1 /* 2 * edac_mc kernel module 3 * (C) 2005-2007 Linux Networx (http://lnxi.com) 4 * 5 * This file may be distributed under the terms of the 6 * GNU General Public License. 7 * 8 * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com 9 * 10 * (c) 2012-2013 - Mauro Carvalho Chehab 11 * The entire API were re-written, and ported to use struct device 12 * 13 */ 14 15 #include <linux/ctype.h> 16 #include <linux/slab.h> 17 #include <linux/edac.h> 18 #include <linux/bug.h> 19 #include <linux/pm_runtime.h> 20 #include <linux/uaccess.h> 21 22 #include "edac_mc.h" 23 #include "edac_module.h" 24 25 /* MC EDAC Controls, setable by module parameter, and sysfs */ 26 static int edac_mc_log_ue = 1; 27 static int edac_mc_log_ce = 1; 28 static int edac_mc_panic_on_ue; 29 static unsigned int edac_mc_poll_msec = 1000; 30 31 /* Getter functions for above */ 32 int edac_mc_get_log_ue(void) 33 { 34 return edac_mc_log_ue; 35 } 36 37 int edac_mc_get_log_ce(void) 38 { 39 return edac_mc_log_ce; 40 } 41 42 int edac_mc_get_panic_on_ue(void) 43 { 44 return edac_mc_panic_on_ue; 45 } 46 47 /* this is temporary */ 48 unsigned int edac_mc_get_poll_msec(void) 49 { 50 return edac_mc_poll_msec; 51 } 52 53 static int edac_set_poll_msec(const char *val, const struct kernel_param *kp) 54 { 55 unsigned int i; 56 int ret; 57 58 if (!val) 59 return -EINVAL; 60 61 ret = kstrtouint(val, 0, &i); 62 if (ret) 63 return ret; 64 65 if (i < 1000) 66 return -EINVAL; 67 68 *((unsigned int *)kp->arg) = i; 69 70 /* notify edac_mc engine to reset the poll period */ 71 edac_mc_reset_delay_period(i); 72 73 return 0; 74 } 75 76 /* Parameter declarations for above */ 77 module_param(edac_mc_panic_on_ue, int, 0644); 78 MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on"); 79 module_param(edac_mc_log_ue, int, 0644); 80 MODULE_PARM_DESC(edac_mc_log_ue, 81 "Log uncorrectable error to console: 0=off 1=on"); 82 module_param(edac_mc_log_ce, int, 0644); 83 MODULE_PARM_DESC(edac_mc_log_ce, 84 "Log correctable error to console: 0=off 1=on"); 85 module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_uint, 86 &edac_mc_poll_msec, 0644); 87 MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds"); 88 89 static struct device *mci_pdev; 90 91 /* 92 * various constants for Memory Controllers 93 */ 94 static const char * const dev_types[] = { 95 [DEV_UNKNOWN] = "Unknown", 96 [DEV_X1] = "x1", 97 [DEV_X2] = "x2", 98 [DEV_X4] = "x4", 99 [DEV_X8] = "x8", 100 [DEV_X16] = "x16", 101 [DEV_X32] = "x32", 102 [DEV_X64] = "x64" 103 }; 104 105 static const char * const edac_caps[] = { 106 [EDAC_UNKNOWN] = "Unknown", 107 [EDAC_NONE] = "None", 108 [EDAC_RESERVED] = "Reserved", 109 [EDAC_PARITY] = "PARITY", 110 [EDAC_EC] = "EC", 111 [EDAC_SECDED] = "SECDED", 112 [EDAC_S2ECD2ED] = "S2ECD2ED", 113 [EDAC_S4ECD4ED] = "S4ECD4ED", 114 [EDAC_S8ECD8ED] = "S8ECD8ED", 115 [EDAC_S16ECD16ED] = "S16ECD16ED" 116 }; 117 118 #ifdef CONFIG_EDAC_LEGACY_SYSFS 119 /* 120 * EDAC sysfs CSROW data structures and methods 121 */ 122 123 #define to_csrow(k) container_of(k, struct csrow_info, dev) 124 125 /* 126 * We need it to avoid namespace conflicts between the legacy API 127 * and the per-dimm/per-rank one 128 */ 129 #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \ 130 static struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store) 131 132 struct dev_ch_attribute { 133 struct device_attribute attr; 134 unsigned int channel; 135 }; 136 137 #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \ 138 static struct dev_ch_attribute dev_attr_legacy_##_name = \ 139 { __ATTR(_name, _mode, _show, _store), (_var) } 140 141 #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel) 142 143 /* Set of more