1 /* 2 * edac_mc kernel module 3 * (C) 2005-2007 Linux Networx (http://lnxi.com) 4 * 5 * This file may be distributed under the terms of the 6 * GNU General Public License. 7 * 8 * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com 9 * 10 * (c) 2012-2013 - Mauro Carvalho Chehab 11 * The entire API were re-written, and ported to use struct device 12 * 13 */ 14 15 #include <linux/ctype.h> 16 #include <linux/slab.h> 17 #include <linux/edac.h> 18 #include <linux/bug.h> 19 #include <linux/pm_runtime.h> 20 #include <linux/uaccess.h> 21 22 #include "edac_mc.h" 23 #include "edac_module.h" 24 25 /* MC EDAC Controls, setable by module parameter, and sysfs */ 26 static int edac_mc_log_ue = 1; 27 static int edac_mc_log_ce = 1; 28 static int edac_mc_panic_on_ue; 29 static unsigned int edac_mc_poll_msec = 1000; 30 31 /* Getter functions for above */ 32 int edac_mc_get_log_ue(void) 33 { 34 return edac_mc_log_ue; 35 } 36 37 int edac_mc_get_log_ce(void) 38 { 39 return edac_mc_log_ce; 40 } 41 42 int edac_mc_get_panic_on_ue(void) 43 { 44 return edac_mc_panic_on_ue; 45 } 46 47 /* this is temporary */ 48 unsigned int edac_mc_get_poll_msec(void) 49 { 50 return edac_mc_poll_msec; 51 } 52 53 static int edac_set_poll_msec(const char *val, const struct kernel_param *kp) 54 { 55 unsigned int i; 56 int ret; 57 58 if (!val) 59 return -EINVAL; 60 61 ret = kstrtouint(val, 0, &i); 62 if (ret) 63 return ret; 64 65 if (i < 1000) 66 return -EINVAL; 67 68 *((unsigned int *)kp->arg) = i; 69 70 /* notify edac_mc engine to reset the poll period */ 71 edac_mc_reset_delay_period(i); 72 73 return 0; 74 } 75 76 /* Parameter declarations for above */ 77 module_param(edac_mc_panic_on_ue, int, 0644); 78 MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on"); 79 module_param(edac_mc_log_ue, int, 0644); 80 MODULE_PARM_DESC(edac_mc_log_ue, 81 "Log uncorrectable error to console: 0=off 1=on"); 82 module_param(edac_mc_log_ce, int, 0644); 83 MODULE_PARM_DESC(edac_mc_log_ce, 84 "Log correctable error to console: 0=off 1=on"); 85 module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_uint, 86 &edac_mc_poll_msec, 0644); 87 MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds"); 88 89 static struct device *mci_pdev; 90 91 /* 92 * various constants for Memory Controllers 93 */ 94 static const char * const dev_types[] = { 95 [DEV_UNKNOWN] = "Unknown", 96 [DEV_X1] = "x1", 97 [DEV_X2] = "x2", 98 [DEV_X4] = "x4", 99 [DEV_X8] = "x8", 100 [DEV_X16] = "x16", 101 [DEV_X32] = "x32", 102 [DEV_X64] = "x64" 103 }; 104 105 static const char * const edac_caps[] = { 106 [EDAC_UNKNOWN] = "Unknown", 107 [EDAC_NONE] = "None", 108 [EDAC_RESERVED] = "Reserved", 109 [EDAC_PARITY] = "PARITY", 110 [EDAC_EC] = "EC", 111 [EDAC_SECDED] = "SECDED", 112 [EDAC_S2ECD2ED] = "S2ECD2ED", 113 [EDAC_S4ECD4ED] = "S4ECD4ED", 114 [EDAC_S8ECD8ED] = "S8ECD8ED", 115 [EDAC_S16ECD16ED] = "S16ECD16ED" 116 }; 117 118 #ifdef CONFIG_EDAC_LEGACY_SYSFS 119 /* 120 * EDAC sysfs CSROW data structures and methods 121 */ 122 123 #define to_csrow(k) container_of(k, struct csrow_info, dev) 124 125 /* 126 * We need it to avoid namespace conflicts between the legacy API 127 * and the per-dimm/per-rank one 128 */ 129 #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \ 130 static struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store) 131 132 struct dev_ch_attribute { 133 struct device_attribute attr; 134 unsigned int channel; 135 }; 136 137 #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \ 138 static struct dev_ch_attribute dev_attr_legacy_##_name = \ 139 { __ATTR(_name, _mode, _show, _store), (_var) } 140 141 #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel) 142 143 /* Set of more default csrow<id> attribute show/store functions */ 144 static ssize_t csrow_ue_count_show(struct