xref: /openbmc/linux/drivers/edac/edac_mc_sysfs.c (revision b830f94f)
1 /*
2  * edac_mc kernel module
3  * (C) 2005-2007 Linux Networx (http://lnxi.com)
4  *
5  * This file may be distributed under the terms of the
6  * GNU General Public License.
7  *
8  * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com
9  *
10  * (c) 2012-2013 - Mauro Carvalho Chehab
11  *	The entire API were re-written, and ported to use struct device
12  *
13  */
14 
15 #include <linux/ctype.h>
16 #include <linux/slab.h>
17 #include <linux/edac.h>
18 #include <linux/bug.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/uaccess.h>
21 
22 #include "edac_mc.h"
23 #include "edac_module.h"
24 
25 /* MC EDAC Controls, setable by module parameter, and sysfs */
26 static int edac_mc_log_ue = 1;
27 static int edac_mc_log_ce = 1;
28 static int edac_mc_panic_on_ue;
29 static unsigned int edac_mc_poll_msec = 1000;
30 
31 /* Getter functions for above */
32 int edac_mc_get_log_ue(void)
33 {
34 	return edac_mc_log_ue;
35 }
36 
37 int edac_mc_get_log_ce(void)
38 {
39 	return edac_mc_log_ce;
40 }
41 
42 int edac_mc_get_panic_on_ue(void)
43 {
44 	return edac_mc_panic_on_ue;
45 }
46 
47 /* this is temporary */
48 unsigned int edac_mc_get_poll_msec(void)
49 {
50 	return edac_mc_poll_msec;
51 }
52 
53 static int edac_set_poll_msec(const char *val, const struct kernel_param *kp)
54 {
55 	unsigned int i;
56 	int ret;
57 
58 	if (!val)
59 		return -EINVAL;
60 
61 	ret = kstrtouint(val, 0, &i);
62 	if (ret)
63 		return ret;
64 
65 	if (i < 1000)
66 		return -EINVAL;
67 
68 	*((unsigned int *)kp->arg) = i;
69 
70 	/* notify edac_mc engine to reset the poll period */
71 	edac_mc_reset_delay_period(i);
72 
73 	return 0;
74 }
75 
76 /* Parameter declarations for above */
77 module_param(edac_mc_panic_on_ue, int, 0644);
78 MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
79 module_param(edac_mc_log_ue, int, 0644);
80 MODULE_PARM_DESC(edac_mc_log_ue,
81 		 "Log uncorrectable error to console: 0=off 1=on");
82 module_param(edac_mc_log_ce, int, 0644);
83 MODULE_PARM_DESC(edac_mc_log_ce,
84 		 "Log correctable error to console: 0=off 1=on");
85 module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_uint,
86 		  &edac_mc_poll_msec, 0644);
87 MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds");
88 
89 static struct device *mci_pdev;
90 
91 /*
92  * various constants for Memory Controllers
93  */
94 static const char * const dev_types[] = {
95 	[DEV_UNKNOWN] = "Unknown",
96 	[DEV_X1] = "x1",
97 	[DEV_X2] = "x2",
98 	[DEV_X4] = "x4",
99 	[DEV_X8] = "x8",
100 	[DEV_X16] = "x16",
101 	[DEV_X32] = "x32",
102 	[DEV_X64] = "x64"
103 };
104 
105 static const char * const edac_caps[] = {
106 	[EDAC_UNKNOWN] = "Unknown",
107 	[EDAC_NONE] = "None",
108 	[EDAC_RESERVED] = "Reserved",
109 	[EDAC_PARITY] = "PARITY",
110 	[EDAC_EC] = "EC",
111 	[EDAC_SECDED] = "SECDED",
112 	[EDAC_S2ECD2ED] = "S2ECD2ED",
113 	[EDAC_S4ECD4ED] = "S4ECD4ED",
114 	[EDAC_S8ECD8ED] = "S8ECD8ED",
115 	[EDAC_S16ECD16ED] = "S16ECD16ED"
116 };
117 
118 #ifdef CONFIG_EDAC_LEGACY_SYSFS
119 /*
120  * EDAC sysfs CSROW data structures and methods
121  */
122 
123 #define to_csrow(k) container_of(k, struct csrow_info, dev)
124 
125 /*
126  * We need it to avoid namespace conflicts between the legacy API
127  * and the per-dimm/per-rank one
128  */
129 #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \
130 	static struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store)
131 
132 struct dev_ch_attribute {
133 	struct device_attribute attr;
134 	int channel;
135 };
136 
137 #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \
138 	static struct dev_ch_attribute dev_attr_legacy_##_name = \
139 		{ __ATTR(_name, _mode, _show, _store), (_var) }
140 
141 #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel)
142 
143 /* Set of more default csrow<id> attribute show/store functions */
144 static ssize_t csrow_ue_count_show(struct device *dev,
