xref: /openbmc/linux/drivers/edac/edac_mc_sysfs.c (revision 56439ab0)
1 /*
2  * edac_mc kernel module
3  * (C) 2005-2007 Linux Networx (http://lnxi.com)
4  *
5  * This file may be distributed under the terms of the
6  * GNU General Public License.
7  *
8  * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com
9  *
10  * (c) 2012-2013 - Mauro Carvalho Chehab
11  *	The entire API were re-written, and ported to use struct device
12  *
13  */
14 
15 #include <linux/ctype.h>
16 #include <linux/slab.h>
17 #include <linux/edac.h>
18 #include <linux/bug.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/uaccess.h>
21 
22 #include "edac_core.h"
23 #include "edac_module.h"
24 
25 /* MC EDAC Controls, setable by module parameter, and sysfs */
26 static int edac_mc_log_ue = 1;
27 static int edac_mc_log_ce = 1;
28 static int edac_mc_panic_on_ue;
29 static int edac_mc_poll_msec = 1000;
30 
31 /* Getter functions for above */
32 int edac_mc_get_log_ue(void)
33 {
34 	return edac_mc_log_ue;
35 }
36 
37 int edac_mc_get_log_ce(void)
38 {
39 	return edac_mc_log_ce;
40 }
41 
42 int edac_mc_get_panic_on_ue(void)
43 {
44 	return edac_mc_panic_on_ue;
45 }
46 
47 /* this is temporary */
48 int edac_mc_get_poll_msec(void)
49 {
50 	return edac_mc_poll_msec;
51 }
52 
53 static int edac_set_poll_msec(const char *val, struct kernel_param *kp)
54 {
55 	unsigned long l;
56 	int ret;
57 
58 	if (!val)
59 		return -EINVAL;
60 
61 	ret = kstrtoul(val, 0, &l);
62 	if (ret)
63 		return ret;
64 
65 	if (l < 1000)
66 		return -EINVAL;
67 
68 	*((unsigned long *)kp->arg) = l;
69 
70 	/* notify edac_mc engine to reset the poll period */
71 	edac_mc_reset_delay_period(l);
72 
73 	return 0;
74 }
75 
76 /* Parameter declarations for above */
77 module_param(edac_mc_panic_on_ue, int, 0644);
78 MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
79 module_param(edac_mc_log_ue, int, 0644);
80 MODULE_PARM_DESC(edac_mc_log_ue,
81 		 "Log uncorrectable error to console: 0=off 1=on");
82 module_param(edac_mc_log_ce, int, 0644);
83 MODULE_PARM_DESC(edac_mc_log_ce,
84 		 "Log correctable error to console: 0=off 1=on");
85 module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_int,
86 		  &edac_mc_poll_msec, 0644);
87 MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds");
88 
89 static struct device *mci_pdev;
90 
91 /*
92  * various constants for Memory Controllers
93  */
94 static const char * const mem_types[] = {
95 	[MEM_EMPTY] = "Empty",
96 	[MEM_RESERVED] = "Reserved",
97 	[MEM_UNKNOWN] = "Unknown",
98 	[MEM_FPM] = "FPM",
99 	[MEM_EDO] = "EDO",
100 	[MEM_BEDO] = "BEDO",
101 	[MEM_SDR] = "Unbuffered-SDR",
102 	[MEM_RDR] = "Registered-SDR",
103 	[MEM_DDR] = "Unbuffered-DDR",
104 	[MEM_RDDR] = "Registered-DDR",
105 	[MEM_RMBS] = "RMBS",
106 	[MEM_DDR2] = "Unbuffered-DDR2",
107 	[MEM_FB_DDR2] = "FullyBuffered-DDR2",
108 	[MEM_RDDR2] = "Registered-DDR2",
109 	[MEM_XDR] = "XDR",
110 	[MEM_DDR3] = "Unbuffered-DDR3",
111 	[MEM_RDDR3] = "Registered-DDR3",
112 	[MEM_DDR4] = "Unbuffered-DDR4",
113 	[MEM_RDDR4] = "Registered-DDR4"
114 };
115 
116 static const char * const dev_types[] = {
117 	[DEV_UNKNOWN] = "Unknown",
118 	[DEV_X1] = "x1",
119 	[DEV_X2] = "x2",
120 	[DEV_X4] = "x4",
121 	[DEV_X8] = "x8",
122 	[DEV_X16] = "x16",
123 	[DEV_X32] = "x32",
124 	[DEV_X64] = "x64"
125 };
126 
127 static const char * const edac_caps[] = {
128 	[EDAC_UNKNOWN] = "Unknown",
129 	[EDAC_NONE] = "None",
130 	[EDAC_RESERVED] = "Reserved",
131 	[EDAC_PARITY] = "PARITY",
132 	[EDAC_EC] = "EC",
133 	[EDAC_SECDED] = "SECDED",
134 	[EDAC_S2ECD2ED] = "S2ECD2ED",
135 	[EDAC_S4ECD4ED] = "S4ECD4ED",