device *dev, 145 struct device_attribute *mattr, char *data) 146 { 147 struct csrow_info *csrow = to_csrow(dev); 148 149 return sprintf(data, "%u\n", csrow->ue_count); 150 } 151 152 static ssize_t csrow_ce_count_show(struct device *dev, 153 struct device_attribute *mattr, char *data) 154 { 155 struct csrow_info *csrow = to_csrow(dev); 156 157 return sprintf(data, "%u\n", csrow->ce_count); 158 } 159 160 static ssize_t csrow_size_show(struct device *dev, 161 struct device_attribute *mattr, char *data) 162 { 163 struct csrow_info *csrow = to_csrow(dev); 164 int i; 165 u32 nr_pages = 0; 166 167 for (i = 0; i < csrow->nr_channels; i++) 168 nr_pages += csrow->channels[i]->dimm->nr_pages; 169 return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages)); 170 } 171 172 static ssize_t csrow_mem_type_show(struct device *dev, 173 struct device_attribute *mattr, char *data) 174 { 175 struct csrow_info *csrow = to_csrow(dev); 176 177 return sprintf(data, "%s\n", edac_mem_types[csrow->channels[0]->dimm->mtype]); 178 } 179 180 static ssize_t csrow_dev_type_show(struct device *dev, 181 struct device_attribute *mattr, char *data) 182 { 183 struct csrow_info *csrow = to_csrow(dev); 184 185 return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]); 186 } 187 188 static ssize_t csrow_edac_mode_show(struct device *dev, 189 struct device_attribute *mattr, 190 char *data) 191 { 192 struct csrow_info *csrow = to_csrow(dev); 193 194 return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]); 195 } 196 197 /* show/store functions for DIMM Label attributes */ 198 static ssize_t channel_dimm_label_show(struct device *dev, 199 struct device_attribute *mattr, 200 char *data) 201 { 202 struct csrow_info *csrow = to_csrow(dev); 203 unsigned int chan = to_channel(mattr); 204 struct rank_info *rank = csrow->channels[chan]; 205 206 /* if field has not been initialized, there is nothing to send */ 207 if (!rank->dimm->label[0]) 208 return 0; 209 210 return snprintf(data, sizeof(rank->dimm->label) + 1, "%s\n", 211 rank->dimm->label); 212 } 213 214 static ssize_t channel_dimm_label_store(struct device *dev, 215 struct device_attribute *mattr, 216 const char *data, size_t count) 217 { 218 struct csrow_info *csrow = to_csrow(dev); 219 unsigned int chan = to_channel(mattr); 220 struct rank_info *rank = csrow->channels[chan]; 221 size_t copy_count = count; 222 223 if (count == 0) 224 return -EINVAL; 225 226 if (data[count - 1] == '\0' || data[count - 1] == '\n') 227 copy_count -= 1; 228 229 if (copy_count == 0 || copy_count >= sizeof(rank->dimm->label)) 230 return -EINVAL; 231 232 strncpy(rank->dimm->label, data, copy_count); 233 rank->dimm->label[copy_count] = '\0'; 234 235 return count; 236 } 237 238 /* show function for dynamic chX_ce_count attribute */ 239 static ssize_t channel_ce_count_show(struct device *dev, 240 struct device_attribute *mattr, char *data) 241 { 242 struct csrow_info *csrow = to_csrow(dev); 243 unsigned int chan = to_channel(mattr); 244 struct rank_info *rank = csrow->channels[chan]; 245 246 return sprintf(data, "%u\n", rank->ce_count); 247 } 248 249 /* cwrow<id>/attribute files */ 250 DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL); 251 DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL); 252 DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL); 253 DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL); 254 DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL); 255 DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL); 256 257 /* default attributes of the CSROW<id> object */ 258 static struct attribute *csrow_attrs[] = { 259 &dev_attr_legacy_dev_type.attr, 260 &dev_attr_legacy_mem_type.attr, 261 &dev_attr_legacy_edac_mode.attr, 262 &dev_attr_legacy_size_mb.attr, 263 &dev_attr_legacy_ue_count.attr, 264 &dev_attr_legacy_ce_count.attr, 265 NULL, 266 }; 267 268 static const struct attribute_group csrow_attr_grp = { 269 .attrs = csrow_attrs, 270 }; 271 272 static const struct attribute_group *csrow_attr_groups[] = { 273 &csrow_attr_grp, 274 NULL 275 }; 276 277 static void csrow_attr_release(struct device *dev) 278 { 279 struct csrow_info *csrow = container_of(dev, struct csrow_info, dev); 280 281 edac_dbg(1, "device %s released\n", dev_name(dev)); 282 kfree(csrow); 283 } 284 285 static const struct device_type csrow_attr_type = { 286 .groups = csrow_attr_groups, 287 .release = csrow_attr_release, 288 }; 289 290 /* 291 * possible dynamic channel DIMM Label attribute files 292 * 293 */ 294 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR, 295 channel_dimm_label_show, channel_dimm_label_store, 0); 296 DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR, 297 channel_dimm_label_show, channel_dimm_label_store, 1); 298 DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR, 299 channel_dimm_label_show, channel_dimm_label_store, 2); 300 DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR, 301 channel_dimm_label_show, channel_dimm_label_store, 3); 302 DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR, 303 channel_dimm_label_show, channel_dimm_label_store, 4); 304 DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR, 305 channel_dimm_label_show, channel_dimm_label_store, 5); 306 DEVICE_CHANNEL(ch6_dimm_label, S_IRUGO | S_IWUSR, 307 channel_dimm_label_show, channel_dimm_label_store, 6); 308 DEVICE_CHANNEL(ch7_dimm_label, S_IRUGO | S_IWUSR, 309 channel_dimm_label_show, channel_dimm_label_store, 7); 310 311 /* Total possible dynamic DIMM Label attribute file table */ 312 static struct attribute *dynamic_csrow_dimm_attr[] = { 313 &dev_attr_legacy_ch0_dimm_label.attr.attr, 314 &dev_attr_legacy_ch1_dimm_label.attr.attr, 315 &dev_attr_legacy_ch2_dimm_label.attr.attr, 316 &dev_attr_legacy_ch3_dimm_label.attr.attr, 317 &dev_attr_legacy_ch4_dimm_label.attr.attr, 318 &dev_attr_legacy_ch5_dimm_label.attr.attr, 319 &dev_attr_legacy_ch6_dimm_label.attr.attr, 320 &dev_attr_legacy_ch7_dimm_label.attr.attr, 321 NULL 322 }; 323 324 /* possible dynamic channel ce_count attribute files */ 325 DEVICE_CHANNEL(ch0_ce_count, S_IRUGO, 326 channel_ce_count_show, NULL, 0); 327 DEVICE_CHANNEL(ch1_ce_count, S_IRUGO, 328 channel_ce_count_show, NULL, 1); 329 DEVICE_CHANNEL(ch2_ce_count, S_IRUGO, 330 channel_ce_count_show, NULL, 2); 331 DEVICE_CHANNEL(ch3_ce_count, S_IRUGO, 332 channel_ce_count_show, NULL, 3); 333 DEVICE_CHANNEL(ch4_ce_count, S_IRUGO, 334 channel_ce_count_show, NULL, 4); 335 DEVICE_CHANNEL(ch5_ce_count, S_IRUGO, 336 channel_ce_count_show, NULL, 5); 337 DEVICE_CHANNEL(ch6_ce_count, S_IRUGO, 338 channel_ce_count_show, NULL, 6); 339 DEVICE_CHANNEL(ch7_ce_count, S_IRUGO, 340 channel_ce_count_show, NULL, 7); 341 342 /* Total possible dynamic ce_count attribute file table */ 343 static struct attribute *dynamic_csrow_ce_count_attr[] = { 344 &dev_attr_legacy_ch0_ce_count.attr.attr, 345 &dev_attr_legacy_ch1_ce_count.attr.attr, 346 &dev_attr_legacy_ch2_ce_count.attr.attr, 347 &dev_attr_legacy_ch3_ce_count.attr.attr, 348 &dev_attr_legacy_ch4_ce_count.attr.attr, 349 &dev_attr_legacy_ch5_ce_count.attr.attr, 350 &dev_attr_legacy_ch6_ce_count.attr.attr, 351 &dev_attr_legacy_ch7_ce_count.attr.attr, 352 NULL 353 }; 354 355 static umode_t csrow_dev_is_visible(struct kobject *kobj, 356 struct attribute *attr, int idx) 357 { 358 struct device *dev = kobj_to_dev(kobj); 359 struct csrow_info *csrow = container_of(dev, struct csrow_info, dev); 360 361 if (idx >= csrow->nr_channels) 362 return 0; 363 364 if (idx >= ARRAY_SIZE(dynamic_csrow_ce_count_attr) - 1) { 365 WARN_ONCE(1, "idx: %d\n", idx); 366 