); 359 DEVICE_CHANNEL(ch6_ce_count, S_IRUGO, 360 channel_ce_count_show, NULL, 6); 361 DEVICE_CHANNEL(ch7_ce_count, S_IRUGO, 362 channel_ce_count_show, NULL, 7); 363 364 /* Total possible dynamic ce_count attribute file table */ 365 static struct attribute *dynamic_csrow_ce_count_attr[] = { 366 &dev_attr_legacy_ch0_ce_count.attr.attr, 367 &dev_attr_legacy_ch1_ce_count.attr.attr, 368 &dev_attr_legacy_ch2_ce_count.attr.attr, 369 &dev_attr_legacy_ch3_ce_count.attr.attr, 370 &dev_attr_legacy_ch4_ce_count.attr.attr, 371 &dev_attr_legacy_ch5_ce_count.attr.attr, 372 &dev_attr_legacy_ch6_ce_count.attr.attr, 373 &dev_attr_legacy_ch7_ce_count.attr.attr, 374 NULL 375 }; 376 377 static umode_t csrow_dev_is_visible(struct kobject *kobj, 378 struct attribute *attr, int idx) 379 { 380 struct device *dev = kobj_to_dev(kobj); 381 struct csrow_info *csrow = container_of(dev, struct csrow_info, dev); 382 383 if (idx >= csrow->nr_channels) 384 return 0; 385 386 if (idx >= ARRAY_SIZE(dynamic_csrow_ce_count_attr) - 1) { 387 WARN_ONCE(1, "idx: %d\n", idx); 388 return 0; 389 } 390 391 /* Only expose populated DIMMs */ 392 if (!csrow->channels[idx]->dimm->nr_pages) 393 return 0; 394 395 return attr->mode; 396 } 397 398 399 static const struct attribute_group csrow_dev_dimm_group = { 400 .attrs = dynamic_csrow_dimm_attr, 401 .is_visible = csrow_dev_is_visible, 402 }; 403 404 static const struct attribute_group csrow_dev_ce_count_group = { 405 .attrs = dynamic_csrow_ce_count_attr, 406 .is_visible = csrow_dev_is_visible, 407 }; 408 409 static const struct attribute_group *csrow_dev_groups[] = { 410 &csrow_dev_dimm_group, 411 &csrow_dev_ce_count_group, 412 NULL 413 }; 414 415 static inline int nr_pages_per_csrow(struct csrow_info *csrow) 416 { 417 int chan, nr_pages = 0; 418 419 for (chan = 0; chan < csrow->nr_channels; chan++) 420 nr_pages += csrow->channels[chan]->dimm->nr_pages; 421 422 return nr_pages; 423 } 424 425 /* Create a CSROW object under specifed edac_mc_device */ 426 static int edac_create_csrow_object(struct mem_ctl_info *mci, 427 struct csrow_info *csrow, int index) 428 { 429 csrow->dev.type = &csrow_attr_type; 430 csrow->dev.bus = mci->bus; 431 csrow->dev.groups = csrow_dev_groups; 432 device_initialize(&csrow->dev); 433 csrow->dev.parent = &mci->dev; 434 csrow->mci = mci; 435 dev_set_name(&csrow->dev, "csrow%d", index); 436 dev_set_drvdata(&csrow->dev, csrow); 437 438 edac_dbg(0, "creating (virtual) csrow node %s\n", 439 dev_name(&csrow->dev)); 440 441 return device_add(&csrow->dev); 442 } 443 444 /* Create a CSROW object under specifed edac_mc_device */ 445 static int edac_create_csrow_objects(struct mem_ctl_info *mci) 446 { 447 int err, i; 448 struct csrow_info *csrow; 449 450 for (i = 0; i < mci->nr_csrows; i++) { 451 csrow = mci->csrows[i]; 452 if (!nr_pages_per_csrow(csrow)) 453 continue; 454 err = edac_create_csrow_object(mci, mci->csrows[i], i); 455 if (err < 0) { 456 edac_dbg(1, 457 "failure: create csrow objects for csrow %d\n", 458 i); 459 goto error; 460 } 461 } 462 return 0; 463 464 error: 465 for (--i; i >= 0; i--) { 466 csrow = mci->csrows[i]; 467 if (!nr_pages_per_csrow(csrow)) 468 continue; 469 put_device(&mci->csrows[i]->dev); 470 } 471 472 return err; 473 } 474 475 static void edac_delete_csrow_objects(struct mem_ctl_info *mci) 476 { 477 int i; 478 struct csrow_info *csrow; 479 480 for (i = mci->nr_csrows - 1; i >= 0; i--) { 481 csrow = mci->csrows[i]; 482 if (!nr_pages_per_csrow(csrow)) 