xref: /openbmc/linux/drivers/edac/edac_mc_sysfs.c (revision cd5d5810)
1 /*
2  * edac_mc kernel module
3  * (C) 2005-2007 Linux Networx (http://lnxi.com)
4  *
5  * This file may be distributed under the terms of the
6  * GNU General Public License.
7  *
8  * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com
9  *
10  * (c) 2012-2013 - Mauro Carvalho Chehab <mchehab@redhat.com>
11  *	The entire API were re-written, and ported to use struct device
12  *
13  */
14 
15 #include <linux/ctype.h>
16 #include <linux/slab.h>
17 #include <linux/edac.h>
18 #include <linux/bug.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/uaccess.h>
21 
22 #include "edac_core.h"
23 #include "edac_module.h"
24 
25 /* MC EDAC Controls, setable by module parameter, and sysfs */
26 static int edac_mc_log_ue = 1;
27 static int edac_mc_log_ce = 1;
28 static int edac_mc_panic_on_ue;
29 static int edac_mc_poll_msec = 1000;
30 
31 /* Getter functions for above */
32 int edac_mc_get_log_ue(void)
33 {
34 	return edac_mc_log_ue;
35 }
36 
37 int edac_mc_get_log_ce(void)
38 {
39 	return edac_mc_log_ce;
40 }
41 
42 int edac_mc_get_panic_on_ue(void)
43 {
44 	return edac_mc_panic_on_ue;
45 }
46 
47 /* this is temporary */
48 int edac_mc_get_poll_msec(void)
49 {
50 	return edac_mc_poll_msec;
51 }
52 
53 static int edac_set_poll_msec(const char *val, struct kernel_param *kp)
54 {
55 	long l;
56 	int ret;
57 
58 	if (!val)
59 		return -EINVAL;
60 
61 	ret = kstrtol(val, 0, &l);
62 	if (ret)
63 		return ret;
64 	if ((int)l != l)
65 		return -EINVAL;
66 	*((int *)kp->arg) = l;
67 
68 	/* notify edac_mc engine to reset the poll period */
69 	edac_mc_reset_delay_period(l);
70 
71 	return 0;
72 }
73 
74 /* Parameter declarations for above */
75 module_param(edac_mc_panic_on_ue, int, 0644);
76 MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
77 module_param(edac_mc_log_ue, int, 0644);
78 MODULE_PARM_DESC(edac_mc_log_ue,
79 		 "Log uncorrectable error to console: 0=off 1=on");
80 module_param(edac_mc_log_ce, int, 0644);
81 MODULE_PARM_DESC(edac_mc_log_ce,
82 		 "Log correctable error to console: 0=off 1=on");
83 module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_int,
84 		  &edac_mc_poll_msec, 0644);
85 MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds");
86 
87 static struct device *mci_pdev;
88 
89 /*
90  * various constants for Memory Controllers
91  */
92 static const char * const mem_types[] = {
93 	[MEM_EMPTY] = "Empty",
94 	[MEM_RESERVED] = "Reserved",
95 	[MEM_UNKNOWN] = "Unknown",
96 	[MEM_FPM] = "FPM",
97 	[MEM_EDO] = "EDO",
98 	[MEM_BEDO] = "BEDO",
99 	[MEM_SDR] = "Unbuffered-SDR",
100 	[MEM_RDR] = "Registered-SDR",
101 	[MEM_DDR] = "Unbuffered-DDR",
102 	[MEM_RDDR] = "Registered-DDR",
103 	[MEM_RMBS] = "RMBS",
104 	[MEM_DDR2] = "Unbuffered-DDR2",
105 	[MEM_FB_DDR2] = "FullyBuffered-DDR2",
106 	[MEM_RDDR2] = "Registered-DDR2",
107 	[MEM_XDR] = "XDR",
108 	[MEM_DDR3] = "Unbuffered-DDR3",
109 	[MEM_RDDR3] = "Registered-DDR3"
110 };
111 
112 static const char * const dev_types[] = {
113 	[DEV_UNKNOWN] = "Unknown",
114 	[DEV_X1] = "x1",
115 	[DEV_X2] = "x2",
116 	[DEV_X4] = "x4",
117 	[DEV_X8] = "x8",
118 	[DEV_X16] = "x16",
119 	[DEV_X32] = "x32",
120 	[DEV_X64] = "x64"
121 };
122 
123 static const char * const edac_caps[] = {
124 	[EDAC_UNKNOWN] = "Unknown",
125 	[EDAC_NONE] = "None",
126 	[EDAC_RESERVED] = "Reserved",
127 	[EDAC_PARITY] = "PARITY",
128 	[EDAC_EC] = "EC",
129 	[EDAC_SECDED] = "SECDED",
130 	[EDAC_S2ECD2ED] = "S2ECD2ED",
131 	[EDAC_S4ECD4ED] = "S4ECD4ED",
132 	[EDAC_S8ECD8ED] = "S8ECD8ED",
133 	[EDAC_S16ECD16ED] = "S16ECD16ED"
134 };
135 
136 #ifdef CONFIG_EDAC_LEGACY_SYSFS
137 /*
138  * EDAC sysfs CSROW data structures and methods
139  */
140 
141 #define to_csrow(k) container_of(k, struct csrow_info, dev)
142 
143 /*
144  * We need it to avoid namespace conflicts between the legacy API
145  * and the per-dimm/per-rank one
146  */
147 #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \
148 	static struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store)
149 
150 struct dev_ch_attribute {
151 	struct device_attribute attr;
152 	int channel;
153 };
154 
155 #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \
