xref: /openbmc/linux/drivers/edac/edac_mc_sysfs.c (revision b34e08d5)
1 /*
2  * edac_mc kernel module
3  * (C) 2005-2007 Linux Networx (http://lnxi.com)
4  *
5  * This file may be distributed under the terms of the
6  * GNU General Public License.
7  *
8  * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com
9  *
10  * (c) 2012-2013 - Mauro Carvalho Chehab
11  *	The entire API were re-written, and ported to use struct device
12  *
13  */
14 
15 #include <linux/ctype.h>
16 #include <linux/slab.h>
17 #include <linux/edac.h>
18 #include <linux/bug.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/uaccess.h>
21 
22 #include "edac_core.h"
23 #include "edac_module.h"
24 
25 /* MC EDAC Controls, setable by module parameter, and sysfs */
26 static int edac_mc_log_ue = 1;
27 static int edac_mc_log_ce = 1;
28 static int edac_mc_panic_on_ue;
29 static int edac_mc_poll_msec = 1000;
30 
31 /* Getter functions for above */
32 int edac_mc_get_log_ue(void)
33 {
34 	return edac_mc_log_ue;
35 }
36 
37 int edac_mc_get_log_ce(void)
38 {
39 	return edac_mc_log_ce;
40 }
41 
42 int edac_mc_get_panic_on_ue(void)
43 {
44 	return edac_mc_panic_on_ue;
45 }
46 
47 /* this is temporary */
48 int edac_mc_get_poll_msec(void)
49 {
50 	return edac_mc_poll_msec;
51 }
52 
53 static int edac_set_poll_msec(const char *val, struct kernel_param *kp)
54 {
55 	unsigned long l;
56 	int ret;
57 
58 	if (!val)
59 		return -EINVAL;
60 
61 	ret = kstrtoul(val, 0, &l);
62 	if (ret)
63 		return ret;
64 
65 	if (l < 1000)
66 		return -EINVAL;
67 
68 	*((unsigned long *)kp->arg) = l;
69 
70 	/* notify edac_mc engine to reset the poll period */
71 	edac_mc_reset_delay_period(l);
72 
73 	return 0;
74 }
75 
76 /* Parameter declarations for above */
77 module_param(edac_mc_panic_on_ue, int, 0644);
78 MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
79 module_param(edac_mc_log_ue, int, 0644);
80 MODULE_PARM_DESC(edac_mc_log_ue,
81 		 "Log uncorrectable error to console: 0=off 1=on");
82 module_param(edac_mc_log_ce, int, 0644);
83 MODULE_PARM_DESC(edac_mc_log_ce,
84 		 "Log correctable error to console: 0=off 1=on");
85 module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_int,
86 		  &edac_mc_poll_msec, 0644);
87 MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds");
88 
89 static struct device *mci_pdev;
90 
91 /*
92  * various constants for Memory Controllers
93  */
94 static const char * const mem_types[] = {
95 	[MEM_EMPTY] = "Empty",
96 	[MEM_RESERVED] = "Reserved",
97 	[MEM_UNKNOWN] = "Unknown",
98 	[MEM_FPM] = "FPM",
99 	[MEM_EDO] = "EDO",
100 	[MEM_BEDO] = "BEDO",
101 	[MEM_SDR] = "Unbuffered-SDR",
102 	[MEM_RDR] = "Registered-SDR",
103 	[MEM_DDR] = "Unbuffered-DDR",
104 	[MEM_RDDR] = "Registered-DDR",
105 	[MEM_RMBS] = "RMBS",
106 	[MEM_DDR2] = "Unbuffered-DDR2",
107 	[MEM_FB_DDR2] = "FullyBuffered-DDR2",
108 	[MEM_RDDR2] = "Registered-DDR2",
109 	[MEM_XDR] = "XDR",
110 	[MEM_DDR3] = "Unbuffered-DDR3",
111 	[MEM_RDDR3] = "Registered-DDR3"
112 };
113 
114 static const char * const dev_types[] = {
115 	[DEV_UNKNOWN] = "Unknown",
116 	[DEV_X1] = "x1",
117 	[DEV_X2] = "x2",
118 	[DEV_X4] = "x4",
119 	[DEV_X8] = "x8",
120 	[DEV_X16] = "x16",
121 	[DEV_X32] = "x32",
122 	[DEV_X64] = "x64"
123 };
124 
125 static const char * const edac_caps[] = {
126 	[EDAC_UNKNOWN] = "Unknown",
127 	[EDAC_NONE] = "None",
128 	[EDAC_RESERVED] = "Reserved",
129 	[EDAC_PARITY] = "PARITY",
130 	[EDAC_EC] = "EC",
131 	[EDAC_SECDED] = "SECDED",
132 	[EDAC_S2ECD2ED] = "S2ECD2ED",
133 	[EDAC_S4ECD4ED] = "S4ECD4ED",
134 	[EDAC_S8ECD8ED] = "S8ECD8ED",
135 	[EDAC_S16ECD16ED] = "S16ECD16ED"
136 };
137 
138 #ifdef CONFIG_EDAC_LEGACY_SYSFS
139 /*
140  * EDAC sysfs CSROW data structures and methods
141  */
142 
143 #define to_csrow(k) container_of(k, struct csrow_info, dev)
144 
145 /*
146  * We need it to avoid namespace conflicts between the legacy API
147  * and the per-dimm/per-rank one
148  */
149 #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \
150 	static struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store)
151 
152 struct dev_ch_attribute {
153 	struct device_attribute attr;
154 	int channel;
155 };
156 
157 #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \
158 	struct dev_ch_attribute dev_attr_legacy_##_name = \
159 		{ __ATTR(_name, _mode, _show, _store), (_var) }
160 
161 #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel)
162 
163 /* Set of more default csrow<id> attribute show/store functions */
164 static ssize_t csrow_ue_count_show(struct device *dev,
165 				   struct device_attribute *mattr, char *data)
166 {
167 	struct csrow_info *csrow = to_csrow(dev);
168 
169 	return sprintf(data, "%u\n", csrow->ue_count);
170 }
171 
172 static ssize_t csrow_ce_count_show(struct device *dev,
173 				   struct device_attribute *mattr, char *data)
174 {
175 	struct csrow_info *csrow = to_csrow(dev);
176 
177 	return sprintf(data, "%u\n", csrow->ce_count);
178 }
179 
180 static ssize_t csrow_size_show(struct device *dev,
181 			       struct device_attribute *mattr, char *data)
182 {
183 	struct csrow_info *csrow = to_csrow(dev);
184 	int i;
185 	u32 nr_pages = 0;
186 
187 	for (i = 0; i < csrow->nr_channels; i++)
188 		nr_pages += csrow->channels[i]->dimm->nr_pages;
189 	return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages));
190 }
191 
192 static ssize_t csrow_mem_type_show(struct device *dev,
193 				   struct device_attribute *mattr, char *data)
194 {
195 	struct csrow_info *csrow = to_csrow(dev);
196 
197 	return sprintf(data, "%s\n", mem_types[csrow->channels[0]->dimm->mtype]);
198 }
199 
200 static ssize_t csrow_dev_type_show(struct device *dev,
201 				   struct device_attribute *mattr, char *data)
202 {
203 	struct csrow_info *csrow = to_csrow(dev);
204 
205 	return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]);
206 }
207 
208 static ssize_t csrow_edac_mode_show(struct device *dev,
209 				    struct device_attribute *mattr,
210 				    char *data)
211 {
212 	struct csrow_info *csrow = to_csrow(dev);
213 
214 	return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]);
215 }
216 
217 /* show/store functions for DIMM Label attributes */
218 static ssize_t channel_dimm_label_show(struct device *dev,
219 				       struct device_attribute *mattr,
220 				       char *data)
221 {
222 	struct csrow_info *csrow = to_csrow(dev);
223 	unsigned chan = to_channel(mattr);
224 	struct rank_info *rank = csrow->channels[chan];
225 
226 	/* if field has not been initialized, there is nothing to send */
227 	if (!rank->dimm->label[0])
228 		return 0;
229 
230 	return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n",
231 			rank->dimm->label);
232 }
233 
234 static ssize_t channel_dimm_label_store(struct device *dev,
235 					struct device_attribute *mattr,
236 					const char *data, size_t count)
237 {
238 	struct csrow_info *csrow = to_csrow(dev);
239 	unsigned chan = to_channel(mattr);
240 	struct rank_info *rank = csrow->channels[chan];
241 
242 	ssize_t max_size = 0;
243 
244 	max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
245 	strncpy(rank->dimm->label, data, max_size);
246 	rank->dimm->label[max_size] = '\0';
247 
248 	return max_size;
249 }
250 
251 /* show function for dynamic chX_ce_count attribute */
252 static ssize_t channel_ce_count_show(struct device *dev,
253 				     struct device_attribute *mattr, char *data)
254 {
255 	struct csrow_info *csrow = to_csrow(dev);
256 	unsigned chan = to_channel(mattr);
257 	struct rank_info *rank = csrow->channels[chan];
258 
259 	return sprintf(data, "%u\n", rank->ce_count);
260 }
261 
262 /* cwrow<id>/attribute files */
263 DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL);
264 DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL);
265 DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL);
266 DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL);
267 DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL);
268 DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL);
269 
270 /* default attributes of the CSROW<id> object */
271 static struct attribute *csrow_attrs[] = {
272 	&dev_attr_legacy_dev_type.attr,
273 	&dev_attr_legacy_mem_type.attr,
274 	&dev_attr_legacy_edac_mode.attr,
275 	&dev_attr_legacy_size_mb.attr,
276 	&dev_attr_legacy_ue_count.attr,
277 	&dev_attr_legacy_ce_count.attr,
278 	NULL,
279 };
280 
281 static struct attribute_group csrow_attr_grp = {
282 	.attrs	= csrow_attrs,
283 };
284 