145 				   struct device_attribute *mattr, char *data)
146 {
147 	struct csrow_info *csrow = to_csrow(dev);
148 
149 	return sprintf(data, "%u\n", csrow->ue_count);
150 }
151 
152 static ssize_t csrow_ce_count_show(struct device *dev,
153 				   struct device_attribute *mattr, char *data)
154 {
155 	struct csrow_info *csrow = to_csrow(dev);
156 
157 	return sprintf(data, "%u\n", csrow->ce_count);
158 }
159 
160 static ssize_t csrow_size_show(struct device *dev,
161 			       struct device_attribute *mattr, char *data)
162 {
163 	struct csrow_info *csrow = to_csrow(dev);
164 	int i;
165 	u32 nr_pages = 0;
166 
167 	for (i = 0; i < csrow->nr_channels; i++)
168 		nr_pages += csrow->channels[i]->dimm->nr_pages;
169 	return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages));
170 }
171 
172 static ssize_t csrow_mem_type_show(struct device *dev,
173 				   struct device_attribute *mattr, char *data)
174 {
175 	struct csrow_info *csrow = to_csrow(dev);
176 
177 	return sprintf(data, "%s\n", edac_mem_types[csrow->channels[0]->dimm->mtype]);
178 }
179 
180 static ssize_t csrow_dev_type_show(struct device *dev,
181 				   struct device_attribute *mattr, char *data)
182 {
183 	struct csrow_info *csrow = to_csrow(dev);
184 
185 	return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]);
186 }
187 
188 static ssize_t csrow_edac_mode_show(struct device *dev,
189 				    struct device_attribute *mattr,
190 				    char *data)
191 {
192 	struct csrow_info *csrow = to_csrow(dev);
193 
194 	return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]);
195 }
196 
197 /* show/store functions for DIMM Label attributes */
198 static ssize_t channel_dimm_label_show(struct device *dev,
199 				       struct device_attribute *mattr,
200 				       char *data)
201 {
202 	struct csrow_info *csrow = to_csrow(dev);
203 	unsigned chan = to_channel(mattr);
204 	struct rank_info *rank = csrow->channels[chan];
205 
206 	/* if field has not been initialized, there is nothing to send */
207 	if (!rank->dimm->label[0])
208 		return 0;
209 
210 	return snprintf(data, sizeof(rank->dimm->label) + 1, "%s\n",
211 			rank->dimm->label);
212 }
213 
214 static ssize_t channel_dimm_label_store(struct device *dev,
215 					struct device_attribute *mattr,
216 					const char *data, size_t count)
217 {
218 	struct csrow_info *csrow = to_csrow(dev);
219 	unsigned chan = to_channel(mattr);
220 	struct rank_info *rank = csrow->channels[chan];
221 	size_t copy_count = count;
222 
223 	if (count == 0)
224 		return -EINVAL;
225 
226 	if (data[count - 1] == '\0' || data[count - 1] == '\n')
227 		copy_count -= 1;
228 
229 	if (copy_count == 0 || copy_count >= sizeof(rank->dimm->label))
230 		return -EINVAL;
231 
232 	strncpy(rank->dimm->label, data, copy_count);
233 	rank->dimm->label[copy_count] = '\0';
234 
235 	return count;
236 }
237 
238 /* show function for dynamic chX_ce_count attribute */
239 static ssize_t channel_ce_count_show(struct device *dev,
240 				     struct device_attribute *mattr, char *data)
241 {
242 	struct csrow_info *csrow = to_csrow(dev);
243 	unsigned chan = to_channel(mattr);
244 	struct rank_info *rank = csrow->channels[chan];
245 
246 	return sprintf(data, "%u\n", rank->ce_count);
247 }
248 
249 /* cwrow<id>/attribute files */
250 DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL);
251 DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL);
252 DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL);
253 DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL);
254 DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL);
255 DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL);
256 
257 /* default attributes of the CSROW<id> object */
258 static struct attribute *csrow_attrs[] = {
259 	&dev_attr_legacy_dev_type.attr,
260 	&dev_attr_legacy_mem_type.attr,
261 	&dev_attr_legacy_edac_mode.attr,
262 	&dev_attr_legacy_size_mb.attr,
263 	&dev_attr_legacy_ue_count.attr,
264 	&dev_attr_legacy_ce_count.attr,
265 	NULL,