156 	struct dev_ch_attribute dev_attr_legacy_##_name = \
157 		{ __ATTR(_name, _mode, _show, _store), (_var) }
158 
159 #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel)
160 
161 /* Set of more default csrow<id> attribute show/store functions */
162 static ssize_t csrow_ue_count_show(struct device *dev,
163 				   struct device_attribute *mattr, char *data)
164 {
165 	struct csrow_info *csrow = to_csrow(dev);
166 
167 	return sprintf(data, "%u\n", csrow->ue_count);
168 }
169 
170 static ssize_t csrow_ce_count_show(struct device *dev,
171 				   struct device_attribute *mattr, char *data)
172 {
173 	struct csrow_info *csrow = to_csrow(dev);
174 
175 	return sprintf(data, "%u\n", csrow->ce_count);
176 }
177 
178 static ssize_t csrow_size_show(struct device *dev,
179 			       struct device_attribute *mattr, char *data)
180 {
181 	struct csrow_info *csrow = to_csrow(dev);
182 	int i;
183 	u32 nr_pages = 0;
184 
185 	for (i = 0; i < csrow->nr_channels; i++)
186 		nr_pages += csrow->channels[i]->dimm->nr_pages;
187 	return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages));
188 }
189 
190 static ssize_t csrow_mem_type_show(struct device *dev,
191 				   struct device_attribute *mattr, char *data)
192 {
193 	struct csrow_info *csrow = to_csrow(dev);
194 
195 	return sprintf(data, "%s\n", mem_types[csrow->channels[0]->dimm->mtype]);
196 }
197 
198 static ssize_t csrow_dev_type_show(struct device *dev,
199 				   struct device_attribute *mattr, char *data)
200 {
201 	struct csrow_info *csrow = to_csrow(dev);
202 
203 	return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]);
204 }
205 
206 static ssize_t csrow_edac_mode_show(struct device *dev,
207 				    struct device_attribute *mattr,
208 				    char *data)
209 {
210 	struct csrow_info *csrow = to_csrow(dev);
211 
212 	return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]);
213 }
214 
215 /* show/store functions for DIMM Label attributes */
216 static ssize_t channel_dimm_label_show(struct device *dev,
217 				       struct device_attribute *mattr,
218 				       char *data)
219 {
220 	struct csrow_info *csrow = to_csrow(dev);
221 	unsigned chan = to_channel(mattr);
222 	struct rank_info *rank = csrow->channels[chan];
223 
224 	/* if field has not been initialized, there is nothing to send */
225 	if (!rank->dimm->label[0])
226 		return 0;
227 
228 	return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n",
229 			rank->dimm->label);
230 }
231 
232 static ssize_t channel_dimm_label_store(struct device *dev,
233 					struct device_attribute *mattr,
234 					const char *data, size_t count)
235 {
236 	struct csrow_info *csrow = to_csrow(dev);
237 	unsigned chan = to_channel(mattr);
238 	struct rank_info *rank = csrow->channels[chan];
239 
240 	ssize_t max_size = 0;
241 
242 	max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
243 	strncpy(rank->dimm->label, data, max_size);
244 	rank->dimm->label[max_size] = '\0';
245 
246 	return max_size;
247 }
248 
249 /* show function for dynamic chX_ce_count attribute */
250 static ssize_t channel_ce_count_show(struct device *dev,
251 				     struct device_attribute *mattr, char *data)
252 {
253 	struct csrow_info *csrow = to_csrow(dev);
254 	unsigned chan = to_channel(mattr);
255 	struct rank_info *rank = csrow->channels[chan];
256 
257 	return sprintf(data, "%u\n", rank->ce_count);
258 }
259 
260 /* cwrow<id>/attribute files */
261 DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL);
262 DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL);
263 DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL);
264 DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL);
265 DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL);
266 DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL);
267 
268 /* default attributes of the CSROW<id> object */
269 static struct attribute *csrow_attrs[] = {
270 	&dev_attr_legacy_dev_type.attr,
271 	&dev_attr_legacy_mem_type.attr,
272 	&dev_attr_legacy_edac_mode.attr,
273 	&dev_attr_legacy_size_mb.attr,
274 	&dev_attr_legacy_ue_count.attr,
275 	&dev_attr_legacy_ce_count.attr,
276 	NULL,
277 };
278 
279 static struct attribute_group csrow_attr_grp = {
280 	.attrs	= csrow_attrs,
281 };
282 