483 continue; 484 device_unregister(&mci->csrows[i]->dev); 485 } 486 } 487 #endif 488 489 /* 490 * Per-dimm (or per-rank) devices 491 */ 492 493 #define to_dimm(k) container_of(k, struct dimm_info, dev) 494 495 /* show/store functions for DIMM Label attributes */ 496 static ssize_t dimmdev_location_show(struct device *dev, 497 struct device_attribute *mattr, char *data) 498 { 499 struct dimm_info *dimm = to_dimm(dev); 500 501 return edac_dimm_info_location(dimm, data, PAGE_SIZE); 502 } 503 504 static ssize_t dimmdev_label_show(struct device *dev, 505 struct device_attribute *mattr, char *data) 506 { 507 struct dimm_info *dimm = to_dimm(dev); 508 509 /* if field has not been initialized, there is nothing to send */ 510 if (!dimm->label[0]) 511 return 0; 512 513 return snprintf(data, sizeof(dimm->label) + 1, "%s\n", dimm->label); 514 } 515 516 static ssize_t dimmdev_label_store(struct device *dev, 517 struct device_attribute *mattr, 518 const char *data, 519 size_t count) 520 { 521 struct dimm_info *dimm = to_dimm(dev); 522 size_t copy_count = count; 523 524 if (count == 0) 525 return -EINVAL; 526 527 if (data[count - 1] == '\0' || data[count - 1] == '\n') 528 copy_count -= 1; 529 530 if (copy_count == 0 || copy_count >= sizeof(dimm->label)) 531 return -EINVAL; 532 533 strncpy(dimm->label, data, copy_count); 534 dimm->label[copy_count] = '\0'; 535 536 return count; 537 } 538 539 static ssize_t dimmdev_size_show(struct device *dev, 540 struct device_attribute *mattr, char *data) 541 { 542 struct dimm_info *dimm = to_dimm(dev); 543 544 return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages)); 545 } 546 547 static ssize_t dimmdev_mem_type_show(struct device *dev, 548 struct device_attribute *mattr, char *data) 549 { 550 struct dimm_info *dimm = to_dimm(dev); 551 552 return sprintf(data, "%s\n", mem_types[dimm->mtype]); 553 } 554 555 static ssize_t dimmdev_dev_type_show(struct device *dev, 556 struct device_attribute *mattr, char *data) 557 { 558 struct dimm_info *dimm = to_dimm(dev); 559 560 return sprintf(data, "%s\n", dev_types[dimm->dtype]); 561 } 562 563 static ssize_t dimmdev_edac_mode_show(struct device *dev, 564 struct device_attribute *mattr, 565 char *data) 566 { 567 struct dimm_info *dimm = to_dimm(dev); 568 569 return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]); 570 } 571 572 static ssize_t dimmdev_ce_count_show(struct device *dev, 573 struct device_attribute *mattr, 574 char *data) 575 { 576 struct dimm_info *dimm = to_dimm(dev); 577 u32 count; 578 int off; 579 580 off = EDAC_DIMM_OFF(dimm->mci->layers, 581 dimm->mci->n_layers, 582 dimm->location[0], 583 dimm->location[1], 584 dimm->location[2]); 585 count = dimm->mci->ce_per_layer[dimm->mci->n_layers-1][off]; 586 return sprintf(data, "%u\n", count); 587 } 588 589 static ssize_t dimmdev_ue_count_show(struct device *dev, 590 struct device_attribute *mattr, 591 char *data) 592 { 593 struct dimm_info *dimm = to_dimm(dev); 594 u32 count; 595 int off; 596 597 off = EDAC_DIMM_OFF(dimm->mci->layers, 598 dimm->mci->n_layers, 599 dimm->location[0], 600 dimm->location[1], 601 dimm->location[2]); 602 count = dimm->mci->ue_per_layer[dimm->mci->n_layers-1][off]; 603 return sprintf(data, "%u\n", count); 604 } 605 606 /* dimm/rank attribute files */ 607 static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR, 608 dimmdev_label_show, dimmdev_label_store); 609 static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL); 