285 static const struct attribute_group *csrow_attr_groups[] = {
286 	&csrow_attr_grp,
287 	NULL
288 };
289 
290 static void csrow_attr_release(struct device *dev)
291 {
292 	struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
293 
294 	edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
295 	kfree(csrow);
296 }
297 
298 static struct device_type csrow_attr_type = {
299 	.groups		= csrow_attr_groups,
300 	.release	= csrow_attr_release,
301 };
302 
303 /*
304  * possible dynamic channel DIMM Label attribute files
305  *
306  */
307 
308 #define EDAC_NR_CHANNELS	6
309 
310 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR,
311 	channel_dimm_label_show, channel_dimm_label_store, 0);
312 DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR,
313 	channel_dimm_label_show, channel_dimm_label_store, 1);
314 DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR,
315 	channel_dimm_label_show, channel_dimm_label_store, 2);
316 DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR,
317 	channel_dimm_label_show, channel_dimm_label_store, 3);
318 DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR,
319 	channel_dimm_label_show, channel_dimm_label_store, 4);
320 DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR,
321 	channel_dimm_label_show, channel_dimm_label_store, 5);
322 
323 /* Total possible dynamic DIMM Label attribute file table */
324 static struct device_attribute *dynamic_csrow_dimm_attr[] = {
325 	&dev_attr_legacy_ch0_dimm_label.attr,
326 	&dev_attr_legacy_ch1_dimm_label.attr,
327 	&dev_attr_legacy_ch2_dimm_label.attr,
328 	&dev_attr_legacy_ch3_dimm_label.attr,
329 	&dev_attr_legacy_ch4_dimm_label.attr,
330 	&dev_attr_legacy_ch5_dimm_label.attr
331 };
332 
333 /* possible dynamic channel ce_count attribute files */
334 DEVICE_CHANNEL(ch0_ce_count, S_IRUGO,
335 		   channel_ce_count_show, NULL, 0);
336 DEVICE_CHANNEL(ch1_ce_count, S_IRUGO,
337 		   channel_ce_count_show, NULL, 1);
338 DEVICE_CHANNEL(ch2_ce_count, S_IRUGO,
339 		   channel_ce_count_show, NULL, 2);
340 DEVICE_CHANNEL(ch3_ce_count, S_IRUGO,
341 		   channel_ce_count_show, NULL, 3);
342 DEVICE_CHANNEL(ch4_ce_count, S_IRUGO,
343 		   channel_ce_count_show, NULL, 4);
344 DEVICE_CHANNEL(ch5_ce_count, S_IRUGO,
345 		   channel_ce_count_show, NULL, 5);
346 
347 /* Total possible dynamic ce_count attribute file table */
348 static struct device_attribute *dynamic_csrow_ce_count_attr[] = {
349 	&dev_attr_legacy_ch0_ce_count.attr,
350 	&dev_attr_legacy_ch1_ce_count.attr,
351 	&dev_attr_legacy_ch2_ce_count.attr,
352 	&dev_attr_legacy_ch3_ce_count.attr,
353 	&dev_attr_legacy_ch4_ce_count.attr,
354 	&dev_attr_legacy_ch5_ce_count.attr
355 };
356 
357 static inline int nr_pages_per_csrow(struct csrow_info *csrow)
358 {
359 	int chan, nr_pages = 0;
360 
361 	for (chan = 0; chan < csrow->nr_channels; chan++)
362 		nr_pages += csrow->channels[chan]->dimm->nr_pages;
363 
364 	return nr_pages;
365 }
366 
367 /* Create a CSROW object under specifed edac_mc_device */
368 static int edac_create_csrow_object(struct mem_ctl_info *mci,
369 				    struct csrow_info *csrow, int index)
370 {
371 	int err, chan;
372 
373 	if (csrow->nr_channels >= EDAC_NR_CHANNELS)
374 		return -ENODEV;
375 
376 	csrow->dev.type = &csrow_attr_type;
377 	csrow->dev.bus = mci->bus;
378 	device_initialize(&csrow->dev);
379 	csrow->dev.parent = &mci->dev;
380 	csrow->mci = mci;
381 	dev_set_name(&csrow->dev, "csrow%d", index);
382 	dev_set_drvdata(&csrow->dev, csrow);
383 
384 	edac_dbg(0, "creating (virtual) csrow node %s\n",
385 		 dev_name(&csrow->dev));
386 
387 	err = device_add(&csrow->dev);
388 	if (err < 0)
389 		return err;
390 
391 	for (chan = 0; chan < csrow->nr_channels; chan++) {
392 		/* Only expose populated DIMMs */
393 		if (!csrow->channels[chan]->dimm->nr_pages)
394 			continue;
395 		err = device_create_file(&csrow->dev,
396 					 dynamic_csrow_dimm_attr[chan]);
397 		if (err < 0)
398 			goto error;
399 		err = device_create_file(&csrow->dev,
400 					 dynamic_csrow_ce_count_attr[chan]);
401 		if (err < 0) {
402 			device_remove_file(&csrow->dev,
403 					   dynamic_csrow_dimm_attr[chan]);
404 			goto error;
405 		}
406 	}
407 
408 	return 0;
409 
410 error:
411 	for (--chan; chan >= 0; chan--) {