266 };
267 
268 static const struct attribute_group csrow_attr_grp = {
269 	.attrs	= csrow_attrs,
270 };
271 
272 static const struct attribute_group *csrow_attr_groups[] = {
273 	&csrow_attr_grp,
274 	NULL
275 };
276 
277 static void csrow_attr_release(struct device *dev)
278 {
279 	struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
280 
281 	edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
282 	kfree(csrow);
283 }
284 
285 static const struct device_type csrow_attr_type = {
286 	.groups		= csrow_attr_groups,
287 	.release	= csrow_attr_release,
288 };
289 
290 /*
291  * possible dynamic channel DIMM Label attribute files
292  *
293  */
294 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR,
295 	channel_dimm_label_show, channel_dimm_label_store, 0);
296 DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR,
297 	channel_dimm_label_show, channel_dimm_label_store, 1);
298 DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR,
299 	channel_dimm_label_show, channel_dimm_label_store, 2);
300 DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR,
301 	channel_dimm_label_show, channel_dimm_label_store, 3);
302 DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR,
303 	channel_dimm_label_show, channel_dimm_label_store, 4);
304 DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR,
305 	channel_dimm_label_show, channel_dimm_label_store, 5);
306 DEVICE_CHANNEL(ch6_dimm_label, S_IRUGO | S_IWUSR,
307 	channel_dimm_label_show, channel_dimm_label_store, 6);
308 DEVICE_CHANNEL(ch7_dimm_label, S_IRUGO | S_IWUSR,
309 	channel_dimm_label_show, channel_dimm_label_store, 7);
310 
311 /* Total possible dynamic DIMM Label attribute file table */
312 static struct attribute *dynamic_csrow_dimm_attr[] = {
313 	&dev_attr_legacy_ch0_dimm_label.attr.attr,
314 	&dev_attr_legacy_ch1_dimm_label.attr.attr,
315 	&dev_attr_legacy_ch2_dimm_label.attr.attr,
316 	&dev_attr_legacy_ch3_dimm_label.attr.attr,
317 	&dev_attr_legacy_ch4_dimm_label.attr.attr,
318 	&dev_attr_legacy_ch5_dimm_label.attr.attr,
319 	&dev_attr_legacy_ch6_dimm_label.attr.attr,
320 	&dev_attr_legacy_ch7_dimm_label.attr.attr,
321 	NULL
322 };
323 
324 /* possible dynamic channel ce_count attribute files */
325 DEVICE_CHANNEL(ch0_ce_count, S_IRUGO,
326 		   channel_ce_count_show, NULL, 0);
327 DEVICE_CHANNEL(ch1_ce_count, S_IRUGO,
328 		   channel_ce_count_show, NULL, 1);
329 DEVICE_CHANNEL(ch2_ce_count, S_IRUGO,
330 		   channel_ce_count_show, NULL, 2);
331 DEVICE_CHANNEL(ch3_ce_count, S_IRUGO,
332 		   channel_ce_count_show, NULL, 3);
333 DEVICE_CHANNEL(ch4_ce_count, S_IRUGO,
334 		   channel_ce_count_show, NULL, 4);
335 DEVICE_CHANNEL(ch5_ce_count, S_IRUGO,
336 		   channel_ce_count_show, NULL, 5);
337 DEVICE_CHANNEL(ch6_ce_count, S_IRUGO,
338 		   channel_ce_count_show, NULL, 6);
339 DEVICE_CHANNEL(ch7_ce_count, S_IRUGO,
340 		   channel_ce_count_show, NULL, 7);
341 
342 /* Total possible dynamic ce_count attribute file table */
343 static struct attribute *dynamic_csrow_ce_count_attr[] = {
344 	&dev_attr_legacy_ch0_ce_count.attr.attr,
345 	&dev_attr_legacy_ch1_ce_count.attr.attr,
346 	&dev_attr_legacy_ch2_ce_count.attr.attr,
347 	&dev_attr_legacy_ch3_ce_count.attr.attr,
348 	&dev_attr_legacy_ch4_ce_count.attr.attr,
349 	&dev_attr_legacy_ch5_ce_count.attr.attr,
350 	&dev_attr_legacy_ch6_ce_count.attr.attr,
351 	&dev_attr_legacy_ch7_ce_count.attr.attr,
352 	NULL
353 };
354 
355 static umode_t csrow_dev_is_visible(struct kobject *kobj,
356 				    struct attribute *attr, int idx)
357 {
358 	struct device *dev = kobj_to_dev(kobj);
359 	struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
360 
361 	if (idx >= csrow->nr_channels)
362 		return 0;
363 
364 	if (idx >= ARRAY_SIZE(dynamic_csrow_ce_count_attr) - 1) {
365 		WARN_ONCE(1, "idx: %d\n", idx);
366 		return 0;
367 	}
368 
369 	/* Only expose populated DIMMs */
370 	if (!csrow->channels[idx]->dimm->nr_pages)
371 		return 0;
372 
373 	return attr->mode;
374 }
375 
376 