610 static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL); 611 static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL); 612 static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL); 613 static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL); 614 static DEVICE_ATTR(dimm_ce_count, S_IRUGO, dimmdev_ce_count_show, NULL); 615 static DEVICE_ATTR(dimm_ue_count, S_IRUGO, dimmdev_ue_count_show, NULL); 616 617 /* attributes of the dimm<id>/rank<id> object */ 618 static struct attribute *dimm_attrs[] = { 619 &dev_attr_dimm_label.attr, 620 &dev_attr_dimm_location.attr, 621 &dev_attr_size.attr, 622 &dev_attr_dimm_mem_type.attr, 623 &dev_attr_dimm_dev_type.attr, 624 &dev_attr_dimm_edac_mode.attr, 625 &dev_attr_dimm_ce_count.attr, 626 &dev_attr_dimm_ue_count.attr, 627 NULL, 628 }; 629 630 static const struct attribute_group dimm_attr_grp = { 631 .attrs = dimm_attrs, 632 }; 633 634 static const struct attribute_group *dimm_attr_groups[] = { 635 &dimm_attr_grp, 636 NULL 637 }; 638 639 static void dimm_attr_release(struct device *dev) 640 { 641 struct dimm_info *dimm = container_of(dev, struct dimm_info, dev); 642 643 edac_dbg(1, "Releasing dimm device %s\n", dev_name(dev)); 644 kfree(dimm); 645 } 646 647 static const struct device_type dimm_attr_type = { 648 .groups = dimm_attr_groups, 649 .release = dimm_attr_release, 650 }; 651 652 /* Create a DIMM object under specifed memory controller device */ 653 static int edac_create_dimm_object(struct mem_ctl_info *mci, 654 struct dimm_info *dimm, 655 int index) 656 { 657 int err; 658 dimm->mci = mci; 659 660 dimm->dev.type = &dimm_attr_type; 661 dimm->dev.bus = mci->bus; 662 device_initialize(&dimm->dev); 663 664 dimm->dev.parent = &mci->dev; 665 if (mci->csbased) 666 dev_set_name(&dimm->dev, "rank%d", index); 667 else 668 dev_set_name(&dimm->dev, "dimm%d", index); 669 dev_set_drvdata(&dimm->dev, dimm); 670 pm_runtime_forbid(&mci->dev); 671 672 err = device_add(&dimm->dev); 673 674 edac_dbg(0, "creating rank/dimm device %s\n", dev_name(&dimm->dev)); 675 676 return err; 677 } 678 679 /* 680 * Memory controller device 681 */ 682 683 #define to_mci(k) container_of(k, struct mem_ctl_info, dev) 684 685 static ssize_t mci_reset_counters_store(struct device *dev, 686 struct device_attribute *mattr, 687 const char *data, size_t count) 688 { 689 struct mem_ctl_info *mci = to_mci(dev); 690 int cnt, row, chan, i; 691 mci->ue_mc = 0; 692 mci->ce_mc = 0; 693 mci->ue_noinfo_count = 0; 694 mci->ce_noinfo_count = 0; 695 696 for (row = 0; row < mci->nr_csrows; row++) { 697 struct csrow_info *ri = mci->csrows[row]; 698 699 ri->ue_count = 0; 700 ri->ce_count = 0; 701 702 for (chan = 0; chan < ri->nr_channels; chan++) 703 ri->channels[chan]->ce_count = 0; 704 } 705 706 cnt = 1; 707 for (i = 0; i < mci->n_layers; i++) { 708 cnt *= mci->layers[i].size; 709 memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32)); 710 memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32)); 711 } 712 713 mci->start_time = jiffies; 714 return count; 715 } 716 717 /* Memory scrubbing interface: 718 * 719 * A MC driver can limit the scrubbing bandwidth based on the CPU type. 720 * Therefore, ->set_sdram_scrub_rate should be made to return the actual 721 * bandwidth that is accepted or 0 when scrubbing is to be disabled. 