136 	[EDAC_S8ECD8ED] = "S8ECD8ED",
137 	[EDAC_S16ECD16ED] = "S16ECD16ED"
138 };
139 
140 #ifdef CONFIG_EDAC_LEGACY_SYSFS
141 /*
142  * EDAC sysfs CSROW data structures and methods
143  */
144 
145 #define to_csrow(k) container_of(k, struct csrow_info, dev)
146 
147 /*
148  * We need it to avoid namespace conflicts between the legacy API
149  * and the per-dimm/per-rank one
150  */
151 #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \
152 	static struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store)
153 
154 struct dev_ch_attribute {
155 	struct device_attribute attr;
156 	int channel;
157 };
158 
159 #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \
160 	static struct dev_ch_attribute dev_attr_legacy_##_name = \
161 		{ __ATTR(_name, _mode, _show, _store), (_var) }
162 
163 #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel)
164 
165 /* Set of more default csrow<id> attribute show/store functions */
166 static ssize_t csrow_ue_count_show(struct device *dev,
167 				   struct device_attribute *mattr, char *data)
168 {
169 	struct csrow_info *csrow = to_csrow(dev);
170 
171 	return sprintf(data, "%u\n", csrow->ue_count);
172 }
173 
174 static ssize_t csrow_ce_count_show(struct device *dev,
175 				   struct device_attribute *mattr, char *data)
176 {
177 	struct csrow_info *csrow = to_csrow(dev);
178 
179 	return sprintf(data, "%u\n", csrow->ce_count);
180 }
181 
182 static ssize_t csrow_size_show(struct device *dev,
183 			       struct device_attribute *mattr, char *data)
184 {
185 	struct csrow_info *csrow = to_csrow(dev);
186 	int i;
187 	u32 nr_pages = 0;
188 
189 	for (i = 0; i < csrow->nr_channels; i++)
190 		nr_pages += csrow->channels[i]->dimm->nr_pages;
191 	return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages));
192 }
193 
194 static ssize_t csrow_mem_type_show(struct device *dev,
195 				   struct device_attribute *mattr, char *data)
196 {
197 	struct csrow_info *csrow = to_csrow(dev);
198 
199 	return sprintf(data, "%s\n", mem_types[csrow->channels[0]->dimm->mtype]);
200 }
201 
202 static ssize_t csrow_dev_type_show(struct device *dev,
203 				   struct device_attribute *mattr, char *data)
204 {
205 	struct csrow_info *csrow = to_csrow(dev);
206 
207 	return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]);
208 }
209 
210 static ssize_t csrow_edac_mode_show(struct device *dev,
211 				    struct device_attribute *mattr,
212 				    char *data)
213 {
214 	struct csrow_info *csrow = to_csrow(dev);
215 
216 	return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]);
217 }
218 
219 /* show/store functions for DIMM Label attributes */
220 static ssize_t channel_dimm_label_show(struct device *dev,
221 				       struct device_attribute *mattr,
222 				       char *data)
223 {
224 	struct csrow_info *csrow = to_csrow(dev);
225 	unsigned chan = to_channel(mattr);
226 	struct rank_info *rank = csrow->channels[chan];
227 
228 	/* if field has not been initialized, there is nothing to send */
229 	if (!rank->dimm->label[0])
230 		return 0;
231 
232 	return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n",
233 			rank->dimm->label);
234 }
235 
236 static ssize_t channel_dimm_label_store(struct device *dev,
237 					struct device_attribute *mattr,
238 					const char *data, size_t count)
239 {
240 	struct csrow_info *csrow = to_csrow(dev);
241 	unsigned chan = to_channel(mattr);
242 	struct rank_info *rank = csrow->channels[chan];
243 
244 	ssize_t max_size = 0;
245 
246 	max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
247 	strncpy(rank->dimm->label, data, max_size);
248 	rank->dimm->label[max_size] = '\0';