283 static const struct attribute_group *csrow_attr_groups[] = {
284 	&csrow_attr_grp,
285 	NULL
286 };
287 
288 static void csrow_attr_release(struct device *dev)
289 {
290 	struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
291 
292 	edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
293 	kfree(csrow);
294 }
295 
296 static struct device_type csrow_attr_type = {
297 	.groups		= csrow_attr_groups,
298 	.release	= csrow_attr_release,
299 };
300 
301 /*
302  * possible dynamic channel DIMM Label attribute files
303  *
304  */
305 
306 #define EDAC_NR_CHANNELS	6
307 
308 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR,
309 	channel_dimm_label_show, channel_dimm_label_store, 0);
310 DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR,
311 	channel_dimm_label_show, channel_dimm_label_store, 1);
312 DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR,
313 	channel_dimm_label_show, channel_dimm_label_store, 2);
314 DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR,
315 	channel_dimm_label_show, channel_dimm_label_store, 3);
316 DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR,
317 	channel_dimm_label_show, channel_dimm_label_store, 4);
318 DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR,
319 	channel_dimm_label_show, channel_dimm_label_store, 5);
320 
321 /* Total possible dynamic DIMM Label attribute file table */
322 static struct device_attribute *dynamic_csrow_dimm_attr[] = {
323 	&dev_attr_legacy_ch0_dimm_label.attr,
324 	&dev_attr_legacy_ch1_dimm_label.attr,
325 	&dev_attr_legacy_ch2_dimm_label.attr,
326 	&dev_attr_legacy_ch3_dimm_label.attr,
327 	&dev_attr_legacy_ch4_dimm_label.attr,
328 	&dev_attr_legacy_ch5_dimm_label.attr
329 };
330 
331 /* possible dynamic channel ce_count attribute files */
332 DEVICE_CHANNEL(ch0_ce_count, S_IRUGO,
333 		   channel_ce_count_show, NULL, 0);
334 DEVICE_CHANNEL(ch1_ce_count, S_IRUGO,
335 		   channel_ce_count_show, NULL, 1);
336 DEVICE_CHANNEL(ch2_ce_count, S_IRUGO,
337 		   channel_ce_count_show, NULL, 2);
338 DEVICE_CHANNEL(ch3_ce_count, S_IRUGO,
339 		   channel_ce_count_show, NULL, 3);
340 DEVICE_CHANNEL(ch4_ce_count, S_IRUGO,
341 		   channel_ce_count_show, NULL, 4);
342 DEVICE_CHANNEL(ch5_ce_count, S_IRUGO,
343 		   channel_ce_count_show, NULL, 5);
344 
345 /* Total possible dynamic ce_count attribute file table */
346 static struct device_attribute *dynamic_csrow_ce_count_attr[] = {
347 	&dev_attr_legacy_ch0_ce_count.attr,
348 	&dev_attr_legacy_ch1_ce_count.attr,
349 	&dev_attr_legacy_ch2_ce_count.attr,
350 	&dev_attr_legacy_ch3_ce_count.attr,
351 	&dev_attr_legacy_ch4_ce_count.attr,
352 	&dev_attr_legacy_ch5_ce_count.attr
353 };
354 
355 static inline int nr_pages_per_csrow(struct csrow_info *csrow)
356 {
357 	int chan, nr_pages = 0;
358 
359 	for (chan = 0; chan < csrow->nr_channels; chan++)
360 		nr_pages += csrow->channels[chan]->dimm->nr_pages;
361 
362 	return nr_pages;
363 }
364 
365 /* Create a CSROW object under specifed edac_mc_device */
366 static int edac_create_csrow_object(struct mem_ctl_info *mci,
367 				    struct csrow_info *csrow, int index)
368 {
369 	int err, chan;
370 
371 	if (csrow->nr_channels >= EDAC_NR_CHANNELS)
372 		return -ENODEV;
373 
374 	csrow->dev.type = &csrow_attr_type;
375 	csrow->dev.bus = mci->bus;
376 	device_initialize(&csrow->dev);
377 	csrow->dev.parent = &mci->dev;
378 	csrow->mci = mci;
379 	dev_set_name(&csrow->dev, "csrow%d", index);
380 	dev_set_drvdata(&csrow->dev, csrow);
381 
382 	edac_dbg(0, "creating (virtual) csrow node %s\n",
383 		 dev_name(&csrow->dev));
384 
385 	err = device_add(&csrow->dev);
386 	if (err < 0)
387 		return err;
388 
389 	for (chan = 0; chan < csrow->nr_channels; chan++) {
390 		/* Only expose populated DIMMs */
391 		if (!csrow->channels[chan]->dimm->nr_pages)
392 			continue;
393 		err = device_create_file(&csrow->dev,
394 					 dynamic_csrow_dimm_attr[chan]);
395 		if (err < 0)
396 			goto error;
397 		err = device_create_file(&csrow->dev,
398 					 dynamic_csrow_ce_count_attr[chan]);
399 		if (err < 0) {
400 			device_remove_file(&csrow->dev,
401 					   dynamic_csrow_dimm_attr[chan]);
402 			goto error;
403 		}
404 	}
405 
406 	return 0;
407 
408 error:
409 	for (--chan; chan >= 0; chan--) {