412 		device_remove_file(&csrow->dev,
413 					dynamic_csrow_dimm_attr[chan]);
414 		device_remove_file(&csrow->dev,
415 					   dynamic_csrow_ce_count_attr[chan]);
416 	}
417 	put_device(&csrow->dev);
418 
419 	return err;
420 }
421 
422 /* Create a CSROW object under specifed edac_mc_device */
423 static int edac_create_csrow_objects(struct mem_ctl_info *mci)
424 {
425 	int err, i, chan;
426 	struct csrow_info *csrow;
427 
428 	for (i = 0; i < mci->nr_csrows; i++) {
429 		csrow = mci->csrows[i];
430 		if (!nr_pages_per_csrow(csrow))
431 			continue;
432 		err = edac_create_csrow_object(mci, mci->csrows[i], i);
433 		if (err < 0) {
434 			edac_dbg(1,
435 				 "failure: create csrow objects for csrow %d\n",
436 				 i);
437 			goto error;
438 		}
439 	}
440 	return 0;
441 
442 error:
443 	for (--i; i >= 0; i--) {
444 		csrow = mci->csrows[i];
445 		if (!nr_pages_per_csrow(csrow))
446 			continue;
447 		for (chan = csrow->nr_channels - 1; chan >= 0; chan--) {
448 			if (!csrow->channels[chan]->dimm->nr_pages)
449 				continue;
450 			device_remove_file(&csrow->dev,
451 						dynamic_csrow_dimm_attr[chan]);
452 			device_remove_file(&csrow->dev,
453 						dynamic_csrow_ce_count_attr[chan]);
454 		}
455 		put_device(&mci->csrows[i]->dev);
456 	}
457 
458 	return err;
459 }
460 
461 static void edac_delete_csrow_objects(struct mem_ctl_info *mci)
462 {
463 	int i, chan;
464 	struct csrow_info *csrow;
465 
466 	for (i = mci->nr_csrows - 1; i >= 0; i--) {
467 		csrow = mci->csrows[i];
468 		if (!nr_pages_per_csrow(csrow))
469 			continue;
470 		for (chan = csrow->nr_channels - 1; chan >= 0; chan--) {
471 			if (!csrow->channels[chan]->dimm->nr_pages)
472 				continue;
473 			edac_dbg(1, "Removing csrow %d channel %d sysfs nodes\n",
474 				 i, chan);
475 			device_remove_file(&csrow->dev,
476 						dynamic_csrow_dimm_attr[chan]);
477 			device_remove_file(&csrow->dev,
478 						dynamic_csrow_ce_count_attr[chan]);
479 		}
480 		device_unregister(&mci->csrows[i]->dev);
481 	}
482 }
483 #endif
484 
485 /*
486  * Per-dimm (or per-rank) devices
487  */
488 
489 #define to_dimm(k) container_of(k, struct dimm_info, dev)
490 
491 /* show/store functions for DIMM Label attributes */
492 static ssize_t dimmdev_location_show(struct device *dev,
493 				     struct device_attribute *mattr, char *data)
494 {
495 	struct dimm_info *dimm = to_dimm(dev);
496 
497 	return edac_dimm_info_location(dimm, data, PAGE_SIZE);
498 }
499 
500 static ssize_t dimmdev_label_show(struct device *dev,
501 				  struct device_attribute *mattr, char *data)
502 {
503 	struct dimm_info *dimm = to_dimm(dev);
504 
505 	/* if field has not been initialized, there is nothing to send */
506 	if (!dimm->label[0])
507 		return 0;
508 
509 	return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n", dimm->label);
510 }
511 
512 static ssize_t dimmdev_label_store(struct device *dev,
513 				   struct device_attribute *mattr,
514 				   const char *data,
515 				   size_t count)
516 {
517 	struct dimm_info *dimm = to_dimm(dev);
518 
519 	ssize_t max_size = 0;
520 
521 	max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
522 	strncpy(dimm->label, data, max_size);
523 	dimm->label[max_size] = '\0';
524 
525 	return max_size;
526 }
527 
528 static ssize_t dimmdev_size_show(struct device *dev,
529 				 struct device_attribute *mattr, char *data)
530 {
531 	struct dimm_info *dimm = to_dimm(dev);
532 
533 	return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages));
534 }
535 
536 static ssize_t dimmdev_mem_type_show(struct device *dev,
537 				     struct device_attribute *mattr, char *data)
538 {
539 	struct dimm_info *dimm = to_dimm(dev);
540 
541 	return sprintf(data, "%s\n", mem_types[dimm->mtype]);
542 }
543 
544 static ssize_t dimmdev_dev_type_show(struct device *dev,
545 				     struct device_attribute *mattr, char *data)
546 {
547 	struct dimm_info *dimm = to_dimm(dev);
548 
549 	return sprintf(data, "%s\n", dev_types[dimm->dtype]);
550 }
551 
552 static ssize_t dimmdev_edac_mode_show(struct device *dev,
553 				      struct device_attribute *mattr,
554 				      char *data)
555 {
556 	struct dimm_info *dimm = to_dimm(dev);
557 