default csrow<id> attribute show/store functions */ 144 static ssize_t csrow_ue_count_show(struct device *dev, 145 struct device_attribute *mattr, char *data) 146 { 147 struct csrow_info *csrow = to_csrow(dev); 148 149 return sprintf(data, "%u\n", csrow->ue_count); 150 } 151 152 static ssize_t csrow_ce_count_show(struct device *dev, 153 struct device_attribute *mattr, char *data) 154 { 155 struct csrow_info *csrow = to_csrow(dev); 156 157 return sprintf(data, "%u\n", csrow->ce_count); 158 } 159 160 static ssize_t csrow_size_show(struct device *dev, 161 struct device_attribute *mattr, char *data) 162 { 163 struct csrow_info *csrow = to_csrow(dev); 164 int i; 165 u32 nr_pages = 0; 166 167 for (i = 0; i < csrow->nr_channels; i++) 168 nr_pages += csrow->channels[i]->dimm->nr_pages; 169 return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages)); 170 } 171 172 static ssize_t csrow_mem_type_show(struct device *dev, 173 struct device_attribute *mattr, char *data) 174 { 175 struct csrow_info *csrow = to_csrow(dev); 176 177 return sprintf(data, "%s\n", edac_mem_types[csrow->channels[0]->dimm->mtype]); 178 } 179 180 static ssize_t csrow_dev_type_show(struct device *dev, 181 struct device_attribute *mattr, char *data) 182 { 183 struct csrow_info *csrow = to_csrow(dev); 184 185 return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]); 186 } 187 188 static ssize_t csrow_edac_mode_show(struct device *dev, 189 struct device_attribute *mattr, 190 char *data) 191 { 192 struct csrow_info *csrow = to_csrow(dev); 193 194 return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]); 195 } 196 197 /* show/store functions for DIMM Label attributes */ 198 static ssize_t channel_dimm_label_show(struct device *dev, 199 struct device_attribute *mattr, 200 char *data) 201 { 202 struct csrow_info *csrow = to_csrow(dev); 203 unsigned int chan = to_channel(mattr); 204 struct rank_info *rank = csrow->channels[chan]; 205 206 /* if field has not been initialized, there is nothing to send */ 207 if (!rank->dimm->label[0]) 208 return 0; 209 210 return snprintf(data, sizeof(rank->dimm->label) + 1, "%s\n", 211 rank->dimm->label); 212 } 213 214 static ssize_t channel_dimm_label_store(struct device *dev, 215 struct device_attribute *mattr, 216 const char *data, size_t count) 217 { 218 struct csrow_info *csrow = to_csrow(dev); 219 unsigned int chan = to_channel(mattr); 220 struct rank_info *rank = csrow->channels[chan]; 221 size_t copy_count = count; 222 223 if (count == 0) 224 return -EINVAL; 225 226 if (data[count - 1] == '\0' || data[count - 1] == '\n') 227 copy_count -= 1; 228 229 if (copy_count == 0 || copy_count >= sizeof(rank->dimm->label)) 230 return -EINVAL; 231 232 strncpy(rank->dimm->label, data, copy_count); 233 rank->dimm->label[copy_count] = '\0'; 234 235 return count; 236 } 237 238 /* show function for dynamic chX_ce_count attribute */ 239 static ssize_t channel_ce_count_show(struct device *dev, 240 struct device_attribute *mattr, char *data) 241 { 242 struct csrow_info *csrow = to_csrow(dev); 243 unsigned int chan = to_channel(mattr); 244 struct rank_info *rank = csrow->channels[chan]; 245 246 return sprintf(data, "%u\n", rank->ce_count); 247 } 248 249 /* cwrow<id>/attribute files */ 250 DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL); 251 DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL); 252 DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL); 253 DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL); 254 DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL); 255 DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL); 256 257 /* default attributes of the CSROW<id> object */ 258 static struct