return 0; 367 } 368 369 /* Only expose populated DIMMs */ 370 if (!csrow->channels[idx]->dimm->nr_pages) 371 return 0; 372 373 return attr->mode; 374 } 375 376 377 static const struct attribute_group csrow_dev_dimm_group = { 378 .attrs = dynamic_csrow_dimm_attr, 379 .is_visible = csrow_dev_is_visible, 380 }; 381 382 static const struct attribute_group csrow_dev_ce_count_group = { 383 .attrs = dynamic_csrow_ce_count_attr, 384 .is_visible = csrow_dev_is_visible, 385 }; 386 387 static const struct attribute_group *csrow_dev_groups[] = { 388 &csrow_dev_dimm_group, 389 &csrow_dev_ce_count_group, 390 NULL 391 }; 392 393 static inline int nr_pages_per_csrow(struct csrow_info *csrow) 394 { 395 int chan, nr_pages = 0; 396 397 for (chan = 0; chan < csrow->nr_channels; chan++) 398 nr_pages += csrow->channels[chan]->dimm->nr_pages; 399 400 return nr_pages; 401 } 402 403 /* Create a CSROW object under specifed edac_mc_device */ 404 static int edac_create_csrow_object(struct mem_ctl_info *mci, 405 struct csrow_info *csrow, int index) 406 { 407 int err; 408 409 csrow->dev.type = &csrow_attr_type; 410 csrow->dev.groups = csrow_dev_groups; 411 device_initialize(&csrow->dev); 412 csrow->dev.parent = &mci->dev; 413 csrow->mci = mci; 414 dev_set_name(&csrow->dev, "csrow%d", index); 415 dev_set_drvdata(&csrow->dev, csrow); 416 417 err = device_add(&csrow->dev); 418 if (err) { 419 edac_dbg(1, "failure: create device %s\n", dev_name(&csrow->dev)); 420 put_device(&csrow->dev); 421 return err; 422 } 423 424 edac_dbg(0, "device %s created\n", dev_name(&csrow->dev)); 425 426 return 0; 427 } 428 429 /* Create a CSROW object under specifed edac_mc_device */ 430 static int edac_create_csrow_objects(struct mem_ctl_info *mci) 431 { 432 int err, i; 433 struct csrow_info *csrow; 434 435 for (i = 0; i < mci->nr_csrows; i++) { 436 csrow = mci->csrows[i]; 437 if (!nr_pages_per_csrow(csrow)) 438 continue; 439 err = edac_create_csrow_object(mci, mci->csrows[i], i); 440 if (err < 0) 441 goto error; 442 } 443 return 0; 444 445 error: 446 for (--i; i >= 0; i--) { 447 csrow = mci->csrows[i]; 448 if (!nr_pages_per_csrow(csrow)) 449 continue; 450 451 device_del(&mci->csrows[i]->dev); 452 } 453 454 return err; 455 } 456 457 static void edac_delete_csrow_objects(struct mem_ctl_info *mci) 458 { 459 int i; 460 struct csrow_info *csrow; 461 462 for (i = mci->nr_csrows - 1; i >= 0; i--) { 463 csrow = mci->csrows[i]; 464 if (!nr_pages_per_csrow(csrow)) 465 continue; 466 device_unregister(&mci->csrows[i]->dev); 467 } 468 } 469 #endif 470 471 /* 472 * Per-dimm (or per-rank) devices 473 */ 474 475 #define to_dimm(k) container_of(k, struct dimm_info, dev) 476 477 /* show/store functions for DIMM Label attributes */ 478 static ssize_t dimmdev_location_show(struct device *dev, 479 struct device_attribute *mattr, char *data) 480 { 481 struct dimm_info *dimm = to_dimm(dev); 482 483 return edac_dimm_info_location(dimm, data, PAGE_SIZE); 484 } 485 486 static ssize_t dimmdev_label_show(struct device *dev, 487 struct device_attribute *mattr, char *data) 488 { 489 struct dimm_info *dimm = to_dimm(dev); 490 491 /* if field has not been initialized, there is nothing to send */ 492 if (!dimm->label[0]) 493 return 0; 494 495 return snprintf(data, sizeof(dimm->label) + 1, "%s\n", dimm->label); 496 } 497 498 static ssize_t dimmdev_label_store(struct device *dev, 499 struct device_attribute *mattr, 500 const char *data, 501 size_t count) 502 { 503 struct dimm_info *dimm = to_dimm(dev); 504 size_t copy_count = count; 505 506 if (count == 0) 507 return -EINVAL; 508 509 if (data[count - 1] == '\0' || data[count - 1] == '\n') 510 copy_count -= 1; 511 512 if (copy_count == 0 || copy_count >= sizeof(dimm->label)) 513 return -EINVAL; 514 515 strncpy(dimm->label, data, copy_count); 