722 * 723 * Negative value still means that an error has occurred while setting 724 * the scrub rate. 725 */ 726 static ssize_t mci_sdram_scrub_rate_store(struct device *dev, 727 struct device_attribute *mattr, 728 const char *data, size_t count) 729 { 730 struct mem_ctl_info *mci = to_mci(dev); 731 unsigned long bandwidth = 0; 732 int new_bw = 0; 733 734 if (kstrtoul(data, 10, &bandwidth) < 0) 735 return -EINVAL; 736 737 new_bw = mci->set_sdram_scrub_rate(mci, bandwidth); 738 if (new_bw < 0) { 739 edac_printk(KERN_WARNING, EDAC_MC, 740 "Error setting scrub rate to: %lu\n", bandwidth); 741 return -EINVAL; 742 } 743 744 return count; 745 } 746 747 /* 748 * ->get_sdram_scrub_rate() return value semantics same as above. 749 */ 750 static ssize_t mci_sdram_scrub_rate_show(struct device *dev, 751 struct device_attribute *mattr, 752 char *data) 753 { 754 struct mem_ctl_info *mci = to_mci(dev); 755 int bandwidth = 0; 756 757 bandwidth = mci->get_sdram_scrub_rate(mci); 758 if (bandwidth < 0) { 759 edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n"); 760 return bandwidth; 761 } 762 763 return sprintf(data, "%d\n", bandwidth); 764 } 765 766 /* default attribute files for the MCI object */ 767 static ssize_t mci_ue_count_show(struct device *dev, 768 struct device_attribute *mattr, 769 char *data) 770 { 771 struct mem_ctl_info *mci = to_mci(dev); 772 773 return sprintf(data, "%d\n", mci->ue_mc); 774 } 775 776 static ssize_t mci_ce_count_show(struct device *dev, 777 struct device_attribute *mattr, 778 char *data) 779 { 780 struct mem_ctl_info *mci = to_mci(dev); 781 782 return sprintf(data, "%d\n", mci->ce_mc); 783 } 784 785 static ssize_t mci_ce_noinfo_show(struct device *dev, 786 struct device_attribute *mattr, 787 char *data) 788 { 789 struct mem_ctl_info *mci = to_mci(dev); 790 791 return sprintf(data, "%d\n", mci->ce_noinfo_count); 792 } 793 794 static ssize_t mci_ue_noinfo_show(struct device *dev, 795 struct device_attribute *mattr, 796 char *data) 797 { 798 struct mem_ctl_info *mci = to_mci(dev); 799 800 return sprintf(data, "%d\n", mci->ue_noinfo_count); 801 } 802 803 static ssize_t mci_seconds_show(struct device *dev, 804 struct device_attribute *mattr, 805 char *data) 806 { 807 struct mem_ctl_info *mci = to_mci(dev); 808 809 return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ); 810 } 811 812 static ssize_t mci_ctl_name_show(struct device *dev, 813 struct device_attribute *mattr, 814 char *data) 815 { 816 struct mem_ctl_info *mci = to_mci(dev); 817 818 return sprintf(data, "%s\n", mci->ctl_name); 819 } 820 821 static ssize_t mci_size_mb_show(struct device *dev, 822 struct device_attribute *mattr, 823 char *data) 824 { 825 struct mem_ctl_info *mci = to_mci(dev); 826 int total_pages = 0, csrow_idx, j; 827 828 for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) { 829 struct csrow_info *csrow = mci->csrows[csrow_idx]; 830 831 for (j = 0; j < csrow->nr_channels; j++) { 832 struct dimm_info *dimm = csrow->channels[j]->dimm; 833 834 total_pages += dimm->nr_pages; 835 } 836 } 837 838 return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages)); 839 } 840 841 static ssize_t mci_max_location_show(struct device *dev, 842 struct device_attribute *mattr, 843 char *data) 844 { 845 struct mem_ctl_info *mci = to_mci(dev); 846 int i; 847 char *p = data; 848 849 for (i = 0; i < mci->n_layers; i++) { 850 p += sprintf(p, "%s %d ", 851 edac_layer_name[mci->layers[i].type], 852 mci->layers[i].size - 1); 853 } 854 855 return p - data; 856 } 857 858 /* default Control file */ 859 static DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store); 860 861 /* default Attribute files */ 862 static DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL); 863 static DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL); 864 static DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL); 865 static DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL); 866 static DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL); 867 static DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL); 868 static DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL); 869 static DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL); 870 871 /* memory scrubber attribute file */ 872 static DEVICE_ATTR(sdram_scrub_rate, 0, mci_sdram_scrub_rate_show, 873 mci_sdram_scrub_rate_store); /* umode set later in is_visible */ 874 875 static struct attribute *mci_attrs[] = { 876 &dev_attr_reset_counters.attr, 877 &dev_attr_mc_name.attr, 878 &dev_attr_size_mb.attr, 879 &dev_attr_seconds_since_reset.attr, 880 &dev_attr_ue_noinfo_count.attr, 881 &dev_attr_ce_noinfo_count.attr, 882 &dev_attr_ue_count.attr, 883 &dev_attr_ce_count.attr, 884 &dev_attr_max_location.attr, 885 &dev_attr_sdram_scrub_rate.attr, 886 NULL 887 }; 888 889 static umode_t mci_attr_is_visible(struct kobject *kobj, 890 struct attribute *attr, int idx) 891 { 892 struct device *dev = kobj_to_dev(kobj); 893 struct mem_ctl_info *mci = to_mci(dev); 894 umode_t mode = 0; 895 896 if (attr != &dev_attr_sdram_scrub_rate.attr) 897 return attr->mode; 898 if (mci->get_sdram_scrub_rate) 899 mode |= S_IRUGO; 900 if (mci->set_sdram_scrub_rate) 901 mode |= S_IWUSR; 902 return mode; 903 } 904 905 static const struct attribute_group mci_attr_grp = { 906 .attrs = mci_attrs, 907 .is_visible = mci_attr_is_visible, 908 }; 909 910 static const struct attribute_group *mci_attr_groups[] = { 911 &mci_attr_grp, 912 NULL 913 }; 914 915 static void mci_attr_release(struct device *dev) 916 { 917 struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev); 918 919 edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev)); 920 kfree(mci); 921 } 922 923 static const struct device_type mci_attr_type = { 924 .groups = mci_attr_groups, 925 .release = mci_attr_release, 926 }; 927 928 /* 929 * Create a new Memory Controller kobject instance, 930 * mc<id> under the 'mc' directory 931 * 932 * Return: 933 * 0 Success 934 * !0 Failure 935 */ 936 int edac_create_sysfs_mci_device(struct mem_ctl_info *mci, 937 const struct attribute_group **groups) 938 { 939 char *name; 940 int i, err; 941 942 /* 943 * The memory controller needs its own bus, in order to avoid 944 * namespace conflicts at /sys/bus/edac. 945 */ 946 name = kasprintf(GFP_KERNEL, "mc%d", mci->mc_idx); 947 if (!name) 948 return -ENOMEM; 949 950 mci->bus->name = name; 951 952 edac_dbg(0, "creating bus %s\n", mci->bus->name); 953 954 err = bus_register(mci->bus); 955 if (err < 0) { 956 kfree(name); 957 return err; 958 } 959 960 /* get the /sys/devices/system/edac subsys reference */ 961 mci->dev.type = &mci_attr_type; 962 device_initialize(&mci->dev); 963 964 mci->dev.parent = mci_pdev; 965 mci->dev.bus = mci->bus; 966 mci->dev.groups = groups; 967 dev_set_name(&mci->dev, "mc%d", mci->mc_idx); 968 dev_set_drvdata(&mci->dev, mci); 969 pm_runtime_forbid(&mci->dev); 970 971 edac_dbg(0, "creating device %s\n", dev_name(&mci->dev)); 972 err = device_add(&mci->dev); 973 if (err < 0) { 974 edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev)); 