attribute *csrow_attrs[] = { 259 &dev_attr_legacy_dev_type.attr, 260 &dev_attr_legacy_mem_type.attr, 261 &dev_attr_legacy_edac_mode.attr, 262 &dev_attr_legacy_size_mb.attr, 263 &dev_attr_legacy_ue_count.attr, 264 &dev_attr_legacy_ce_count.attr, 265 NULL, 266 }; 267 268 static const struct attribute_group csrow_attr_grp = { 269 .attrs = csrow_attrs, 270 }; 271 272 static const struct attribute_group *csrow_attr_groups[] = { 273 &csrow_attr_grp, 274 NULL 275 }; 276 277 static void csrow_attr_release(struct device *dev) 278 { 279 /* release device with _edac_mc_free() */ 280 } 281 282 static const struct device_type csrow_attr_type = { 283 .groups = csrow_attr_groups, 284 .release = csrow_attr_release, 285 }; 286 287 /* 288 * possible dynamic channel DIMM Label attribute files 289 * 290 */ 291 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR, 292 channel_dimm_label_show, channel_dimm_label_store, 0); 293 DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR, 294 channel_dimm_label_show, channel_dimm_label_store, 1); 295 DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR, 296 channel_dimm_label_show, channel_dimm_label_store, 2); 297 DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR, 298 channel_dimm_label_show, channel_dimm_label_store, 3); 299 DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR, 300 channel_dimm_label_show, channel_dimm_label_store, 4); 301 DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR, 302 channel_dimm_label_show, channel_dimm_label_store, 5); 303 DEVICE_CHANNEL(ch6_dimm_label, S_IRUGO | S_IWUSR, 304 channel_dimm_label_show, channel_dimm_label_store, 6); 305 DEVICE_CHANNEL(ch7_dimm_label, S_IRUGO | S_IWUSR, 306 channel_dimm_label_show, channel_dimm_label_store, 7); 307 308 /* Total possible dynamic DIMM Label attribute file table */ 309 static struct attribute *dynamic_csrow_dimm_attr[] = { 310 &dev_attr_legacy_ch0_dimm_label.attr.attr, 311 &dev_attr_legacy_ch1_dimm_label.attr.attr, 312 &dev_attr_legacy_ch2_dimm_label.attr.attr, 313 &dev_attr_legacy_ch3_dimm_label.attr.attr, 314 &dev_attr_legacy_ch4_dimm_label.attr.attr, 315 &dev_attr_legacy_ch5_dimm_label.attr.attr, 316 &dev_attr_legacy_ch6_dimm_label.attr.attr, 317 &dev_attr_legacy_ch7_dimm_label.attr.attr, 318 NULL 319 }; 320 321 /* possible dynamic channel ce_count attribute files */ 322 DEVICE_CHANNEL(ch0_ce_count, S_IRUGO, 323 channel_ce_count_show, NULL, 0); 324 DEVICE_CHANNEL(ch1_ce_count, S_IRUGO, 325 channel_ce_count_show, NULL, 1); 326 DEVICE_CHANNEL(ch2_ce_count, S_IRUGO, 327 channel_ce_count_show, NULL, 2); 328 DEVICE_CHANNEL(ch3_ce_count, S_IRUGO, 329 channel_ce_count_show, NULL, 3); 330 DEVICE_CHANNEL(ch4_ce_count, S_IRUGO, 331 channel_ce_count_show, NULL, 4); 332 DEVICE_CHANNEL(ch5_ce_count, S_IRUGO, 333 channel_ce_count_show, NULL, 5); 334 DEVICE_CHANNEL(ch6_ce_count, S_IRUGO, 335 channel_ce_count_show, NULL, 6); 336 DEVICE_CHANNEL(ch7_ce_count, S_IRUGO, 337 channel_ce_count_show, NULL, 7); 338 339 /* Total possible dynamic ce_count attribute file table */ 340 static struct attribute *dynamic_csrow_ce_count_attr[] = { 341 &dev_attr_legacy_ch0_ce_count.attr.attr, 342 &dev_attr_legacy_ch1_ce_count.attr.attr, 343 &dev_attr_legacy_ch2_ce_count.attr.attr, 344 &dev_attr_legacy_ch3_ce_count.attr.attr, 345 &dev_attr_legacy_ch4_ce_count.attr.attr, 346 &dev_attr_legacy_ch5_ce_count.attr.attr, 347 &dev_attr_legacy_ch6_ce_count.attr.attr, 348 &dev_attr_legacy_ch7_ce_count.attr.attr, 349 NULL 350 }; 351 352 static umode_t csrow_dev_is_visible(struct kobject *kobj, 353 struct attribute *attr, int idx) 354 { 355 struct device *dev = kobj_to_dev(kobj); 356 struct csrow_info *csrow = container_of(dev, struct csrow_info, dev); 