377 static const struct attribute_group csrow_dev_dimm_group = {
378 	.attrs = dynamic_csrow_dimm_attr,
379 	.is_visible = csrow_dev_is_visible,
380 };
381 
382 static const struct attribute_group csrow_dev_ce_count_group = {
383 	.attrs = dynamic_csrow_ce_count_attr,
384 	.is_visible = csrow_dev_is_visible,
385 };
386 
387 static const struct attribute_group *csrow_dev_groups[] = {
388 	&csrow_dev_dimm_group,
389 	&csrow_dev_ce_count_group,
390 	NULL
391 };
392 
393 static inline int nr_pages_per_csrow(struct csrow_info *csrow)
394 {
395 	int chan, nr_pages = 0;
396 
397 	for (chan = 0; chan < csrow->nr_channels; chan++)
398 		nr_pages += csrow->channels[chan]->dimm->nr_pages;
399 
400 	return nr_pages;
401 }
402 
403 /* Create a CSROW object under specifed edac_mc_device */
404 static int edac_create_csrow_object(struct mem_ctl_info *mci,
405 				    struct csrow_info *csrow, int index)
406 {
407 	int err;
408 
409 	csrow->dev.type = &csrow_attr_type;
410 	csrow->dev.groups = csrow_dev_groups;
411 	device_initialize(&csrow->dev);
412 	csrow->dev.parent = &mci->dev;
413 	csrow->mci = mci;
414 	dev_set_name(&csrow->dev, "csrow%d", index);
415 	dev_set_drvdata(&csrow->dev, csrow);
416 
417 	edac_dbg(0, "creating (virtual) csrow node %s\n",
418 		 dev_name(&csrow->dev));
419 
420 	err = device_add(&csrow->dev);
421 	if (err)
422 		put_device(&csrow->dev);
423 
424 	return err;
425 }
426 
427 /* Create a CSROW object under specifed edac_mc_device */
428 static int edac_create_csrow_objects(struct mem_ctl_info *mci)
429 {
430 	int err, i;
431 	struct csrow_info *csrow;
432 
433 	for (i = 0; i < mci->nr_csrows; i++) {
434 		csrow = mci->csrows[i];
435 		if (!nr_pages_per_csrow(csrow))
436 			continue;
437 		err = edac_create_csrow_object(mci, mci->csrows[i], i);
438 		if (err < 0) {
439 			edac_dbg(1,
440 				 "failure: create csrow objects for csrow %d\n",
441 				 i);
442 			goto error;
443 		}
444 	}
445 	return 0;
446 
447 error:
448 	for (--i; i >= 0; i--) {
449 		csrow = mci->csrows[i];
450 		if (!nr_pages_per_csrow(csrow))
451 			continue;
452 
453 		device_del(&mci->csrows[i]->dev);
454 	}
455 
456 	return err;
457 }
458 
459 static void edac_delete_csrow_objects(struct mem_ctl_info *mci)
460 {
461 	int i;
462 	struct csrow_info *csrow;
463 
464 	for (i = mci->nr_csrows - 1; i >= 0; i--) {
465 		csrow = mci->csrows[i];
466 		if (!nr_pages_per_csrow(csrow))
467 			continue;
468 		device_unregister(&mci->csrows[i]->dev);
469 	}
470 }
471 #endif
472 
473 /*
474  * Per-dimm (or per-rank) devices
475  */
476 
477 #define to_dimm(k) container_of(k, struct dimm_info, dev)
478 
479 /* show/store functions for DIMM Label attributes */
480 static ssize_t dimmdev_location_show(struct device *dev,
481 				     struct device_attribute *mattr, char *data)
482 {
483 	struct dimm_info *dimm = to_dimm(dev);
484 
485 	return edac_dimm_info_location(dimm, data, PAGE_SIZE);
486 }
487 
488 static ssize_t dimmdev_label_show(struct device *dev,
489 				  struct device_attribute *mattr, char *data)
490 {
491 	struct dimm_info *dimm = to_dimm(dev);
492 
493 	/* if field has not been initialized, there is nothing to send */
494 	if (!dimm->label[0])
495 		return 0;
496 
497 	return snprintf(data, sizeof(dimm->label) + 1, "%s\n", dimm->label);
498 }
499 
500 static ssize_t dimmdev_label_store(struct device *dev,
501 				   struct device_attribute *mattr,
502 				   const char *data,
503 				   size_t count)
504 {
505 	struct dimm_info *dimm = to_dimm(dev);
506 	size_t copy_count = count;
507 
508 	if (count == 0)
509 		return -EINVAL;
510 
511 	if (data[count - 1] == '\0' || data[count - 1] == '\n')
512 		copy_count -= 1;
513 
514 	if (copy_count == 0 || copy_count >= sizeof(dimm->label))
515 		return -EINVAL;
516 
517 	strncpy(dimm->label, data, copy_count);
518 	dimm->label[copy_count] = '\0';
519 
520 	return count;
521 }
522 
523 static ssize_t dimmdev_size_show(struct device *dev,
524 				 struct device_attribute *mattr, char *data)