558 	return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]);
559 }
560 
561 /* dimm/rank attribute files */
562 static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR,
563 		   dimmdev_label_show, dimmdev_label_store);
564 static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL);
565 static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL);
566 static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL);
567 static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL);
568 static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL);
569 
570 /* attributes of the dimm<id>/rank<id> object */
571 static struct attribute *dimm_attrs[] = {
572 	&dev_attr_dimm_label.attr,
573 	&dev_attr_dimm_location.attr,
574 	&dev_attr_size.attr,
575 	&dev_attr_dimm_mem_type.attr,
576 	&dev_attr_dimm_dev_type.attr,
577 	&dev_attr_dimm_edac_mode.attr,
578 	NULL,
579 };
580 
581 static struct attribute_group dimm_attr_grp = {
582 	.attrs	= dimm_attrs,
583 };
584 
585 static const struct attribute_group *dimm_attr_groups[] = {
586 	&dimm_attr_grp,
587 	NULL
588 };
589 
590 static void dimm_attr_release(struct device *dev)
591 {
592 	struct dimm_info *dimm = container_of(dev, struct dimm_info, dev);
593 
594 	edac_dbg(1, "Releasing dimm device %s\n", dev_name(dev));
595 	kfree(dimm);
596 }
597 
598 static struct device_type dimm_attr_type = {
599 	.groups		= dimm_attr_groups,
600 	.release	= dimm_attr_release,
601 };
602 
603 /* Create a DIMM object under specifed memory controller device */
604 static int edac_create_dimm_object(struct mem_ctl_info *mci,
605 				   struct dimm_info *dimm,
606 				   int index)
607 {
608 	int err;
609 	dimm->mci = mci;
610 
611 	dimm->dev.type = &dimm_attr_type;
612 	dimm->dev.bus = mci->bus;
613 	device_initialize(&dimm->dev);
614 
615 	dimm->dev.parent = &mci->dev;
616 	if (mci->csbased)
617 		dev_set_name(&dimm->dev, "rank%d", index);
618 	else
619 		dev_set_name(&dimm->dev, "dimm%d", index);
620 	dev_set_drvdata(&dimm->dev, dimm);
621 	pm_runtime_forbid(&mci->dev);
622 
623 	err =  device_add(&dimm->dev);
624 
625 	edac_dbg(0, "creating rank/dimm device %s\n", dev_name(&dimm->dev));
626 
627 	return err;
628 }
629 
630 /*
631  * Memory controller device
632  */
633 
634 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
635 
636 static ssize_t mci_reset_counters_store(struct device *dev,
637 					struct device_attribute *mattr,
638 					const char *data, size_t count)
639 {
640 	struct mem_ctl_info *mci = to_mci(dev);
641 	int cnt, row, chan, i;
642 	mci->ue_mc = 0;
643 	mci->ce_mc = 0;
644 	mci->ue_noinfo_count = 0;
645 	mci->ce_noinfo_count = 0;
646 
647 	for (row = 0; row < mci->nr_csrows; row++) {
648 		struct csrow_info *ri = mci->csrows[row];
649 
650 		ri->ue_count = 0;
651 		ri->ce_count = 0;
652 
653 		for (chan = 0; chan < ri->nr_channels; chan++)
654 			ri->channels[chan]->ce_count = 0;
655 	}
656 
657 	cnt = 1;
658 	for (i = 0; i < mci->n_layers; i++) {
659 		cnt *= mci->layers[i].size;
660 		memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32));
661 		memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32));
662 	}
663 
664 	mci->start_time = jiffies;
665 	return count;
666 }
667 
668 /* Memory scrubbing interface:
669  *
670  * A MC driver can limit the scrubbing bandwidth based on the CPU type.
671  * Therefore, ->set_sdram_scrub_rate should be made to return the actual
672  * bandwidth that is accepted or 0 when scrubbing is to be disabled.
673  *
674  * Negative value still means that an error has occurred while setting
675  * the scrub rate.
676  */
677 static ssize_t mci_sdram_scrub_rate_store(struct device *dev,
678 					  struct device_attribute *mattr,
679 					  const char *data, size_t count)
680 {
681 	struct mem_ctl_info *mci = to_mci(dev);
682 	unsigned long bandwidth = 0;
683 	int new_bw = 0;
684 
685 	if (kstrtoul(data, 10, &bandwidth) < 0)
686 		return -EINVAL;
687 
688 	new_bw = mci->set_sdram_scrub_rate(mci, bandwidth);
689 	if (new_bw < 0) {
690 		edac_printk(KERN_WARNING, EDAC_MC,
691 			    "Error setting scrub rate to: %lu\n", bandwidth);
692 		return -EINVAL;
693 	}
694 
695 	return count;
696 }
697 
698 /*
699  * ->get_sdram_scrub_rate() return value semantics same as above.