410 		device_remove_file(&csrow->dev,
411 					dynamic_csrow_dimm_attr[chan]);
412 		device_remove_file(&csrow->dev,
413 					   dynamic_csrow_ce_count_attr[chan]);
414 	}
415 	put_device(&csrow->dev);
416 
417 	return err;
418 }
419 
420 /* Create a CSROW object under specifed edac_mc_device */
421 static int edac_create_csrow_objects(struct mem_ctl_info *mci)
422 {
423 	int err, i, chan;
424 	struct csrow_info *csrow;
425 
426 	for (i = 0; i < mci->nr_csrows; i++) {
427 		csrow = mci->csrows[i];
428 		if (!nr_pages_per_csrow(csrow))
429 			continue;
430 		err = edac_create_csrow_object(mci, mci->csrows[i], i);
431 		if (err < 0) {
432 			edac_dbg(1,
433 				 "failure: create csrow objects for csrow %d\n",
434 				 i);
435 			goto error;
436 		}
437 	}
438 	return 0;
439 
440 error:
441 	for (--i; i >= 0; i--) {
442 		csrow = mci->csrows[i];
443 		if (!nr_pages_per_csrow(csrow))
444 			continue;
445 		for (chan = csrow->nr_channels - 1; chan >= 0; chan--) {
446 			if (!csrow->channels[chan]->dimm->nr_pages)
447 				continue;
448 			device_remove_file(&csrow->dev,
449 						dynamic_csrow_dimm_attr[chan]);
450 			device_remove_file(&csrow->dev,
451 						dynamic_csrow_ce_count_attr[chan]);
452 		}
453 		put_device(&mci->csrows[i]->dev);
454 	}
455 
456 	return err;
457 }
458 
459 static void edac_delete_csrow_objects(struct mem_ctl_info *mci)
460 {
461 	int i, chan;
462 	struct csrow_info *csrow;
463 
464 	for (i = mci->nr_csrows - 1; i >= 0; i--) {
465 		csrow = mci->csrows[i];
466 		if (!nr_pages_per_csrow(csrow))
467 			continue;
468 		for (chan = csrow->nr_channels - 1; chan >= 0; chan--) {
469 			if (!csrow->channels[chan]->dimm->nr_pages)
470 				continue;
471 			edac_dbg(1, "Removing csrow %d channel %d sysfs nodes\n",
472 				 i, chan);
473 			device_remove_file(&csrow->dev,
474 						dynamic_csrow_dimm_attr[chan]);
475 			device_remove_file(&csrow->dev,
476 						dynamic_csrow_ce_count_attr[chan]);
477 		}
478 		device_unregister(&mci->csrows[i]->dev);
479 	}
480 }
481 #endif
482 
483 /*
484  * Per-dimm (or per-rank) devices
485  */
486 
487 #define to_dimm(k) container_of(k, struct dimm_info, dev)
488 
489 /* show/store functions for DIMM Label attributes */
490 static ssize_t dimmdev_location_show(struct device *dev,
491 				     struct device_attribute *mattr, char *data)
492 {
493 	struct dimm_info *dimm = to_dimm(dev);
494 
495 	return edac_dimm_info_location(dimm, data, PAGE_SIZE);
496 }
497 
498 static ssize_t dimmdev_label_show(struct device *dev,
499 				  struct device_attribute *mattr, char *data)
500 {
501 	struct dimm_info *dimm = to_dimm(dev);
502 
503 	/* if field has not been initialized, there is nothing to send */
504 	if (!dimm->label[0])
505 		return 0;
506 
507 	return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n", dimm->label);
508 }
509 
510 static ssize_t dimmdev_label_store(struct device *dev,
511 				   struct device_attribute *mattr,
512 				   const char *data,
513 				   size_t count)
514 {
515 	struct dimm_info *dimm = to_dimm(dev);
516 
517 	ssize_t max_size = 0;
518 
519 	max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
520 	strncpy(dimm->label, data, max_size);
521 	dimm->label[max_size] = '\0';
522 
523 	return max_size;
524 }
525 
526 static ssize_t dimmdev_size_show(struct device *dev,
527 				 struct device_attribute *mattr, char *data)
528 {
529 	struct dimm_info *dimm = to_dimm(dev);
530 
531 	return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages));
532 }
533 
534 static ssize_t dimmdev_mem_type_show(struct device *dev,
535 				     struct device_attribute *mattr, char *data)
536 {
537 	struct dimm_info *dimm = to_dimm(dev);
538 
539 	return sprintf(data, "%s\n", mem_types[dimm->mtype]);
540 }
541 
542 static ssize_t dimmdev_dev_type_show(struct device *dev,
543 				     struct device_attribute *mattr, char *data)
544 {
545 	struct dimm_info *dimm = to_dimm(dev);
546 
547 	return sprintf(data, "%s\n", dev_types[dimm->dtype]);
548 }
549 
550 static ssize_t dimmdev_edac_mode_show(struct device *dev,
551 				      struct device_attribute *mattr,
552 				      char *data)
553 {
554 	struct dimm_info *dimm = to_dimm(dev);
555 