516 dimm->label[copy_count] = '\0'; 517 518 return count; 519 } 520 521 static ssize_t dimmdev_size_show(struct device *dev, 522 struct device_attribute *mattr, char *data) 523 { 524 struct dimm_info *dimm = to_dimm(dev); 525 526 return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages)); 527 } 528 529 static ssize_t dimmdev_mem_type_show(struct device *dev, 530 struct device_attribute *mattr, char *data) 531 { 532 struct dimm_info *dimm = to_dimm(dev); 533 534 return sprintf(data, "%s\n", edac_mem_types[dimm->mtype]); 535 } 536 537 static ssize_t dimmdev_dev_type_show(struct device *dev, 538 struct device_attribute *mattr, char *data) 539 { 540 struct dimm_info *dimm = to_dimm(dev); 541 542 return sprintf(data, "%s\n", dev_types[dimm->dtype]); 543 } 544 545 static ssize_t dimmdev_edac_mode_show(struct device *dev, 546 struct device_attribute *mattr, 547 char *data) 548 { 549 struct dimm_info *dimm = to_dimm(dev); 550 551 return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]); 552 } 553 554 static ssize_t dimmdev_ce_count_show(struct device *dev, 555 struct device_attribute *mattr, 556 char *data) 557 { 558 struct dimm_info *dimm = to_dimm(dev); 559 u32 count; 560 int off; 561 562 off = EDAC_DIMM_OFF(dimm->mci->layers, 563 dimm->mci->n_layers, 564 dimm->location[0], 565 dimm->location[1], 566 dimm->location[2]); 567 count = dimm->mci->ce_per_layer[dimm->mci->n_layers-1][off]; 568 return sprintf(data, "%u\n", count); 569 } 570 571 static ssize_t dimmdev_ue_count_show(struct device *dev, 572 struct device_attribute *mattr, 573 char *data) 574 { 575 struct dimm_info *dimm = to_dimm(dev); 576 u32 count; 577 int off; 578 579 off = EDAC_DIMM_OFF(dimm->mci->layers, 580 dimm->mci->n_layers, 581 dimm->location[0], 582 dimm->location[1], 583 dimm->location[2]); 584 count = dimm->mci->ue_per_layer[dimm->mci->n_layers-1][off]; 585 return sprintf(data, "%u\n", count); 586 } 587 588 /* dimm/rank attribute files */ 589 static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR, 590 dimmdev_label_show, dimmdev_label_store); 591 static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL); 592 static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL); 593 static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL); 594 static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL); 595 static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL); 596 static DEVICE_ATTR(dimm_ce_count, S_IRUGO, dimmdev_ce_count_show, NULL); 597 static DEVICE_ATTR(dimm_ue_count, S_IRUGO, dimmdev_ue_count_show, NULL); 598 599 /* attributes of the dimm<id>/rank<id> object */ 600 static struct attribute *dimm_attrs[] = { 601 &dev_attr_dimm_label.attr, 602 &dev_attr_dimm_location.attr, 603 &dev_attr_size.attr, 604 &dev_attr_dimm_mem_type.attr, 605 &dev_attr_dimm_dev_type.attr, 606 &dev_attr_dimm_edac_mode.attr, 607 &dev_attr_dimm_ce_count.attr, 608 &dev_attr_dimm_ue_count.attr, 609 NULL, 610 }; 611 612 static const struct attribute_group dimm_attr_grp = { 613 .attrs = dimm_attrs, 614 }; 615 616 static const struct attribute_group *dimm_attr_groups[] = { 617 &dimm_attr_grp, 618 NULL 619 }; 620 621 static void dimm_attr_release(struct device *dev) 622 { 623 struct dimm_info *dimm = container_of(dev, struct dimm_info, dev); 624 625 edac_dbg(1, "device %s released\n", dev_name(dev)); 626 kfree(dimm); 627 } 628 629 static const struct device_type dimm_attr_type = { 630 .groups = dimm_attr_groups, 631 .release = dimm_attr_release, 632 }; 633 634 /* Create a DIMM object under specifed memory controller device */ 635 static int edac_create_dimm_object(struct mem_ctl_info *mci, 636 struct dimm_info *dimm, 637 int index) 638 { 639 int err; 640 dimm->mci = mci; 641 642 dimm->dev.type = &dimm_attr_type; 643 device_initialize(&dimm->dev); 