700  */
701 static ssize_t mci_sdram_scrub_rate_show(struct device *dev,
702 					 struct device_attribute *mattr,
703 					 char *data)
704 {
705 	struct mem_ctl_info *mci = to_mci(dev);
706 	int bandwidth = 0;
707 
708 	bandwidth = mci->get_sdram_scrub_rate(mci);
709 	if (bandwidth < 0) {
710 		edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n");
711 		return bandwidth;
712 	}
713 
714 	return sprintf(data, "%d\n", bandwidth);
715 }
716 
717 /* default attribute files for the MCI object */
718 static ssize_t mci_ue_count_show(struct device *dev,
719 				 struct device_attribute *mattr,
720 				 char *data)
721 {
722 	struct mem_ctl_info *mci = to_mci(dev);
723 
724 	return sprintf(data, "%d\n", mci->ue_mc);
725 }
726 
727 static ssize_t mci_ce_count_show(struct device *dev,
728 				 struct device_attribute *mattr,
729 				 char *data)
730 {
731 	struct mem_ctl_info *mci = to_mci(dev);
732 
733 	return sprintf(data, "%d\n", mci->ce_mc);
734 }
735 
736 static ssize_t mci_ce_noinfo_show(struct device *dev,
737 				  struct device_attribute *mattr,
738 				  char *data)
739 {
740 	struct mem_ctl_info *mci = to_mci(dev);
741 
742 	return sprintf(data, "%d\n", mci->ce_noinfo_count);
743 }
744 
745 static ssize_t mci_ue_noinfo_show(struct device *dev,
746 				  struct device_attribute *mattr,
747 				  char *data)
748 {
749 	struct mem_ctl_info *mci = to_mci(dev);
750 
751 	return sprintf(data, "%d\n", mci->ue_noinfo_count);
752 }
753 
754 static ssize_t mci_seconds_show(struct device *dev,
755 				struct device_attribute *mattr,
756 				char *data)
757 {
758 	struct mem_ctl_info *mci = to_mci(dev);
759 
760 	return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ);
761 }
762 
763 static ssize_t mci_ctl_name_show(struct device *dev,
764 				 struct device_attribute *mattr,
765 				 char *data)
766 {
767 	struct mem_ctl_info *mci = to_mci(dev);
768 
769 	return sprintf(data, "%s\n", mci->ctl_name);
770 }
771 
772 static ssize_t mci_size_mb_show(struct device *dev,
773 				struct device_attribute *mattr,
774 				char *data)
775 {
776 	struct mem_ctl_info *mci = to_mci(dev);
777 	int total_pages = 0, csrow_idx, j;
778 
779 	for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) {
780 		struct csrow_info *csrow = mci->csrows[csrow_idx];
781 
782 		for (j = 0; j < csrow->nr_channels; j++) {
783 			struct dimm_info *dimm = csrow->channels[j]->dimm;
784 
785 			total_pages += dimm->nr_pages;
786 		}
787 	}
788 
789 	return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages));
790 }
791 
792 static ssize_t mci_max_location_show(struct device *dev,
793 				     struct device_attribute *mattr,
794 				     char *data)
795 {
796 	struct mem_ctl_info *mci = to_mci(dev);
797 	int i;
798 	char *p = data;
799 
800 	for (i = 0; i < mci->n_layers; i++) {
801 		p += sprintf(p, "%s %d ",
802 			     edac_layer_name[mci->layers[i].type],
803 			     mci->layers[i].size - 1);
804 	}
805 
806 	return p - data;
807 }
808 
809 #ifdef CONFIG_EDAC_DEBUG
810 static ssize_t edac_fake_inject_write(struct file *file,
811 				      const char __user *data,
812 				      size_t count, loff_t *ppos)
813 {
814 	struct device *dev = file->private_data;
815 	struct mem_ctl_info *mci = to_mci(dev);
816 	static enum hw_event_mc_err_type type;
817 	u16 errcount = mci->fake_inject_count;
818 
819 	if (!errcount)
820 		errcount = 1;
821 
822 	type = mci->fake_inject_ue ? HW_EVENT_ERR_UNCORRECTED
823 				   : HW_EVENT_ERR_CORRECTED;
824 
825 	printk(KERN_DEBUG
826 	       "Generating %d %s fake error%s to %d.%d.%d to test core handling. NOTE: this won't test the driver-specific decoding logic.\n",
827 		errcount,
828 		(type == HW_EVENT_ERR_UNCORRECTED) ? "UE" : "CE",
829 		errcount > 1 ? "s" : "",
830 		mci->fake_inject_layer[0],
831 		mci->fake_inject_layer[1],
832 		mci->fake_inject_layer[2]
833 	       );
834 	edac_mc_handle_error(type, mci, errcount, 0, 0, 0,
835 			     mci->fake_inject_layer[0],
836 			     mci->fake_inject_layer[1],
837 			     mci->fake_inject_layer[2],
838 			     "FAKE ERROR", "for EDAC testing only");
839 
840 	return count;
841 }
842 
843 static const struct file_operations debug_fake_inject_fops = {
844 	.open = simple_open,
845 	.write = edac_fake_inject_write,
846 	.llseek = generic_file_llseek,
847 };
848 #endif
849 
850 /* default Control file */
851 DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store);