525 {
526 	struct dimm_info *dimm = to_dimm(dev);
527 
528 	return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages));
529 }
530 
531 static ssize_t dimmdev_mem_type_show(struct device *dev,
532 				     struct device_attribute *mattr, char *data)
533 {
534 	struct dimm_info *dimm = to_dimm(dev);
535 
536 	return sprintf(data, "%s\n", edac_mem_types[dimm->mtype]);
537 }
538 
539 static ssize_t dimmdev_dev_type_show(struct device *dev,
540 				     struct device_attribute *mattr, char *data)
541 {
542 	struct dimm_info *dimm = to_dimm(dev);
543 
544 	return sprintf(data, "%s\n", dev_types[dimm->dtype]);
545 }
546 
547 static ssize_t dimmdev_edac_mode_show(struct device *dev,
548 				      struct device_attribute *mattr,
549 				      char *data)
550 {
551 	struct dimm_info *dimm = to_dimm(dev);
552 
553 	return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]);
554 }
555 
556 static ssize_t dimmdev_ce_count_show(struct device *dev,
557 				      struct device_attribute *mattr,
558 				      char *data)
559 {
560 	struct dimm_info *dimm = to_dimm(dev);
561 	u32 count;
562 	int off;
563 
564 	off = EDAC_DIMM_OFF(dimm->mci->layers,
565 			    dimm->mci->n_layers,
566 			    dimm->location[0],
567 			    dimm->location[1],
568 			    dimm->location[2]);
569 	count = dimm->mci->ce_per_layer[dimm->mci->n_layers-1][off];
570 	return sprintf(data, "%u\n", count);
571 }
572 
573 static ssize_t dimmdev_ue_count_show(struct device *dev,
574 				      struct device_attribute *mattr,
575 				      char *data)
576 {
577 	struct dimm_info *dimm = to_dimm(dev);
578 	u32 count;
579 	int off;
580 
581 	off = EDAC_DIMM_OFF(dimm->mci->layers,
582 			    dimm->mci->n_layers,
583 			    dimm->location[0],
584 			    dimm->location[1],
585 			    dimm->location[2]);
586 	count = dimm->mci->ue_per_layer[dimm->mci->n_layers-1][off];
587 	return sprintf(data, "%u\n", count);
588 }
589 
590 /* dimm/rank attribute files */
591 static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR,
592 		   dimmdev_label_show, dimmdev_label_store);
593 static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL);
594 static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL);
595 static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL);
596 static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL);
597 static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL);
598 static DEVICE_ATTR(dimm_ce_count, S_IRUGO, dimmdev_ce_count_show, NULL);
599 static DEVICE_ATTR(dimm_ue_count, S_IRUGO, dimmdev_ue_count_show, NULL);
600 
601 /* attributes of the dimm<id>/rank<id> object */
602 static struct attribute *dimm_attrs[] = {
603 	&dev_attr_dimm_label.attr,
604 	&dev_attr_dimm_location.attr,
605 	&dev_attr_size.attr,
606 	&dev_attr_dimm_mem_type.attr,
607 	&dev_attr_dimm_dev_type.attr,
608 	&dev_attr_dimm_edac_mode.attr,
609 	&dev_attr_dimm_ce_count.attr,
610 	&dev_attr_dimm_ue_count.attr,
611 	NULL,
612 };
613 
614 static const struct attribute_group dimm_attr_grp = {
615 	.attrs	= dimm_attrs,
616 };
617 
618 static const struct attribute_group *dimm_attr_groups[] = {
619 	&dimm_attr_grp,
620 	NULL
621 };
622 
623 static void dimm_attr_release(struct device *dev)
624 {
625 	struct dimm_info *dimm = container_of(dev, struct dimm_info, dev);
626 
627 	edac_dbg(1, "Releasing dimm device %s\n", dev_name(dev));
628 	kfree(dimm);
629 }
630 
631 static const struct device_type dimm_attr_type = {
632 	.groups		= dimm_attr_groups,
633 	.release	= dimm_attr_release,
634 };
635 
636 /* Create a DIMM object under specifed memory controller device */
637 static int edac_create_dimm_object(struct mem_ctl_info *mci,
638 				   struct dimm_info *dimm,
639 				   int index)
640 {
641 	int err;
642 	dimm->mci = mci;
643 
644 	dimm->dev.type = &dimm_attr_type;
645 	device_initialize(&dimm->dev);
646 
647 	dimm->dev.parent = &mci->dev;
648 	if (mci->csbased)
649 		dev_set_name(&dimm->dev, "rank%d", index);