357 358 if (idx >= csrow->nr_channels) 359 return 0; 360 361 if (idx >= ARRAY_SIZE(dynamic_csrow_ce_count_attr) - 1) { 362 WARN_ONCE(1, "idx: %d\n", idx); 363 return 0; 364 } 365 366 /* Only expose populated DIMMs */ 367 if (!csrow->channels[idx]->dimm->nr_pages) 368 return 0; 369 370 return attr->mode; 371 } 372 373 374 static const struct attribute_group csrow_dev_dimm_group = { 375 .attrs = dynamic_csrow_dimm_attr, 376 .is_visible = csrow_dev_is_visible, 377 }; 378 379 static const struct attribute_group csrow_dev_ce_count_group = { 380 .attrs = dynamic_csrow_ce_count_attr, 381 .is_visible = csrow_dev_is_visible, 382 }; 383 384 static const struct attribute_group *csrow_dev_groups[] = { 385 &csrow_dev_dimm_group, 386 &csrow_dev_ce_count_group, 387 NULL 388 }; 389 390 static inline int nr_pages_per_csrow(struct csrow_info *csrow) 391 { 392 int chan, nr_pages = 0; 393 394 for (chan = 0; chan < csrow->nr_channels; chan++) 395 nr_pages += csrow->channels[chan]->dimm->nr_pages; 396 397 return nr_pages; 398 } 399 400 /* Create a CSROW object under specifed edac_mc_device */ 401 static int edac_create_csrow_object(struct mem_ctl_info *mci, 402 struct csrow_info *csrow, int index) 403 { 404 int err; 405 406 csrow->dev.type = &csrow_attr_type; 407 csrow->dev.groups = csrow_dev_groups; 408 device_initialize(&csrow->dev); 409 csrow->dev.parent = &mci->dev; 410 csrow->mci = mci; 411 dev_set_name(&csrow->dev, "csrow%d", index); 412 dev_set_drvdata(&csrow->dev, csrow); 413 414 err = device_add(&csrow->dev); 415 if (err) { 416 edac_dbg(1, "failure: create device %s\n", dev_name(&csrow->dev)); 417 put_device(&csrow->dev); 418 return err; 419 } 420 421 edac_dbg(0, "device %s created\n", dev_name(&csrow->dev)); 422 423 return 0; 424 } 425 426 /* Create a CSROW object under specifed edac_mc_device */ 427 static int edac_create_csrow_objects(struct mem_ctl_info *mci) 428 { 429 int err, i; 430 struct csrow_info *csrow; 431 432 for (i = 0; i < mci->nr_csrows; i++) { 433 csrow = mci->csrows[i]; 434 if (!nr_pages_per_csrow(csrow)) 435 continue; 436 err = edac_create_csrow_object(mci, mci->csrows[i], i); 437 if (err < 0) 438 goto error; 439 } 440 return 0; 441 442 error: 443 for (--i; i >= 0; i--) { 444 csrow = mci->csrows[i]; 445 if (!nr_pages_per_csrow(csrow)) 446 continue; 447 device_unregister(&mci->csrows[i]->dev); 448 } 449 450 return err; 451 } 452 453 static void edac_delete_csrow_objects(struct mem_ctl_info *mci) 454 { 455 int i; 456 struct csrow_info *csrow; 457 458 for (i = mci->nr_csrows - 1; i >= 0; i--) { 459 csrow = mci->csrows[i]; 460 if (!nr_pages_per_csrow(csrow)) 461 continue; 462 device_unregister(&mci->csrows[i]->dev); 463 } 464 } 465 #endif 466 467 /* 468 * Per-dimm (or per-rank) devices 469 */ 470 471 #define to_dimm(k) container_of(k, struct dimm_info, dev) 472 473 /* show/store functions for DIMM Label attributes */ 474 static ssize_t dimmdev_location_show(struct device *dev, 475 struct device_attribute *mattr, char *data) 476 { 477 struct dimm_info *dimm = to_dimm(dev); 478 479 return edac_dimm_info_location(dimm, data, PAGE_SIZE); 480 } 481 482 static ssize_t dimmdev_label_show(struct device *dev, 483 struct device_attribute *mattr, char *data) 484 { 485 struct dimm_info *dimm = to_dimm(dev); 486 487 /* if field has not been initialized, there is nothing to send */ 488 if (!dimm->label[0]) 489 return 0; 490 491 return snprintf(data, sizeof(dimm->label) + 1, "%s\n", dimm->label); 492 } 493 494 static ssize_t dimmdev_label_store(struct device *dev, 495 struct device_attribute *mattr, 496 const char *data, 497 size_t count) 498 { 499 struct dimm_info *dimm = to_dimm(dev); 500 size_t copy_count = count; 