556 	return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]);
557 }
558 
559 /* dimm/rank attribute files */
560 static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR,
561 		   dimmdev_label_show, dimmdev_label_store);
562 static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL);
563 static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL);
564 static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL);
565 static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL);
566 static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL);
567 
568 /* attributes of the dimm<id>/rank<id> object */
569 static struct attribute *dimm_attrs[] = {
570 	&dev_attr_dimm_label.attr,
571 	&dev_attr_dimm_location.attr,
572 	&dev_attr_size.attr,
573 	&dev_attr_dimm_mem_type.attr,
574 	&dev_attr_dimm_dev_type.attr,
575 	&dev_attr_dimm_edac_mode.attr,
576 	NULL,
577 };
578 
579 static struct attribute_group dimm_attr_grp = {
580 	.attrs	= dimm_attrs,
581 };
582 
583 static const struct attribute_group *dimm_attr_groups[] = {
584 	&dimm_attr_grp,
585 	NULL
586 };
587 
588 static void dimm_attr_release(struct device *dev)
589 {
590 	struct dimm_info *dimm = container_of(dev, struct dimm_info, dev);
591 
592 	edac_dbg(1, "Releasing dimm device %s\n", dev_name(dev));
593 	kfree(dimm);
594 }
595 
596 static struct device_type dimm_attr_type = {
597 	.groups		= dimm_attr_groups,
598 	.release	= dimm_attr_release,
599 };
600 
601 /* Create a DIMM object under specifed memory controller device */
602 static int edac_create_dimm_object(struct mem_ctl_info *mci,
603 				   struct dimm_info *dimm,
604 				   int index)
605 {
606 	int err;
607 	dimm->mci = mci;
608 
609 	dimm->dev.type = &dimm_attr_type;
610 	dimm->dev.bus = mci->bus;
611 	device_initialize(&dimm->dev);
612 
613 	dimm->dev.parent = &mci->dev;
614 	if (mci->csbased)
615 		dev_set_name(&dimm->dev, "rank%d", index);
616 	else
617 		dev_set_name(&dimm->dev, "dimm%d", index);
618 	dev_set_drvdata(&dimm->dev, dimm);
619 	pm_runtime_forbid(&mci->dev);
620 
621 	err =  device_add(&dimm->dev);
622 
623 	edac_dbg(0, "creating rank/dimm device %s\n", dev_name(&dimm->dev));
624 
625 	return err;
626 }
627 
628 /*
629  * Memory controller device
630  */
631 
632 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
633 
634 static ssize_t mci_reset_counters_store(struct device *dev,
635 					struct device_attribute *mattr,
636 					const char *data, size_t count)
637 {
638 	struct mem_ctl_info *mci = to_mci(dev);
639 	int cnt, row, chan, i;
640 	mci->ue_mc = 0;
641 	mci->ce_mc = 0;
642 	mci->ue_noinfo_count = 0;
643 	mci->ce_noinfo_count = 0;
644 
645 	for (row = 0; row < mci->nr_csrows; row++) {
646 		struct csrow_info *ri = mci->csrows[row];
647 
648 		ri->ue_count = 0;
649 		ri->ce_count = 0;
650 
651 		for (chan = 0; chan < ri->nr_channels; chan++)
652 			ri->channels[chan]->ce_count = 0;
653 	}
654 
655 	cnt = 1;
656 	for (i = 0; i < mci->n_layers; i++) {
657 		cnt *= mci->layers[i].size;
658 		memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32));
659 		memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32));
660 	}
661 
662 	mci->start_time = jiffies;
663 	return count;
664 }
665 
666 /* Memory scrubbing interface:
667  *
668  * A MC driver can limit the scrubbing bandwidth based on the CPU type.
669  * Therefore, ->set_sdram_scrub_rate should be made to return the actual
670  * bandwidth that is accepted or 0 when scrubbing is to be disabled.
671  *
672  * Negative value still means that an error has occurred while setting
673  * the scrub rate.
674  */
675 static ssize_t mci_sdram_scrub_rate_store(struct device *dev,
676 					  struct device_attribute *mattr,
677 					  const char *data, size_t count)
678 {
679 	struct mem_ctl_info *mci = to_mci(dev);
680 	unsigned long bandwidth = 0;
681 	int new_bw = 0;
682 
683 	if (kstrtoul(data, 10, &bandwidth) < 0)
684 		return -EINVAL;
685 
686 	new_bw = mci->set_sdram_scrub_rate(mci, bandwidth);
687 	if (new_bw < 0) {
688 		edac_printk(KERN_WARNING, EDAC_MC,
689 			    "Error setting scrub rate to: %lu\n", bandwidth);
690 		return -EINVAL;
691 	}
692 
693 	return count;
694 }
695 
696 /*
697  * ->get_sdram_scrub_rate() return value semantics same as above.