975 goto fail_unregister_bus; 976 } 977 978 /* 979 * Create the dimm/rank devices 980 */ 981 for (i = 0; i < mci->tot_dimms; i++) { 982 struct dimm_info *dimm = mci->dimms[i]; 983 /* Only expose populated DIMMs */ 984 if (!dimm->nr_pages) 985 continue; 986 987 #ifdef CONFIG_EDAC_DEBUG 988 edac_dbg(1, "creating dimm%d, located at ", i); 989 if (edac_debug_level >= 1) { 990 int lay; 991 for (lay = 0; lay < mci->n_layers; lay++) 992 printk(KERN_CONT "%s %d ", 993 edac_layer_name[mci->layers[lay].type], 994 dimm->location[lay]); 995 printk(KERN_CONT "\n"); 996 } 997 #endif 998 err = edac_create_dimm_object(mci, dimm, i); 999 if (err) { 1000 edac_dbg(1, "failure: create dimm %d obj\n", i); 1001 goto fail_unregister_dimm; 1002 } 1003 } 1004 1005 #ifdef CONFIG_EDAC_LEGACY_SYSFS 1006 err = edac_create_csrow_objects(mci); 1007 if (err < 0) 1008 goto fail_unregister_dimm; 1009 #endif 1010 1011 edac_create_debugfs_nodes(mci); 1012 return 0; 1013 1014 fail_unregister_dimm: 1015 for (i--; i >= 0; i--) { 1016 struct dimm_info *dimm = mci->dimms[i]; 1017 if (!dimm->nr_pages) 1018 continue; 1019 1020 device_unregister(&dimm->dev); 1021 } 1022 device_unregister(&mci->dev); 1023 fail_unregister_bus: 1024 bus_unregister(mci->bus); 1025 kfree(name); 1026 1027 return err; 1028 } 1029 1030 /* 1031 * remove a Memory Controller instance 1032 */ 1033 void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci) 1034 { 1035 int i; 1036 1037 edac_dbg(0, "\n"); 1038 1039 #ifdef CONFIG_EDAC_DEBUG 1040 edac_debugfs_remove_recursive(mci->debugfs); 1041 #endif 1042 #ifdef CONFIG_EDAC_LEGACY_SYSFS 1043 edac_delete_csrow_objects(mci); 1044 #endif 1045 1046 for (i = 0; i < mci->tot_dimms; i++) { 1047 struct dimm_info *dimm = mci->dimms[i]; 1048 if (dimm->nr_pages == 0) 1049 continue; 1050 edac_dbg(0, "removing device %s\n", dev_name(&dimm->dev)); 1051 device_unregister(&dimm->dev); 1052 } 1053 } 1054 1055 void edac_unregister_sysfs(struct mem_ctl_info *mci) 1056 { 1057 struct bus_type *bus = mci->bus; 1058 const char *name = mci->bus->name; 1059 1060 edac_dbg(1, "Unregistering device %s\n", dev_name(&mci->dev)); 1061 device_unregister(&mci->dev); 1062 bus_unregister(bus); 1063 kfree(name); 1064 } 1065 1066 static void mc_attr_release(struct device *dev) 1067 { 1068 /* 1069 * There's no container structure here, as this is just the mci 1070 * parent device, used to create the /sys/devices/mc sysfs node. 1071 * So, there are no attributes on it. 1072 */ 1073 edac_dbg(1, "Releasing device %s\n", dev_name(dev)); 1074 kfree(dev); 1075 } 1076 1077 static const struct device_type mc_attr_type = { 1078 .release = mc_attr_release, 1079 }; 1080 /* 1081 * Init/exit code for the module. Basically, creates/removes /sys/class/rc 1082 */ 1083 int __init edac_mc_sysfs_init(void) 1084 { 1085 int err; 1086 1087 mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL); 1088 if (!mci_pdev) { 1089 err = -ENOMEM; 1090 goto out; 1091 } 1092 1093 mci_pdev->bus = edac_get_sysfs_subsys(); 1094 mci_pdev->type = &mc_attr_type; 1095 device_initialize(mci_pdev); 1096 dev_set_name(mci_pdev, "mc"); 1097 1098 err = device_add(mci_pdev); 1099 if (err < 0) 1100 goto out_dev_free; 1101 1102 edac_dbg(0, "device %s created\n", dev_name(mci_pdev)); 1103 1104 return 0; 1105 1106 out_dev_free: 1107 kfree(mci_pdev); 1108 out: 1109 return err; 1110 } 1111 1112 void edac_mc_sysfs_exit(void) 1113 { 1114 device_unregister(mci_pdev); 1115 } 1116