501 502 if (count == 0) 503 return -EINVAL; 504 505 if (data[count - 1] == '\0' || data[count - 1] == '\n') 506 copy_count -= 1; 507 508 if (copy_count == 0 || copy_count >= sizeof(dimm->label)) 509 return -EINVAL; 510 511 strncpy(dimm->label, data, copy_count); 512 dimm->label[copy_count] = '\0'; 513 514 return count; 515 } 516 517 static ssize_t dimmdev_size_show(struct device *dev, 518 struct device_attribute *mattr, char *data) 519 { 520 struct dimm_info *dimm = to_dimm(dev); 521 522 return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages)); 523 } 524 525 static ssize_t dimmdev_mem_type_show(struct device *dev, 526 struct device_attribute *mattr, char *data) 527 { 528 struct dimm_info *dimm = to_dimm(dev); 529 530 return sprintf(data, "%s\n", edac_mem_types[dimm->mtype]); 531 } 532 533 static ssize_t dimmdev_dev_type_show(struct device *dev, 534 struct device_attribute *mattr, char *data) 535 { 536 struct dimm_info *dimm = to_dimm(dev); 537 538 return sprintf(data, "%s\n", dev_types[dimm->dtype]); 539 } 540 541 static ssize_t dimmdev_edac_mode_show(struct device *dev, 542 struct device_attribute *mattr, 543 char *data) 544 { 545 struct dimm_info *dimm = to_dimm(dev); 546 547 return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]); 548 } 549 550 static ssize_t dimmdev_ce_count_show(struct device *dev, 551 struct device_attribute *mattr, 552 char *data) 553 { 554 struct dimm_info *dimm = to_dimm(dev); 555 u32 count; 556 557 count = dimm->mci->ce_per_layer[dimm->mci->n_layers-1][dimm->idx]; 558 return sprintf(data, "%u\n", count); 559 } 560 561 static ssize_t dimmdev_ue_count_show(struct device *dev, 562 struct device_attribute *mattr, 563 char *data) 564 { 565 struct dimm_info *dimm = to_dimm(dev); 566 u32 count; 567 568 count = dimm->mci->ue_per_layer[dimm->mci->n_layers-1][dimm->idx]; 569 return sprintf(data, "%u\n", count); 570 } 571 572 /* dimm/rank attribute files */ 573 static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR, 574 dimmdev_label_show, dimmdev_label_store); 575 static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL); 576 static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL); 577 static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL); 578 static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL); 579 static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL); 580 static DEVICE_ATTR(dimm_ce_count, S_IRUGO, dimmdev_ce_count_show, NULL); 581 static DEVICE_ATTR(dimm_ue_count, S_IRUGO, dimmdev_ue_count_show, NULL); 582 583 /* attributes of the dimm<id>/rank<id> object */ 584 static struct attribute *dimm_attrs[] = { 585 &dev_attr_dimm_label.attr, 586 &dev_attr_dimm_location.attr, 587 &dev_attr_size.attr, 588 &dev_attr_dimm_mem_type.attr, 589 &dev_attr_dimm_dev_type.attr, 590 &dev_attr_dimm_edac_mode.attr, 591 &dev_attr_dimm_ce_count.attr, 592 &dev_attr_dimm_ue_count.attr, 593 NULL, 594 }; 595 596 static const struct attribute_group dimm_attr_grp = { 597 .attrs = dimm_attrs, 598 }; 599 600 static const struct attribute_group *dimm_attr_groups[] = { 601 &dimm_attr_grp, 602 NULL 603 }; 604 605 static void dimm_attr_release(struct device *dev) 606 { 607 /* release device with _edac_mc_free() */ 608 } 609 610 static const struct device_type dimm_attr_type = { 611 .groups = dimm_attr_groups, 612 .release = dimm_attr_release, 613 }; 614 615 /* Create a DIMM object under specifed memory controller device */ 616 static int edac_create_dimm_object(struct mem_ctl_info *mci, 617 struct dimm_info *dimm) 618 { 619 int err; 620 dimm->mci = mci; 621 622 dimm->dev.type = &dimm_attr_type; 623 device_initialize(&dimm->dev); 624 625 dimm->dev.parent = &mci->dev; 626 if (mci->csbased) 627 dev_set_name(&dimm->dev, "rank%d", dimm->idx); 628 else 629 dev_set_name(&dimm->dev, "dimm%d", dimm->idx); 630 dev_set_drvdata(&dimm->dev, dimm); 631 pm_runtime_forbid(&mci->dev); 632 633 err = device_add(&dimm->dev); 634 if (err) { 635 edac_dbg(1, "failure: create device %s\n", dev_name(&dimm->dev)); 636 put_device(&dimm->dev); 637 return err; 638 } 639 640 if (IS_ENABLED(CONFIG_EDAC_DEBUG)) { 641 char location[80]; 642 643 edac_dimm_info_location(dimm, location, sizeof(location)); 644 edac_dbg(0, "device %s created at location %s\n", 645 dev_name(&dimm->dev), location); 646 } 647 648 return 0; 649 } 650 651 /* 652 * Memory controller device 653 */ 654 655 #define to_mci(k) container_of(k, struct mem_ctl_info, dev) 656 657 static ssize_t mci_reset_counters_store(struct device *dev, 658 struct device_attribute *mattr, 659 const char *data, size_t count) 660 { 661 struct mem_ctl_info *mci = to_mci(dev); 662 int cnt, row, chan, i; 663 mci->ue_mc = 0; 664 mci->ce_mc = 0; 665 mci->ue_noinfo_count = 0; 666 mci->ce_noinfo_count = 0; 667 668 for (row = 0; row < mci->nr_csrows; row++) { 669 struct csrow_info *ri = mci->csrows[row]; 670 671 ri->ue_count = 0; 672 ri->ce_count = 0; 673 674 for (chan = 0; chan < ri->nr_channels; chan++) 675 ri->channels[chan]->ce_count = 0; 676 } 677 678 cnt = 1; 679 for (i = 0; i < mci->n_layers; i++) { 680 cnt *= mci->layers[i].size; 681 memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32)); 682 memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32)); 683 } 684 685 mci->start_time = jiffies; 686 return count; 687 } 688 689 /* Memory scrubbing interface: 690 * 691 * A MC driver can limit the scrubbing bandwidth based on the CPU type. 692 * Therefore, ->set_sdram_scrub_rate should be made to return the actual 693 * bandwidth that is accepted or 0 when scrubbing is to be disabled. 694 * 695 * Negative value still means that an error has occurred while setting 696 * the scrub rate. 697 */ 698 static ssize_t mci_sdram_scrub_rate_store(struct device *dev, 699 struct device_attribute *mattr, 700 const char *data, size_t count) 701 { 702 struct mem_ctl_info *mci = to_mci(dev); 703 unsigned long bandwidth = 0; 704 int new_bw = 0; 705 706 if (kstrtoul(data, 10, &bandwidth) < 0) 707 return -EINVAL; 708 709 new_bw = mci->set_sdram_scrub_rate(mci, bandwidth); 710 if (new_bw < 0) { 711 edac_printk(KERN_WARNING, EDAC_MC, 712 "Error setting scrub rate to: %lu\n", bandwidth); 713 return -EINVAL; 714 } 715 716 return count; 717 } 718 719 /* 720 * ->get_sdram_scrub_rate() return value semantics same as above. 721 */ 722 static ssize_t mci_sdram_scrub_rate_show(struct device *dev, 723 struct device_attribute *mattr, 724 char *data) 725 { 726 struct mem_ctl_info *mci = to_mci(dev); 727 int bandwidth = 0; 728 729 bandwidth = mci->get_sdram_scrub_rate(mci); 730 if (bandwidth < 0) { 731 edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n"); 732 return bandwidth; 733 } 734 735 return sprintf(data, "%d\n", bandwidth); 736 } 737 738 /* default attribute files for the MCI object */ 739 static ssize_t mci_ue_count_show(struct device *dev, 740 struct device_attribute *mattr, 741 char *data) 742 { 743 struct mem_ctl_info *mci = to_mci(dev); 744 745 return sprintf(data, "%d\n", mci->ue_mc); 746 } 747 748 static ssize_t mci_ce_count_show(struct device *dev, 749 struct device_attribute *mattr, 750 char *data) 751 { 752 struct mem_ctl_info *mci = to_mci(dev); 753 754 return sprintf(data, "%d\n", mci->ce_mc); 755 } 756 757 static ssize_t mci_ce_noinfo_show(struct device *dev, 758 struct device_attribute *mattr, 759 char *data) 760 { 761 struct mem_ctl_info *mci = to_mci(dev); 762 763 return