650 	else
651 		dev_set_name(&dimm->dev, "dimm%d", index);
652 	dev_set_drvdata(&dimm->dev, dimm);
653 	pm_runtime_forbid(&mci->dev);
654 
655 	err = device_add(&dimm->dev);
656 	if (err)
657 		put_device(&dimm->dev);
658 
659 	edac_dbg(0, "created rank/dimm device %s\n", dev_name(&dimm->dev));
660 
661 	return err;
662 }
663 
664 /*
665  * Memory controller device
666  */
667 
668 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
669 
670 static ssize_t mci_reset_counters_store(struct device *dev,
671 					struct device_attribute *mattr,
672 					const char *data, size_t count)
673 {
674 	struct mem_ctl_info *mci = to_mci(dev);
675 	int cnt, row, chan, i;
676 	mci->ue_mc = 0;
677 	mci->ce_mc = 0;
678 	mci->ue_noinfo_count = 0;
679 	mci->ce_noinfo_count = 0;
680 
681 	for (row = 0; row < mci->nr_csrows; row++) {
682 		struct csrow_info *ri = mci->csrows[row];
683 
684 		ri->ue_count = 0;
685 		ri->ce_count = 0;
686 
687 		for (chan = 0; chan < ri->nr_channels; chan++)
688 			ri->channels[chan]->ce_count = 0;
689 	}
690 
691 	cnt = 1;
692 	for (i = 0; i < mci->n_layers; i++) {
693 		cnt *= mci->layers[i].size;
694 		memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32));
695 		memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32));
696 	}
697 
698 	mci->start_time = jiffies;
699 	return count;
700 }
701 
702 /* Memory scrubbing interface:
703  *
704  * A MC driver can limit the scrubbing bandwidth based on the CPU type.
705  * Therefore, ->set_sdram_scrub_rate should be made to return the actual
706  * bandwidth that is accepted or 0 when scrubbing is to be disabled.
707  *
708  * Negative value still means that an error has occurred while setting
709  * the scrub rate.
710  */
711 static ssize_t mci_sdram_scrub_rate_store(struct device *dev,
712 					  struct device_attribute *mattr,
713 					  const char *data, size_t count)
714 {
715 	struct mem_ctl_info *mci = to_mci(dev);
716 	unsigned long bandwidth = 0;
717 	int new_bw = 0;
718 
719 	if (kstrtoul(data, 10, &bandwidth) < 0)
720 		return -EINVAL;
721 
722 	new_bw = mci->set_sdram_scrub_rate(mci, bandwidth);
723 	if (new_bw < 0) {
724 		edac_printk(KERN_WARNING, EDAC_MC,
725 			    "Error setting scrub rate to: %lu\n", bandwidth);
726 		return -EINVAL;
727 	}
728 
729 	return count;
730 }
731 
732 /*
733  * ->get_sdram_scrub_rate() return value semantics same as above.
734  */
735 static ssize_t mci_sdram_scrub_rate_show(struct device *dev,
736 					 struct device_attribute *mattr,
737 					 char *data)
738 {
739 	struct mem_ctl_info *mci = to_mci(dev);
740 	int bandwidth = 0;
741 
742 	bandwidth = mci->get_sdram_scrub_rate(mci);
743 	if (bandwidth < 0) {
744 		edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n");
745 		return bandwidth;
746 	}
747 
748 	return sprintf(data, "%d\n", bandwidth);
749 }
750 
751 /* default attribute files for the MCI object */
752 static ssize_t mci_ue_count_show(struct device *dev,
753 				 struct device_attribute *mattr,
754 				 char *data)
755 {
756 	struct mem_ctl_info *mci = to_mci(dev);
757 
758 	return sprintf(data, "%d\n", mci->ue_mc);
759 }
760 
761 static ssize_t mci_ce_count_show(struct device *dev,
762 				 struct device_attribute *mattr,
763 				 char *data)
764 {
765 	struct mem_ctl_info *mci = to_mci(dev);
766 
767 	return sprintf(data, "%d\n", mci->ce_mc);
768 }
769 
770 static ssize_t mci_ce_noinfo_show(struct device *dev,
771 				  struct device_attribute *mattr,
772 				  char *data)
773 {
774 	struct mem_ctl_info *mci = to_mci(dev);
775 
776 	return sprintf(data, "%d\n", mci->ce_noinfo_count);
777 }
778 
779 static ssize_t mci_ue_noinfo_show(struct device *dev,
780 				  struct device_attribute *mattr,
781 				  char *data)
782 {
783 	struct mem_ctl_info *mci = to_mci(dev);
784 
785 	return sprintf(data, "%d\n", mci->ue_noinfo_count);
786 }
787 
788 static ssize_t mci_seconds_show(struct device *dev,
789 				struct device_attribute *mattr,
790 				char *data)