698  */
699 static ssize_t mci_sdram_scrub_rate_show(struct device *dev,
700 					 struct device_attribute *mattr,
701 					 char *data)
702 {
703 	struct mem_ctl_info *mci = to_mci(dev);
704 	int bandwidth = 0;
705 
706 	bandwidth = mci->get_sdram_scrub_rate(mci);
707 	if (bandwidth < 0) {
708 		edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n");
709 		return bandwidth;
710 	}
711 
712 	return sprintf(data, "%d\n", bandwidth);
713 }
714 
715 /* default attribute files for the MCI object */
716 static ssize_t mci_ue_count_show(struct device *dev,
717 				 struct device_attribute *mattr,
718 				 char *data)
719 {
720 	struct mem_ctl_info *mci = to_mci(dev);
721 
722 	return sprintf(data, "%d\n", mci->ue_mc);
723 }
724 
725 static ssize_t mci_ce_count_show(struct device *dev,
726 				 struct device_attribute *mattr,
727 				 char *data)
728 {
729 	struct mem_ctl_info *mci = to_mci(dev);
730 
731 	return sprintf(data, "%d\n", mci->ce_mc);
732 }
733 
734 static ssize_t mci_ce_noinfo_show(struct device *dev,
735 				  struct device_attribute *mattr,
736 				  char *data)
737 {
738 	struct mem_ctl_info *mci = to_mci(dev);
739 
740 	return sprintf(data, "%d\n", mci->ce_noinfo_count);
741 }
742 
743 static ssize_t mci_ue_noinfo_show(struct device *dev,
744 				  struct device_attribute *mattr,
745 				  char *data)
746 {
747 	struct mem_ctl_info *mci = to_mci(dev);
748 
749 	return sprintf(data, "%d\n", mci->ue_noinfo_count);
750 }
751 
752 static ssize_t mci_seconds_show(struct device *dev,
753 				struct device_attribute *mattr,
754 				char *data)
755 {
756 	struct mem_ctl_info *mci = to_mci(dev);
757 
758 	return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ);
759 }
760 
761 static ssize_t mci_ctl_name_show(struct device *dev,
762 				 struct device_attribute *mattr,
763 				 char *data)
764 {
765 	struct mem_ctl_info *mci = to_mci(dev);
766 
767 	return sprintf(data, "%s\n", mci->ctl_name);
768 }
769 
770 static ssize_t mci_size_mb_show(struct device *dev,
771 				struct device_attribute *mattr,
772 				char *data)
773 {
774 	struct mem_ctl_info *mci = to_mci(dev);
775 	int total_pages = 0, csrow_idx, j;
776 
777 	for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) {
778 		struct csrow_info *csrow = mci->csrows[csrow_idx];
779 
780 		for (j = 0; j < csrow->nr_channels; j++) {
781 			struct dimm_info *dimm = csrow->channels[j]->dimm;
782 
783 			total_pages += dimm->nr_pages;
784 		}
785 	}
786 
787 	return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages));
788 }
789 
790 static ssize_t mci_max_location_show(struct device *dev,
791 				     struct device_attribute *mattr,
792 				     char *data)
793 {
794 	struct mem_ctl_info *mci = to_mci(dev);
795 	int i;
796 	char *p = data;
797 
798 	for (i = 0; i < mci->n_layers; i++) {
799 		p += sprintf(p, "%s %d ",
800 			     edac_layer_name[mci->layers[i].type],
801 			     mci->layers[i].size - 1);
802 	}
803 
804 	return p - data;
805 }
806 
807 #ifdef CONFIG_EDAC_DEBUG
808 static ssize_t edac_fake_inject_write(struct file *file,
809 				      const char __user *data,
810 				      size_t count, loff_t *ppos)
811 {
812 	struct device *dev = file->private_data;
813 	struct mem_ctl_info *mci = to_mci(dev);
814 	static enum hw_event_mc_err_type type;
815 	u16 errcount = mci->fake_inject_count;
816 
817 	if (!errcount)
818 		errcount = 1;
819 
820 	type = mci->fake_inject_ue ? HW_EVENT_ERR_UNCORRECTED
821 				   : HW_EVENT_ERR_CORRECTED;
822 
823 	printk(KERN_DEBUG
824 	       "Generating %d %s fake error%s to %d.%d.%d to test core handling. NOTE: this won't test the driver-specific decoding logic.\n",
825 		errcount,
826 		(type == HW_EVENT_ERR_UNCORRECTED) ? "UE" : "CE",
827 		errcount > 1 ? "s" : "",
828 		mci->fake_inject_layer[0],
829 		mci->fake_inject_layer[1],
830 		mci->fake_inject_layer[2]
831 	       );
832 	edac_mc_handle_error(type, mci, errcount, 0, 0, 0,
833 			     mci->fake_inject_layer[0],
834 			     mci->fake_inject_layer[1],
835 			     mci->fake_inject_layer[2],
836 			     "FAKE ERROR", "for EDAC testing only");
837 
838 	return count;
839 }
840 
841 static const struct file_operations debug_fake_inject_fops = {
842 	.open = simple_open,
843 	.write = edac_fake_inject_write,
844 	.llseek = generic_file_llseek,
845 };
846 #endif
847 
848 /* default Control file */
849 DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store);