249 
250 	return max_size;
251 }
252 
253 /* show function for dynamic chX_ce_count attribute */
254 static ssize_t channel_ce_count_show(struct device *dev,
255 				     struct device_attribute *mattr, char *data)
256 {
257 	struct csrow_info *csrow = to_csrow(dev);
258 	unsigned chan = to_channel(mattr);
259 	struct rank_info *rank = csrow->channels[chan];
260 
261 	return sprintf(data, "%u\n", rank->ce_count);
262 }
263 
264 /* cwrow<id>/attribute files */
265 DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL);
266 DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL);
267 DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL);
268 DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL);
269 DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL);
270 DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL);
271 
272 /* default attributes of the CSROW<id> object */
273 static struct attribute *csrow_attrs[] = {
274 	&dev_attr_legacy_dev_type.attr,
275 	&dev_attr_legacy_mem_type.attr,
276 	&dev_attr_legacy_edac_mode.attr,
277 	&dev_attr_legacy_size_mb.attr,
278 	&dev_attr_legacy_ue_count.attr,
279 	&dev_attr_legacy_ce_count.attr,
280 	NULL,
281 };
282 
283 static struct attribute_group csrow_attr_grp = {
284 	.attrs	= csrow_attrs,
285 };
286 
287 static const struct attribute_group *csrow_attr_groups[] = {
288 	&csrow_attr_grp,
289 	NULL
290 };
291 
292 static void csrow_attr_release(struct device *dev)
293 {
294 	struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
295 
296 	edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
297 	kfree(csrow);
298 }
299 
300 static struct device_type csrow_attr_type = {
301 	.groups		= csrow_attr_groups,
302 	.release	= csrow_attr_release,
303 };
304 
305 /*
306  * possible dynamic channel DIMM Label attribute files
307  *
308  */
309 
310 #define EDAC_NR_CHANNELS	6
311 
312 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR,
313 	channel_dimm_label_show, channel_dimm_label_store, 0);
314 DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR,
315 	channel_dimm_label_show, channel_dimm_label_store, 1);
316 DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR,
317 	channel_dimm_label_show, channel_dimm_label_store, 2);
318 DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR,
319 	channel_dimm_label_show, channel_dimm_label_store, 3);
320 DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR,
321 	channel_dimm_label_show, channel_dimm_label_store, 4);
322 DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR,
323 	channel_dimm_label_show, channel_dimm_label_store, 5);
324 
325 /* Total possible dynamic DIMM Label attribute file table */
326 static struct attribute *dynamic_csrow_dimm_attr[] = {
327 	&dev_attr_legacy_ch0_dimm_label.attr.attr,
328 	&dev_attr_legacy_ch1_dimm_label.attr.attr,
329 	&dev_attr_legacy_ch2_dimm_label.attr.attr,
330 	&dev_attr_legacy_ch3_dimm_label.attr.attr,
331 	&dev_attr_legacy_ch4_dimm_label.attr.attr,
332 	&dev_attr_legacy_ch5_dimm_label.attr.attr,
333 	NULL
334 };
335 
336 /* possible dynamic channel ce_count attribute files */
337 DEVICE_CHANNEL(ch0_ce_count, S_IRUGO,
338 		   channel_ce_count_show, NULL, 0);
339 DEVICE_CHANNEL(ch1_ce_count, S_IRUGO,
340 		   channel_ce_count_show, NULL, 1);
341 DEVICE_CHANNEL(ch2_ce_count, S_IRUGO,
342 		   channel_ce_count_show, NULL, 2);
343 DEVICE_CHANNEL(ch3_ce_count, S_IRUGO,
344 		   channel_ce_count_show, NULL, 3);
345 DEVICE_CHANNEL(ch4_ce_count, S_IRUGO,
346 		   channel_ce_count_show, NULL, 4);
347 DEVICE_CHANNEL(ch5_ce_count, S_IRUGO,
348 		   channel_ce_count_show, NULL, 5);
349 