644 645 dimm->dev.parent = &mci->dev; 646 if (mci->csbased) 647 dev_set_name(&dimm->dev, "rank%d", index); 648 else 649 dev_set_name(&dimm->dev, "dimm%d", index); 650 dev_set_drvdata(&dimm->dev, dimm); 651 pm_runtime_forbid(&mci->dev); 652 653 err = device_add(&dimm->dev); 654 if (err) { 655 edac_dbg(1, "failure: create device %s\n", dev_name(&dimm->dev)); 656 put_device(&dimm->dev); 657 return err; 658 } 659 660 if (IS_ENABLED(CONFIG_EDAC_DEBUG)) { 661 char location[80]; 662 663 edac_dimm_info_location(dimm, location, sizeof(location)); 664 edac_dbg(0, "device %s created at location %s\n", 665 dev_name(&dimm->dev), location); 666 } 667 668 return 0; 669 } 670 671 /* 672 * Memory controller device 673 */ 674 675 #define to_mci(k) container_of(k, struct mem_ctl_info, dev) 676 677 static ssize_t mci_reset_counters_store(struct device *dev, 678 struct device_attribute *mattr, 679 const char *data, size_t count) 680 { 681 struct mem_ctl_info *mci = to_mci(dev); 682 int cnt, row, chan, i; 683 mci->ue_mc = 0; 684 mci->ce_mc = 0; 685 mci->ue_noinfo_count = 0; 686 mci->ce_noinfo_count = 0; 687 688 for (row = 0; row < mci->nr_csrows; row++) { 689 struct csrow_info *ri = mci->csrows[row]; 690 691 ri->ue_count = 0; 692 ri->ce_count = 0; 693 694 for (chan = 0; chan < ri->nr_channels; chan++) 695 ri->channels[chan]->ce_count = 0; 696 } 697 698 cnt = 1; 699 for (i = 0; i < mci->n_layers; i++) { 700 cnt *= mci->layers[i].size; 701 memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32)); 702 memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32)); 703 } 704 705 mci->start_time = jiffies; 706 return count; 707 } 708 709 /* Memory scrubbing interface: 710 * 711 * A MC driver can limit the scrubbing bandwidth based on the CPU type. 712 * Therefore, ->set_sdram_scrub_rate should be made to return the actual 713 * bandwidth that is accepted or 0 when scrubbing is to be disabled. 714 * 715 * Negative value still means that an error has occurred while setting 716 * the scrub rate. 717 */ 718 static ssize_t mci_sdram_scrub_rate_store(struct device *dev, 719 struct device_attribute *mattr, 720 const char *data, size_t count) 721 { 722 struct mem_ctl_info *mci = to_mci(dev); 723 unsigned long bandwidth = 0; 724 int new_bw = 0; 725 726 if (kstrtoul(data, 10, &bandwidth) < 0) 727 return -EINVAL; 728 729 new_bw = mci->set_sdram_scrub_rate(mci, bandwidth); 730 if (new_bw < 0) { 731 edac_printk(KERN_WARNING, EDAC_MC, 732 "Error setting scrub rate to: %lu\n", bandwidth); 733 return -EINVAL; 734 } 735 736 return count; 737 } 738 739 /* 740 * ->get_sdram_scrub_rate() return value semantics same as above. 741 */ 742 static ssize_t mci_sdram_scrub_rate_show(struct device *dev, 743 struct device_attribute *mattr, 744 char *data) 745 { 746 struct mem_ctl_info *mci = to_mci(dev); 747 int bandwidth = 0; 748 749 bandwidth = mci->get_sdram_scrub_rate(mci); 750 if (bandwidth < 0) { 751 edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n"); 752 return bandwidth; 753 } 754 755 return sprintf(data, "%d\n", bandwidth); 756 } 757 758 /* default attribute files for the MCI object */ 759 static ssize_t mci_ue_count_show(struct device *dev, 760 struct device_attribute *mattr, 761 char *data) 762 { 763 struct mem_ctl_info *mci = to_mci(dev); 764 765 return sprintf(data, "%d\n", mci->ue_mc); 766 } 767 768 static ssize_t mci_ce_count_show(struct device *dev, 769 struct device_attribute *mattr, 770 char *data) 771 { 772 struct mem_ctl_info *mci = to_mci(dev); 773 774 return sprintf(data, "%d\n", mci->ce_mc); 775 } 776 777 static ssize_t mci_ce_noinfo_show(struct device *dev, 778 struct device_attribute *mattr, 779 char *data) 780 { 781 struct mem_ctl_info *mci = to_mci(dev); 782 783 return sprintf(data, "%d\n", mci->ce_noinfo_count); 