791 {
792 	struct mem_ctl_info *mci = to_mci(dev);
793 
794 	return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ);
795 }
796 
797 static ssize_t mci_ctl_name_show(struct device *dev,
798 				 struct device_attribute *mattr,
799 				 char *data)
800 {
801 	struct mem_ctl_info *mci = to_mci(dev);
802 
803 	return sprintf(data, "%s\n", mci->ctl_name);
804 }
805 
806 static ssize_t mci_size_mb_show(struct device *dev,
807 				struct device_attribute *mattr,
808 				char *data)
809 {
810 	struct mem_ctl_info *mci = to_mci(dev);
811 	int total_pages = 0, csrow_idx, j;
812 
813 	for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) {
814 		struct csrow_info *csrow = mci->csrows[csrow_idx];
815 
816 		for (j = 0; j < csrow->nr_channels; j++) {
817 			struct dimm_info *dimm = csrow->channels[j]->dimm;
818 
819 			total_pages += dimm->nr_pages;
820 		}
821 	}
822 
823 	return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages));
824 }
825 
826 static ssize_t mci_max_location_show(struct device *dev,
827 				     struct device_attribute *mattr,
828 				     char *data)
829 {
830 	struct mem_ctl_info *mci = to_mci(dev);
831 	int i;
832 	char *p = data;
833 
834 	for (i = 0; i < mci->n_layers; i++) {
835 		p += sprintf(p, "%s %d ",
836 			     edac_layer_name[mci->layers[i].type],
837 			     mci->layers[i].size - 1);
838 	}
839 
840 	return p - data;
841 }
842 
843 /* default Control file */
844 static DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store);
845 
846 /* default Attribute files */
847 static DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL);
848 static DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL);
849 static DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL);
850 static DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL);
851 static DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL);
852 static DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL);
853 static DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL);
854 static DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL);
855 
856 /* memory scrubber attribute file */
857 static DEVICE_ATTR(sdram_scrub_rate, 0, mci_sdram_scrub_rate_show,
858 	    mci_sdram_scrub_rate_store); /* umode set later in is_visible */
859 
860 static struct attribute *mci_attrs[] = {
861 	&dev_attr_reset_counters.attr,
862 	&dev_attr_mc_name.attr,
863 	&dev_attr_size_mb.attr,
864 	&dev_attr_seconds_since_reset.attr,
865 	&dev_attr_ue_noinfo_count.attr,
866 	&dev_attr_ce_noinfo_count.attr,
867 	&dev_attr_ue_count.attr,
868 	&dev_attr_ce_count.attr,
869 	&dev_attr_max_location.attr,
870 	&dev_attr_sdram_scrub_rate.attr,
871 	NULL
872 };
873 
874 static umode_t mci_attr_is_visible(struct kobject *kobj,
875 				   struct attribute *attr, int idx)
876 {
877 	struct device *dev = kobj_to_dev(kobj);
878 	struct mem_ctl_info *mci = to_mci(dev);
879 	umode_t mode = 0;
880 
881 	if (attr != &dev_attr_sdram_scrub_rate.attr)
882 		return attr->mode;
883 	if (mci->get_sdram_scrub_rate)
884 		mode |= S_IRUGO;
885 	if (mci->set_sdram_scrub_rate)
886 		mode |= S_IWUSR;
887 	return mode;
888 }
889 
890 static const struct attribute_group mci_attr_grp = {
891 	.attrs	= mci_attrs,
892 	.is_visible = mci_attr_is_visible,
893 };
894 
895 static const struct attribute_group *mci_attr_groups[] = {
896 	&mci_attr_grp,
897 	NULL
898 };
899 
900 static void mci_attr_release(struct device *dev)
901 {
902 	struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
903 
904 	edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
905 	kfree(mci);
906 }
907 
908 static const struct device_type mci_attr_type = {
909 	.groups		= mci_attr_groups,
910 	.release	= mci_attr_release,
911 };
912 
913 /*
914  * Create a new Memory Controller kobject instance,
915  *	mc<id> under the 'mc' directory
916  *
917  * Return:
918  *	0	Success
919  *	!0	Failure
920  */
921 int edac_create_sysfs_mci_device(struct mem_ctl_info *mci,