sprintf(data, "%d\n", mci->ce_noinfo_count); 764 } 765 766 static ssize_t mci_ue_noinfo_show(struct device *dev, 767 struct device_attribute *mattr, 768 char *data) 769 { 770 struct mem_ctl_info *mci = to_mci(dev); 771 772 return sprintf(data, "%d\n", mci->ue_noinfo_count); 773 } 774 775 static ssize_t mci_seconds_show(struct device *dev, 776 struct device_attribute *mattr, 777 char *data) 778 { 779 struct mem_ctl_info *mci = to_mci(dev); 780 781 return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ); 782 } 783 784 static ssize_t mci_ctl_name_show(struct device *dev, 785 struct device_attribute *mattr, 786 char *data) 787 { 788 struct mem_ctl_info *mci = to_mci(dev); 789 790 return sprintf(data, "%s\n", mci->ctl_name); 791 } 792 793 static ssize_t mci_size_mb_show(struct device *dev, 794 struct device_attribute *mattr, 795 char *data) 796 { 797 struct mem_ctl_info *mci = to_mci(dev); 798 int total_pages = 0, csrow_idx, j; 799 800 for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) { 801 struct csrow_info *csrow = mci->csrows[csrow_idx]; 802 803 for (j = 0; j < csrow->nr_channels; j++) { 804 struct dimm_info *dimm = csrow->channels[j]->dimm; 805 806 total_pages += dimm->nr_pages; 807 } 808 } 809 810 return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages)); 811 } 812 813 static ssize_t mci_max_location_show(struct device *dev, 814 struct device_attribute *mattr, 815 char *data) 816 { 817 struct mem_ctl_info *mci = to_mci(dev); 818 int i; 819 char *p = data; 820 821 for (i = 0; i < mci->n_layers; i++) { 822 p += sprintf(p, "%s %d ", 823 edac_layer_name[mci->layers[i].type], 824 mci->layers[i].size - 1); 825 } 826 827 return p - data; 828 } 829 830 /* default Control file */ 831 static DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store); 832 833 /* default Attribute files */ 834 static DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL); 835 static DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL); 836 static DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL); 837 static DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL); 838 static DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL); 839 static DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL); 840 static DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL); 841 static DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL); 842 843 /* memory scrubber attribute file */ 844 static DEVICE_ATTR(sdram_scrub_rate, 0, mci_sdram_scrub_rate_show, 845 mci_sdram_scrub_rate_store); /* umode set later in is_visible */ 846 847 static struct attribute *mci_attrs[] = { 848 &dev_attr_reset_counters.attr, 849 &dev_attr_mc_name.attr, 850 &dev_attr_size_mb.attr, 851 &dev_attr_seconds_since_reset.attr, 852 &dev_attr_ue_noinfo_count.attr, 853 &dev_attr_ce_noinfo_count.attr, 854 &dev_attr_ue_count.attr, 855 &dev_attr_ce_count.attr, 856 &dev_attr_max_location.attr, 857 &dev_attr_sdram_scrub_rate.attr, 858 NULL 859 }; 860 861 static umode_t mci_attr_is_visible(struct kobject *kobj, 862 struct attribute *attr, int idx) 863 { 864 struct device *dev = kobj_to_dev(kobj); 865 struct mem_ctl_info *mci = to_mci(dev); 866 umode_t mode = 0; 867 868 if (attr != &dev_attr_sdram_scrub_rate.attr) 869 return attr->mode; 870 if (mci->get_sdram_scrub_rate) 871 mode |= S_IRUGO; 872 if (mci->set_sdram_scrub_rate) 873 mode |= S_IWUSR; 874 return mode; 875 } 876 877 static const struct attribute_group mci_attr_grp = { 878 .attrs = mci_attrs, 879 .is_visible = mci_attr_is_visible, 880 }; 881 882 static const struct attribute_group *mci_attr_groups[] = { 883 &mci_attr_grp, 884 NULL 885 }; 886 887 static void mci_attr_release(struct device *dev) 