784 } 785 786 static ssize_t mci_ue_noinfo_show(struct device *dev, 787 struct device_attribute *mattr, 788 char *data) 789 { 790 struct mem_ctl_info *mci = to_mci(dev); 791 792 return sprintf(data, "%d\n", mci->ue_noinfo_count); 793 } 794 795 static ssize_t mci_seconds_show(struct device *dev, 796 struct device_attribute *mattr, 797 char *data) 798 { 799 struct mem_ctl_info *mci = to_mci(dev); 800 801 return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ); 802 } 803 804 static ssize_t mci_ctl_name_show(struct device *dev, 805 struct device_attribute *mattr, 806 char *data) 807 { 808 struct mem_ctl_info *mci = to_mci(dev); 809 810 return sprintf(data, "%s\n", mci->ctl_name); 811 } 812 813 static ssize_t mci_size_mb_show(struct device *dev, 814 struct device_attribute *mattr, 815 char *data) 816 { 817 struct mem_ctl_info *mci = to_mci(dev); 818 int total_pages = 0, csrow_idx, j; 819 820 for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) { 821 struct csrow_info *csrow = mci->csrows[csrow_idx]; 822 823 for (j = 0; j < csrow->nr_channels; j++) { 824 struct dimm_info *dimm = csrow->channels[j]->dimm; 825 826 total_pages += dimm->nr_pages; 827 } 828 } 829 830 return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages)); 831 } 832 833 static ssize_t mci_max_location_show(struct device *dev, 834 struct device_attribute *mattr, 835 char *data) 836 { 837 struct mem_ctl_info *mci = to_mci(dev); 838 int i; 839 char *p = data; 840 841 for (i = 0; i < mci->n_layers; i++) { 842 p += sprintf(p, "%s %d ", 843 edac_layer_name[mci->layers[i].type], 844 mci->layers[i].size - 1); 845 } 846 847 return p - data; 848 } 849 850 /* default Control file */ 851 static DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store); 852 853 /* default Attribute files */ 854 static DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL); 855 static DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL); 856 static DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL); 857 static DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL); 858 static DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL); 859 static DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL); 860 static DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL); 861 static DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL); 862 863 /* memory scrubber attribute file */ 864 static DEVICE_ATTR(sdram_scrub_rate, 0, mci_sdram_scrub_rate_show, 865 mci_sdram_scrub_rate_store); /* umode set later in is_visible */ 866 867 static struct attribute *mci_attrs[] = { 868 &dev_attr_reset_counters.attr, 869 &dev_attr_mc_name.attr, 870 &dev_attr_size_mb.attr, 871 &dev_attr_seconds_since_reset.attr, 872 &dev_attr_ue_noinfo_count.attr, 873 &dev_attr_ce_noinfo_count.attr, 874 &dev_attr_ue_count.attr, 875 &dev_attr_ce_count.attr, 876 &dev_attr_max_location.attr, 877 &dev_attr_sdram_scrub_rate.attr, 878 NULL 879 }; 880 881 static umode_t mci_attr_is_visible(struct kobject *kobj, 882 struct attribute *attr, int idx) 883 { 884 struct device *dev = kobj_to_dev(kobj); 885 struct mem_ctl_info *mci = to_mci(dev); 886 umode_t mode = 0; 887 888 if (attr != &dev_attr_sdram_scrub_rate.attr) 889 return attr->mode; 890 if (mci->get_sdram_scrub_rate) 891 mode |= S_IRUGO; 892 if (mci->set_sdram_scrub_rate) 893 mode |= S_IWUSR; 894 return mode; 895 } 896 897 static const struct attribute_group mci_attr_grp = { 898 .attrs = mci_attrs, 899 .is_visible = mci_attr_is_visible, 900 }; 901 902 static const struct attribute_group *mci_attr_groups[] = { 903 &mci_attr_grp, 904 NULL 905 }; 906 907 static void mci_attr_release(struct device *dev) 908 { 909 struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev); 910 911 edac_dbg(1, "device %s released\n", dev_name(dev)); 912 