922 				 const struct attribute_group **groups)
923 {
924 	int i, err;
925 
926 	/* get the /sys/devices/system/edac subsys reference */
927 	mci->dev.type = &mci_attr_type;
928 	device_initialize(&mci->dev);
929 
930 	mci->dev.parent = mci_pdev;
931 	mci->dev.groups = groups;
932 	dev_set_name(&mci->dev, "mc%d", mci->mc_idx);
933 	dev_set_drvdata(&mci->dev, mci);
934 	pm_runtime_forbid(&mci->dev);
935 
936 	edac_dbg(0, "creating device %s\n", dev_name(&mci->dev));
937 	err = device_add(&mci->dev);
938 	if (err < 0) {
939 		edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev));
940 		put_device(&mci->dev);
941 		goto out;
942 	}
943 
944 	/*
945 	 * Create the dimm/rank devices
946 	 */
947 	for (i = 0; i < mci->tot_dimms; i++) {
948 		struct dimm_info *dimm = mci->dimms[i];
949 		/* Only expose populated DIMMs */
950 		if (!dimm->nr_pages)
951 			continue;
952 
953 #ifdef CONFIG_EDAC_DEBUG
954 		edac_dbg(1, "creating dimm%d, located at ", i);
955 		if (edac_debug_level >= 1) {
956 			int lay;
957 			for (lay = 0; lay < mci->n_layers; lay++)
958 				printk(KERN_CONT "%s %d ",
959 					edac_layer_name[mci->layers[lay].type],
960 					dimm->location[lay]);
961 			printk(KERN_CONT "\n");
962 		}
963 #endif
964 		err = edac_create_dimm_object(mci, dimm, i);
965 		if (err) {
966 			edac_dbg(1, "failure: create dimm %d obj\n", i);
967 			goto fail_unregister_dimm;
968 		}
969 	}
970 
971 #ifdef CONFIG_EDAC_LEGACY_SYSFS
972 	err = edac_create_csrow_objects(mci);
973 	if (err < 0)
974 		goto fail_unregister_dimm;
975 #endif
976 
977 	edac_create_debugfs_nodes(mci);
978 	return 0;
979 
980 fail_unregister_dimm:
981 	for (i--; i >= 0; i--) {
982 		struct dimm_info *dimm = mci->dimms[i];
983 		if (!dimm->nr_pages)
984 			continue;
985 
986 		device_unregister(&dimm->dev);
987 	}
988 	device_unregister(&mci->dev);
989 
990 out:
991 	return err;
992 }
993 
994 /*
995  * remove a Memory Controller instance
996  */
997 void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
998 {
999 	int i;
1000 
1001 	edac_dbg(0, "\n");
1002 
1003 #ifdef CONFIG_EDAC_DEBUG
1004 	edac_debugfs_remove_recursive(mci->debugfs);
1005 #endif
1006 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1007 	edac_delete_csrow_objects(mci);
1008 #endif
1009 
1010 	for (i = 0; i < mci->tot_dimms; i++) {
1011 		struct dimm_info *dimm = mci->dimms[i];
1012 		if (dimm->nr_pages == 0)
1013 			continue;
1014 		edac_dbg(0, "removing device %s\n", dev_name(&dimm->dev));
1015 		device_unregister(&dimm->dev);
1016 	}
1017 }
1018 
1019 void edac_unregister_sysfs(struct mem_ctl_info *mci)
1020 {
1021 	edac_dbg(1, "Unregistering device %s\n", dev_name(&mci->dev));
1022 	device_unregister(&mci->dev);
1023 }
1024 
1025 static void mc_attr_release(struct device *dev)
1026 {
1027 	/*
1028 	 * There's no container structure here, as this is just the mci
1029 	 * parent device, used to create the /sys/devices/mc sysfs node.
1030 	 * So, there are no attributes on it.
1031 	 */
1032 	edac_dbg(1, "Releasing device %s\n", dev_name(dev));
1033 	kfree(dev);
1034 }
1035 
1036 static const struct device_type mc_attr_type = {
1037 	.release	= mc_attr_release,
1038 };
1039 /*
1040  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1041  */
1042 int __init edac_mc_sysfs_init(void)
1043 {
1044 	int err;
1045 
1046 	mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL);
1047 	if (!mci_pdev) {
1048 		err = -ENOMEM;
1049 		goto out;
1050 	}
1051 
1052 	mci_pdev->bus = edac_get_sysfs_subsys();
1053 	mci_pdev->type = &mc_attr_type;
1054 	device_initialize(mci_pdev);
1055 	dev_set_name(mci_pdev, "mc");
1056 
1057 	err = device_add(mci_pdev);
1058 	if (err < 0)
1059 		goto out_put_device;
1060 
1061 	edac_dbg(0, "device %s created\n", dev_name(mci_pdev));
1062 
1063 	return 0;
1064 
1065  out_put_device:
1066 	put_device(mci_pdev);
1067  out:
1068 	return err;
1069 }
1070 
1071 void edac_mc_sysfs_exit(void)
1072 {
1073 	device_unregister(mci_pdev);
1074 }
1075