852 
853 /* default Attribute files */
854 DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL);
855 DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL);
856 DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL);
857 DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL);
858 DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL);
859 DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL);
860 DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL);
861 DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL);
862 
863 /* memory scrubber attribute file */
864 DEVICE_ATTR(sdram_scrub_rate, 0, NULL, NULL);
865 
866 static struct attribute *mci_attrs[] = {
867 	&dev_attr_reset_counters.attr,
868 	&dev_attr_mc_name.attr,
869 	&dev_attr_size_mb.attr,
870 	&dev_attr_seconds_since_reset.attr,
871 	&dev_attr_ue_noinfo_count.attr,
872 	&dev_attr_ce_noinfo_count.attr,
873 	&dev_attr_ue_count.attr,
874 	&dev_attr_ce_count.attr,
875 	&dev_attr_max_location.attr,
876 	NULL
877 };
878 
879 static struct attribute_group mci_attr_grp = {
880 	.attrs	= mci_attrs,
881 };
882 
883 static const struct attribute_group *mci_attr_groups[] = {
884 	&mci_attr_grp,
885 	NULL
886 };
887 
888 static void mci_attr_release(struct device *dev)
889 {
890 	struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
891 
892 	edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
893 	kfree(mci);
894 }
895 
896 static struct device_type mci_attr_type = {
897 	.groups		= mci_attr_groups,
898 	.release	= mci_attr_release,
899 };
900 
901 #ifdef CONFIG_EDAC_DEBUG
902 static struct dentry *edac_debugfs;
903 
904 int __init edac_debugfs_init(void)
905 {
906 	edac_debugfs = debugfs_create_dir("edac", NULL);
907 	if (IS_ERR(edac_debugfs)) {
908 		edac_debugfs = NULL;
909 		return -ENOMEM;
910 	}
911 	return 0;
912 }
913 
914 void __exit edac_debugfs_exit(void)
915 {
916 	debugfs_remove(edac_debugfs);
917 }
918 
919 static int edac_create_debug_nodes(struct mem_ctl_info *mci)
920 {
921 	struct dentry *d, *parent;
922 	char name[80];
923 	int i;
924 
925 	if (!edac_debugfs)
926 		return -ENODEV;
927 
928 	d = debugfs_create_dir(mci->dev.kobj.name, edac_debugfs);
929 	if (!d)
930 		return -ENOMEM;
931 	parent = d;
932 
933 	for (i = 0; i < mci->n_layers; i++) {
934 		sprintf(name, "fake_inject_%s",
935 			     edac_layer_name[mci->layers[i].type]);
936 		d = debugfs_create_u8(name, S_IRUGO | S_IWUSR, parent,
937 				      &mci->fake_inject_layer[i]);
938 		if (!d)
939 			goto nomem;
940 	}
941 
942 	d = debugfs_create_bool("fake_inject_ue", S_IRUGO | S_IWUSR, parent,
943 				&mci->fake_inject_ue);
944 	if (!d)
945 		goto nomem;
946 
947 	d = debugfs_create_u16("fake_inject_count", S_IRUGO | S_IWUSR, parent,
948 				&mci->fake_inject_count);
949 	if (!d)
950 		goto nomem;
951 
952 	d = debugfs_create_file("fake_inject", S_IWUSR, parent,
953 				&mci->dev,
954 				&debug_fake_inject_fops);
955 	if (!d)
956 		goto nomem;
957 
958 	mci->debugfs = parent;
959 	return 0;
960 nomem:
961 	debugfs_remove(mci->debugfs);
962 	return -ENOMEM;
963 }
964 #endif
965 
966 /*
967  * Create a new Memory Controller kobject instance,
968  *	mc<id> under the 'mc' directory
969  *
970  * Return:
971  *	0	Success
972  *	!0	Failure
973  */
974 int edac_create_sysfs_mci_device(struct mem_ctl_info *mci)
975 {
976 	int i, err;
977 
978 	/*
979 	 * The memory controller needs its own bus, in order to avoid
980 	 * namespace conflicts at /sys/bus/edac.
981 	 */
982 	mci->bus->name = kasprintf(GFP_KERNEL, "mc%d", mci->mc_idx);
983 	if (!mci->bus->name)
984 		return -ENOMEM;
985 
986 	edac_dbg(0, "creating bus %s\n", mci->bus->name);
987 
988 	err = bus_register(mci->bus);
989 	if (err < 0)
990 		return err;
991 
992 	/* get the /sys/devices/system/edac subsys reference */
993 	mci->dev.type = &mci_attr_type;
994 	device_initialize(&mci->dev);
995 
996 	mci->dev.parent = mci_pdev;
997 	mci->dev.bus = mci->bus;
998 	dev_set_name(&mci->dev, "mc%d", mci->mc_idx);
999 	dev_set_drvdata(&mci->dev, mci);
1000 	pm_runtime_forbid(&mci->dev);
1001 
1002 	edac_dbg(0, "creating device %s\n", dev_name(&mci->dev));
1003 	err = device_add(&mci->dev);
1004 	if (err < 0) {
1005 		edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev));
1006 		bus_unregister(mci->bus);
1007 		kfree(mci->bus->name);
1008 		return err;
1009 	}
1010 
1011 	if (mci->set_sdram_scrub_rate || mci->get_sdram_scrub_rate) {