kfree(mci); 913 } 914 915 static const struct device_type mci_attr_type = { 916 .groups = mci_attr_groups, 917 .release = mci_attr_release, 918 }; 919 920 /* 921 * Create a new Memory Controller kobject instance, 922 * mc<id> under the 'mc' directory 923 * 924 * Return: 925 * 0 Success 926 * !0 Failure 927 */ 928 int edac_create_sysfs_mci_device(struct mem_ctl_info *mci, 929 const struct attribute_group **groups) 930 { 931 int i, err; 932 933 /* get the /sys/devices/system/edac subsys reference */ 934 mci->dev.type = &mci_attr_type; 935 device_initialize(&mci->dev); 936 937 mci->dev.parent = mci_pdev; 938 mci->dev.groups = groups; 939 dev_set_name(&mci->dev, "mc%d", mci->mc_idx); 940 dev_set_drvdata(&mci->dev, mci); 941 pm_runtime_forbid(&mci->dev); 942 943 err = device_add(&mci->dev); 944 if (err < 0) { 945 edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev)); 946 put_device(&mci->dev); 947 return err; 948 } 949 950 edac_dbg(0, "device %s created\n", dev_name(&mci->dev)); 951 952 /* 953 * Create the dimm/rank devices 954 */ 955 for (i = 0; i < mci->tot_dimms; i++) { 956 struct dimm_info *dimm = mci->dimms[i]; 957 /* Only expose populated DIMMs */ 958 if (!dimm->nr_pages) 959 continue; 960 961 err = edac_create_dimm_object(mci, dimm, i); 962 if (err) 963 goto fail_unregister_dimm; 964 } 965 966 #ifdef CONFIG_EDAC_LEGACY_SYSFS 967 err = edac_create_csrow_objects(mci); 968 if (err < 0) 969 goto fail_unregister_dimm; 970 #endif 971 972 edac_create_debugfs_nodes(mci); 973 return 0; 974 975 fail_unregister_dimm: 976 for (i--; i >= 0; i--) { 977 struct dimm_info *dimm = mci->dimms[i]; 978 if (!dimm->nr_pages) 979 continue; 980 981 device_unregister(&dimm->dev); 982 } 983 device_unregister(&mci->dev); 984 985 return err; 986 } 987 988 /* 989 * remove a Memory Controller instance 990 */ 991 void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci) 992 { 993 int i; 994 995 edac_dbg(0, "\n"); 996 997 #ifdef CONFIG_EDAC_DEBUG 998 edac_debugfs_remove_recursive(mci->debugfs); 999 #endif 1000 #ifdef CONFIG_EDAC_LEGACY_SYSFS 1001 edac_delete_csrow_objects(mci); 1002 #endif 1003 1004 for (i = 0; i < mci->tot_dimms; i++) { 1005 struct dimm_info *dimm = mci->dimms[i]; 1006 if (dimm->nr_pages == 0) 1007 continue; 1008 edac_dbg(1, "unregistering device %s\n", dev_name(&dimm->dev)); 1009 device_unregister(&dimm->dev); 1010 } 1011 } 1012 1013 void edac_unregister_sysfs(struct mem_ctl_info *mci) 1014 { 1015 edac_dbg(1, "unregistering device %s\n", dev_name(&mci->dev)); 1016 device_unregister(&mci->dev); 1017 } 1018 1019 static void mc_attr_release(struct device *dev) 1020 { 1021 /* 1022 * There's no container structure here, as this is just the mci 1023 * parent device, used to create the /sys/devices/mc sysfs node. 1024 * So, there are no attributes on it. 1025 */ 1026 edac_dbg(1, "device %s released\n", dev_name(dev)); 1027 kfree(dev); 1028 } 1029 1030 static const struct device_type mc_attr_type = { 1031 .release = mc_attr_release, 1032 }; 1033 /* 1034 * Init/exit code for the module. Basically, creates/removes /sys/class/rc 1035 */ 1036 int __init edac_mc_sysfs_init(void) 1037 { 1038 int err; 1039 1040 mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL); 1041 if (!mci_pdev) 1042 return -ENOMEM; 1043 1044 mci_pdev->bus = edac_get_sysfs_subsys(); 1045 mci_pdev->type = &mc_attr_type; 1046 device_initialize(mci_pdev); 1047 dev_set_name(mci_pdev, "mc"); 1048 1049 err = device_add(mci_pdev); 1050 if (err < 0) { 1051 edac_dbg(1, "failure: create device %s\n", dev_name(mci_pdev)); 1052 put_device(mci_pdev); 1053 return err; 1054 } 1055 1056 edac_dbg(0, "device %s created\n", dev_name(mci_pdev)); 1057 1058 return 0; 1059 } 1060 1061 void edac_mc_sysfs_exit(void) 1062 { 1063 device_unregister(mci_pdev); 1064 } 1065