850 
851 /* default Attribute files */
852 DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL);
853 DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL);
854 DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL);
855 DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL);
856 DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL);
857 DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL);
858 DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL);
859 DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL);
860 
861 /* memory scrubber attribute file */
862 DEVICE_ATTR(sdram_scrub_rate, 0, NULL, NULL);
863 
864 static struct attribute *mci_attrs[] = {
865 	&dev_attr_reset_counters.attr,
866 	&dev_attr_mc_name.attr,
867 	&dev_attr_size_mb.attr,
868 	&dev_attr_seconds_since_reset.attr,
869 	&dev_attr_ue_noinfo_count.attr,
870 	&dev_attr_ce_noinfo_count.attr,
871 	&dev_attr_ue_count.attr,
872 	&dev_attr_ce_count.attr,
873 	&dev_attr_max_location.attr,
874 	NULL
875 };
876 
877 static struct attribute_group mci_attr_grp = {
878 	.attrs	= mci_attrs,
879 };
880 
881 static const struct attribute_group *mci_attr_groups[] = {
882 	&mci_attr_grp,
883 	NULL
884 };
885 
886 static void mci_attr_release(struct device *dev)
887 {
888 	struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
889 
890 	edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
891 	kfree(mci);
892 }
893 
894 static struct device_type mci_attr_type = {
895 	.groups		= mci_attr_groups,
896 	.release	= mci_attr_release,
897 };
898 
899 #ifdef CONFIG_EDAC_DEBUG
900 static struct dentry *edac_debugfs;
901 
902 int __init edac_debugfs_init(void)
903 {
904 	edac_debugfs = debugfs_create_dir("edac", NULL);
905 	if (IS_ERR(edac_debugfs)) {
906 		edac_debugfs = NULL;
907 		return -ENOMEM;
908 	}
909 	return 0;
910 }
911 
912 void __exit edac_debugfs_exit(void)
913 {
914 	debugfs_remove(edac_debugfs);
915 }
916 
917 int edac_create_debug_nodes(struct mem_ctl_info *mci)
918 {
919 	struct dentry *d, *parent;
920 	char name[80];
921 	int i;
922 
923 	if (!edac_debugfs)
924 		return -ENODEV;
925 
926 	d = debugfs_create_dir(mci->dev.kobj.name, edac_debugfs);
927 	if (!d)
928 		return -ENOMEM;
929 	parent = d;
930 
931 	for (i = 0; i < mci->n_layers; i++) {
932 		sprintf(name, "fake_inject_%s",
933 			     edac_layer_name[mci->layers[i].type]);
934 		d = debugfs_create_u8(name, S_IRUGO | S_IWUSR, parent,
935 				      &mci->fake_inject_layer[i]);
936 		if (!d)
937 			goto nomem;
938 	}
939 
940 	d = debugfs_create_bool("fake_inject_ue", S_IRUGO | S_IWUSR, parent,
941 				&mci->fake_inject_ue);
942 	if (!d)
943 		goto nomem;
944 
945 	d = debugfs_create_u16("fake_inject_count", S_IRUGO | S_IWUSR, parent,
946 				&mci->fake_inject_count);
947 	if (!d)
948 		goto nomem;
949 
950 	d = debugfs_create_file("fake_inject", S_IWUSR, parent,
951 				&mci->dev,
952 				&debug_fake_inject_fops);
953 	if (!d)
954 		goto nomem;
955 
956 	mci->debugfs = parent;
957 	return 0;
958 nomem:
959 	debugfs_remove(mci->debugfs);
960 	return -ENOMEM;
961 }
962 #endif
963 
964 /*
965  * Create a new Memory Controller kobject instance,
966  *	mc<id> under the 'mc' directory
967  *
968  * Return:
969  *	0	Success
970  *	!0	Failure
971  */
972 int edac_create_sysfs_mci_device(struct mem_ctl_info *mci)
973 {
974 	int i, err;
975 
976 	/*
977 	 * The memory controller needs its own bus, in order to avoid
978 	 * namespace conflicts at /sys/bus/edac.
979 	 */
980 	mci->bus->name = kasprintf(GFP_KERNEL, "mc%d", mci->mc_idx);
981 	if (!mci->bus->name)
982 		return -ENOMEM;
983 
984 	edac_dbg(0, "creating bus %s\n", mci->bus->name);
985 
986 	err = bus_register(mci->bus);
987 	if (err < 0)
988 		return err;
989 
990 	/* get the /sys/devices/system/edac subsys reference */
991 	mci->dev.type = &mci_attr_type;
992 	device_initialize(&mci->dev);
993 
994 	mci->dev.parent = mci_pdev;
995 	mci->dev.bus = mci->bus;
996 	dev_set_name(&mci->dev, "mc%d", mci->mc_idx);
997 	dev_set_drvdata(&mci->dev, mci);
998 	pm_runtime_forbid(&mci->dev);
999 
1000 	edac_dbg(0, "creating device %s\n", dev_name(&mci->dev));
1001 	err = device_add(&mci->dev);
1002 	if (err < 0) {
1003 		edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev));
1004 		bus_unregister(mci->bus);
1005 		kfree(mci->bus->name);
1006 		return err;
1007 	}
1008 
1009 	if (mci->set_sdram_scrub_rate || mci->get_sdram_scrub_rate) {