888 { 889 /* release device with _edac_mc_free() */ 890 } 891 892 static const struct device_type mci_attr_type = { 893 .groups = mci_attr_groups, 894 .release = mci_attr_release, 895 }; 896 897 /* 898 * Create a new Memory Controller kobject instance, 899 * mc<id> under the 'mc' directory 900 * 901 * Return: 902 * 0 Success 903 * !0 Failure 904 */ 905 int edac_create_sysfs_mci_device(struct mem_ctl_info *mci, 906 const struct attribute_group **groups) 907 { 908 struct dimm_info *dimm; 909 int err; 910 911 /* get the /sys/devices/system/edac subsys reference */ 912 mci->dev.type = &mci_attr_type; 913 device_initialize(&mci->dev); 914 915 mci->dev.parent = mci_pdev; 916 mci->dev.groups = groups; 917 dev_set_name(&mci->dev, "mc%d", mci->mc_idx); 918 dev_set_drvdata(&mci->dev, mci); 919 pm_runtime_forbid(&mci->dev); 920 921 err = device_add(&mci->dev); 922 if (err < 0) { 923 edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev)); 924 put_device(&mci->dev); 925 return err; 926 } 927 928 edac_dbg(0, "device %s created\n", dev_name(&mci->dev)); 929 930 /* 931 * Create the dimm/rank devices 932 */ 933 mci_for_each_dimm(mci, dimm) { 934 /* Only expose populated DIMMs */ 935 if (!dimm->nr_pages) 936 continue; 937 938 err = edac_create_dimm_object(mci, dimm); 939 if (err) 940 goto fail_unregister_dimm; 941 } 942 943 #ifdef CONFIG_EDAC_LEGACY_SYSFS 944 err = edac_create_csrow_objects(mci); 945 if (err < 0) 946 goto fail_unregister_dimm; 947 #endif 948 949 edac_create_debugfs_nodes(mci); 950 return 0; 951 952 fail_unregister_dimm: 953 mci_for_each_dimm(mci, dimm) { 954 if (device_is_registered(&dimm->dev)) 955 device_unregister(&dimm->dev); 956 } 957 device_unregister(&mci->dev); 958 959 return err; 960 } 961 962 /* 963 * remove a Memory Controller instance 964 */ 965 void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci) 966 { 967 struct dimm_info *dimm; 968 969 edac_dbg(0, "\n"); 970 971 #ifdef CONFIG_EDAC_DEBUG 972 edac_debugfs_remove_recursive(mci->debugfs); 973 #endif 974 #ifdef CONFIG_EDAC_LEGACY_SYSFS 975 edac_delete_csrow_objects(mci); 976 #endif 977 978 mci_for_each_dimm(mci, dimm) { 979 if (dimm->nr_pages == 0) 980 continue; 981 edac_dbg(1, "unregistering device %s\n", dev_name(&dimm->dev)); 982 device_unregister(&dimm->dev); 983 } 984 } 985 986 void edac_unregister_sysfs(struct mem_ctl_info *mci) 987 { 988 edac_dbg(1, "unregistering device %s\n", dev_name(&mci->dev)); 989 device_unregister(&mci->dev); 990 } 991 992 static void mc_attr_release(struct device *dev) 993 { 994 /* 995 * There's no container structure here, as this is just the mci 996 * parent device, used to create the /sys/devices/mc sysfs node. 997 * So, there are no attributes on it. 998 */ 999 edac_dbg(1, "device %s released\n", dev_name(dev)); 1000 kfree(dev); 1001 } 1002 1003 static const struct device_type mc_attr_type = { 1004 .release = mc_attr_release, 1005 }; 1006 /* 1007 * Init/exit code for the module. Basically, creates/removes /sys/class/rc 1008 */ 1009 int __init edac_mc_sysfs_init(void) 1010 { 1011 int err; 1012 1013 mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL); 1014 if (!mci_pdev) 1015 return -ENOMEM; 1016 1017 mci_pdev->bus = edac_get_sysfs_subsys(); 1018 mci_pdev->type = &mc_attr_type; 1019 device_initialize(mci_pdev); 1020 dev_set_name(mci_pdev, "mc"); 1021 1022 err = device_add(mci_pdev); 1023 if (err < 0) { 1024 edac_dbg(1, "failure: create device %s\n", dev_name(mci_pdev)); 1025 put_device(mci_pdev); 1026 return err; 1027 } 1028 1029 edac_dbg(0, "device %s created\n", dev_name(mci_pdev)); 1030 1031 return 0; 1032 } 1033 1034 void edac_mc_sysfs_exit(void) 1035 { 1036 device_unregister(mci_pdev); 1037 } 1038