1012 		if (mci->get_sdram_scrub_rate) {
1013 			dev_attr_sdram_scrub_rate.attr.mode |= S_IRUGO;
1014 			dev_attr_sdram_scrub_rate.show = &mci_sdram_scrub_rate_show;
1015 		}
1016 		if (mci->set_sdram_scrub_rate) {
1017 			dev_attr_sdram_scrub_rate.attr.mode |= S_IWUSR;
1018 			dev_attr_sdram_scrub_rate.store = &mci_sdram_scrub_rate_store;
1019 		}
1020 		err = device_create_file(&mci->dev,
1021 					 &dev_attr_sdram_scrub_rate);
1022 		if (err) {
1023 			edac_dbg(1, "failure: create sdram_scrub_rate\n");
1024 			goto fail2;
1025 		}
1026 	}
1027 	/*
1028 	 * Create the dimm/rank devices
1029 	 */
1030 	for (i = 0; i < mci->tot_dimms; i++) {
1031 		struct dimm_info *dimm = mci->dimms[i];
1032 		/* Only expose populated DIMMs */
1033 		if (dimm->nr_pages == 0)
1034 			continue;
1035 #ifdef CONFIG_EDAC_DEBUG
1036 		edac_dbg(1, "creating dimm%d, located at ", i);
1037 		if (edac_debug_level >= 1) {
1038 			int lay;
1039 			for (lay = 0; lay < mci->n_layers; lay++)
1040 				printk(KERN_CONT "%s %d ",
1041 					edac_layer_name[mci->layers[lay].type],
1042 					dimm->location[lay]);
1043 			printk(KERN_CONT "\n");
1044 		}
1045 #endif
1046 		err = edac_create_dimm_object(mci, dimm, i);
1047 		if (err) {
1048 			edac_dbg(1, "failure: create dimm %d obj\n", i);
1049 			goto fail;
1050 		}
1051 	}
1052 
1053 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1054 	err = edac_create_csrow_objects(mci);
1055 	if (err < 0)
1056 		goto fail;
1057 #endif
1058 
1059 #ifdef CONFIG_EDAC_DEBUG
1060 	edac_create_debug_nodes(mci);
1061 #endif
1062 	return 0;
1063 
1064 fail:
1065 	for (i--; i >= 0; i--) {
1066 		struct dimm_info *dimm = mci->dimms[i];
1067 		if (dimm->nr_pages == 0)
1068 			continue;
1069 		device_unregister(&dimm->dev);
1070 	}
1071 fail2:
1072 	device_unregister(&mci->dev);
1073 	bus_unregister(mci->bus);
1074 	kfree(mci->bus->name);
1075 	return err;
1076 }
1077 
1078 /*
1079  * remove a Memory Controller instance
1080  */
1081 void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
1082 {
1083 	int i;
1084 
1085 	edac_dbg(0, "\n");
1086 
1087 #ifdef CONFIG_EDAC_DEBUG
1088 	debugfs_remove(mci->debugfs);
1089 #endif
1090 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1091 	edac_delete_csrow_objects(mci);
1092 #endif
1093 
1094 	for (i = 0; i < mci->tot_dimms; i++) {
1095 		struct dimm_info *dimm = mci->dimms[i];
1096 		if (dimm->nr_pages == 0)
1097 			continue;
1098 		edac_dbg(0, "removing device %s\n", dev_name(&dimm->dev));
1099 		device_unregister(&dimm->dev);
1100 	}
1101 }
1102 
1103 void edac_unregister_sysfs(struct mem_ctl_info *mci)
1104 {
1105 	edac_dbg(1, "Unregistering device %s\n", dev_name(&mci->dev));
1106 	device_unregister(&mci->dev);
1107 	bus_unregister(mci->bus);
1108 	kfree(mci->bus->name);
1109 }
1110 
1111 static void mc_attr_release(struct device *dev)
1112 {
1113 	/*
1114 	 * There's no container structure here, as this is just the mci
1115 	 * parent device, used to create the /sys/devices/mc sysfs node.
1116 	 * So, there are no attributes on it.
1117 	 */
1118 	edac_dbg(1, "Releasing device %s\n", dev_name(dev));
1119 	kfree(dev);
1120 }
1121 
1122 static struct device_type mc_attr_type = {
1123 	.release	= mc_attr_release,
1124 };
1125 /*
1126  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1127  */
1128 int __init edac_mc_sysfs_init(void)
1129 {
1130 	struct bus_type *edac_subsys;
1131 	int err;
1132 
1133 	/* get the /sys/devices/system/edac subsys reference */
1134 	edac_subsys = edac_get_sysfs_subsys();
1135 	if (edac_subsys == NULL) {
1136 		edac_dbg(1, "no edac_subsys\n");
1137 		err = -EINVAL;
1138 		goto out;
1139 	}
1140 
1141 	mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL);
1142 	if (!mci_pdev) {
1143 		err = -ENOMEM;
1144 		goto out_put_sysfs;
1145 	}
1146 
1147 	mci_pdev->bus = edac_subsys;
1148 	mci_pdev->type = &mc_attr_type;
1149 	device_initialize(mci_pdev);
1150 	dev_set_name(mci_pdev, "mc");
1151 
1152 	err = device_add(mci_pdev);
1153 	if (err < 0)
1154 		goto out_dev_free;
1155 
1156 	edac_dbg(0, "device %s created\n", dev_name(mci_pdev));
1157 
1158 	return 0;
1159 
1160  out_dev_free:
1161 	kfree(mci_pdev);
1162  out_put_sysfs:
1163 	edac_put_sysfs_subsys();
1164  out:
1165 	return err;
1166 }
1167 
1168 void __exit edac_mc_sysfs_exit(void)
1169 {
1170 	device_unregister(mci_pdev);
1171 	edac_put_sysfs_subsys();
1172 }
1173