1010 		if (mci->get_sdram_scrub_rate) {
1011 			dev_attr_sdram_scrub_rate.attr.mode |= S_IRUGO;
1012 			dev_attr_sdram_scrub_rate.show = &mci_sdram_scrub_rate_show;
1013 		}
1014 		if (mci->set_sdram_scrub_rate) {
1015 			dev_attr_sdram_scrub_rate.attr.mode |= S_IWUSR;
1016 			dev_attr_sdram_scrub_rate.store = &mci_sdram_scrub_rate_store;
1017 		}
1018 		err = device_create_file(&mci->dev,
1019 					 &dev_attr_sdram_scrub_rate);
1020 		if (err) {
1021 			edac_dbg(1, "failure: create sdram_scrub_rate\n");
1022 			goto fail2;
1023 		}
1024 	}
1025 	/*
1026 	 * Create the dimm/rank devices
1027 	 */
1028 	for (i = 0; i < mci->tot_dimms; i++) {
1029 		struct dimm_info *dimm = mci->dimms[i];
1030 		/* Only expose populated DIMMs */
1031 		if (dimm->nr_pages == 0)
1032 			continue;
1033 #ifdef CONFIG_EDAC_DEBUG
1034 		edac_dbg(1, "creating dimm%d, located at ", i);
1035 		if (edac_debug_level >= 1) {
1036 			int lay;
1037 			for (lay = 0; lay < mci->n_layers; lay++)
1038 				printk(KERN_CONT "%s %d ",
1039 					edac_layer_name[mci->layers[lay].type],
1040 					dimm->location[lay]);
1041 			printk(KERN_CONT "\n");
1042 		}
1043 #endif
1044 		err = edac_create_dimm_object(mci, dimm, i);
1045 		if (err) {
1046 			edac_dbg(1, "failure: create dimm %d obj\n", i);
1047 			goto fail;
1048 		}
1049 	}
1050 
1051 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1052 	err = edac_create_csrow_objects(mci);
1053 	if (err < 0)
1054 		goto fail;
1055 #endif
1056 
1057 #ifdef CONFIG_EDAC_DEBUG
1058 	edac_create_debug_nodes(mci);
1059 #endif
1060 	return 0;
1061 
1062 fail:
1063 	for (i--; i >= 0; i--) {
1064 		struct dimm_info *dimm = mci->dimms[i];
1065 		if (dimm->nr_pages == 0)
1066 			continue;
1067 		device_unregister(&dimm->dev);
1068 	}
1069 fail2:
1070 	device_unregister(&mci->dev);
1071 	bus_unregister(mci->bus);
1072 	kfree(mci->bus->name);
1073 	return err;
1074 }
1075 
1076 /*
1077  * remove a Memory Controller instance
1078  */
1079 void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
1080 {
1081 	int i;
1082 
1083 	edac_dbg(0, "\n");
1084 
1085 #ifdef CONFIG_EDAC_DEBUG
1086 	debugfs_remove(mci->debugfs);
1087 #endif
1088 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1089 	edac_delete_csrow_objects(mci);
1090 #endif
1091 
1092 	for (i = 0; i < mci->tot_dimms; i++) {
1093 		struct dimm_info *dimm = mci->dimms[i];
1094 		if (dimm->nr_pages == 0)
1095 			continue;
1096 		edac_dbg(0, "removing device %s\n", dev_name(&dimm->dev));
1097 		device_unregister(&dimm->dev);
1098 	}
1099 }
1100 
1101 void edac_unregister_sysfs(struct mem_ctl_info *mci)
1102 {
1103 	edac_dbg(1, "Unregistering device %s\n", dev_name(&mci->dev));
1104 	device_unregister(&mci->dev);
1105 	bus_unregister(mci->bus);
1106 	kfree(mci->bus->name);
1107 }
1108 
1109 static void mc_attr_release(struct device *dev)
1110 {
1111 	/*
1112 	 * There's no container structure here, as this is just the mci
1113 	 * parent device, used to create the /sys/devices/mc sysfs node.
1114 	 * So, there are no attributes on it.
1115 	 */
1116 	edac_dbg(1, "Releasing device %s\n", dev_name(dev));
1117 	kfree(dev);
1118 }
1119 
1120 static struct device_type mc_attr_type = {
1121 	.release	= mc_attr_release,
1122 };
1123 /*
1124  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1125  */
1126 int __init edac_mc_sysfs_init(void)
1127 {
1128 	struct bus_type *edac_subsys;
1129 	int err;
1130 
1131 	/* get the /sys/devices/system/edac subsys reference */
1132 	edac_subsys = edac_get_sysfs_subsys();
1133 	if (edac_subsys == NULL) {
1134 		edac_dbg(1, "no edac_subsys\n");
1135 		err = -EINVAL;
1136 		goto out;
1137 	}
1138 
1139 	mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL);
1140 	if (!mci_pdev) {
1141 		err = -ENOMEM;
1142 		goto out_put_sysfs;
1143 	}
1144 
1145 	mci_pdev->bus = edac_subsys;
1146 	mci_pdev->type = &mc_attr_type;
1147 	device_initialize(mci_pdev);
1148 	dev_set_name(mci_pdev, "mc");
1149 
1150 	err = device_add(mci_pdev);
1151 	if (err < 0)
1152 		goto out_dev_free;
1153 
1154 	edac_dbg(0, "device %s created\n", dev_name(mci_pdev));
1155 
1156 	return 0;
1157 
1158  out_dev_free:
1159 	kfree(mci_pdev);
1160  out_put_sysfs:
1161 	edac_put_sysfs_subsys();
1162  out:
1163 	return err;
1164 }
1165 
1166 void __exit edac_mc_sysfs_exit(void)
1167 {
1168 	device_unregister(mci_pdev);
1169 	edac_put_sysfs_subsys();
1170 }
1171