350 /* Total possible dynamic ce_count attribute file table */
351 static struct attribute *dynamic_csrow_ce_count_attr[] = {
352 	&dev_attr_legacy_ch0_ce_count.attr.attr,
353 	&dev_attr_legacy_ch1_ce_count.attr.attr,
354 	&dev_attr_legacy_ch2_ce_count.attr.attr,
355 	&dev_attr_legacy_ch3_ce_count.attr.attr,
356 	&dev_attr_legacy_ch4_ce_count.attr.attr,
357 	&dev_attr_legacy_ch5_ce_count.attr.attr,
358 	NULL
359 };
360 
361 static umode_t csrow_dev_is_visible(struct kobject *kobj,
362 				    struct attribute *attr, int idx)
363 {
364 	struct device *dev = kobj_to_dev(kobj);
365 	struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
366 
367 	if (idx >= csrow->nr_channels)
368 		return 0;
369 	/* Only expose populated DIMMs */
370 	if (!csrow->channels[idx]->dimm->nr_pages)
371 		return 0;
372 	return attr->mode;
373 }
374 
375 
376 static const struct attribute_group csrow_dev_dimm_group = {
377 	.attrs = dynamic_csrow_dimm_attr,
378 	.is_visible = csrow_dev_is_visible,
379 };
380 
381 static const struct attribute_group csrow_dev_ce_count_group = {
382 	.attrs = dynamic_csrow_ce_count_attr,
383 	.is_visible = csrow_dev_is_visible,
384 };
385 
386 static const struct attribute_group *csrow_dev_groups[] = {
387 	&csrow_dev_dimm_group,
388 	&csrow_dev_ce_count_group,
389 	NULL
390 };
391 
392 static inline int nr_pages_per_csrow(struct csrow_info *csrow)
393 {
394 	int chan, nr_pages = 0;
395 
396 	for (chan = 0; chan < csrow->nr_channels; chan++)
397 		nr_pages += csrow->channels[chan]->dimm->nr_pages;
398 
399 	return nr_pages;
400 }
401 
402 /* Create a CSROW object under specifed edac_mc_device */
403 static int edac_create_csrow_object(struct mem_ctl_info *mci,
404 				    struct csrow_info *csrow, int index)
405 {
406 	if (csrow->nr_channels > EDAC_NR_CHANNELS)
407 		return -ENODEV;
408 
409 	csrow->dev.type = &csrow_attr_type;
410 	csrow->dev.bus = mci->bus;
411 	csrow->dev.groups = csrow_dev_groups;
412 	device_initialize(&csrow->dev);
413 	csrow->dev.parent = &mci->dev;
414 	csrow->mci = mci;
415 	dev_set_name(&csrow->dev, "csrow%d", index);
416 	dev_set_drvdata(&csrow->dev, csrow);
417 
418 	edac_dbg(0, "creating (virtual) csrow node %s\n",
419 		 dev_name(&csrow->dev));
420 
421 	return device_add(&csrow->dev);
422 }
423 
424 /* Create a CSROW object under specifed edac_mc_device */
425 static int edac_create_csrow_objects(struct mem_ctl_info *mci)
426 {
427 	int err, i;
428 	struct csrow_info *csrow;
429 
430 	for (i = 0; i < mci->nr_csrows; i++) {
431 		csrow = mci->csrows[i];
432 		if (!nr_pages_per_csrow(csrow))
433 			continue;
434 		err = edac_create_csrow_object(mci, mci->csrows[i], i);
435 		if (err < 0) {
436 			edac_dbg(1,
437 				 "failure: create csrow objects for csrow %d\n",
438 				 i);
439 			goto error;
440 		}
441 	}
442 	return 0;
443 
444 error:
445 	for (--i; i >= 0; i--) {
446 		csrow = mci->csrows[i];
447 		if (!nr_pages_per_csrow(csrow))
448 			continue;
449 		put_device(&mci->csrows[i]->dev);
450 	}
451 
452 	return err;
453 }
454 
455 static void edac_delete_csrow_objects(struct mem_ctl_info *mci)
456 {
457 	int i;
458 	struct csrow_info *csrow;
459 
460 	for (i = mci->nr_csrows - 1; i >= 0; i--) {
461 		csrow = mci->csrows[i];
462 		if (!nr_pages_per_csrow(csrow))
463 			continue;
464 		device_unregister(&mci->csrows[i]->dev);
465 	}
466 }
467 #endif
468 
469 /*
470  * Per-dimm (or per-rank) devices
471  */
472 
473 #define to_dimm(k) container_of(k, struct dimm_info, dev)
474 
475 /* show/store functions for DIMM Label attributes */
476 static ssize_t dimmdev_location_show(struct device *dev,
477 				     struct device_attribute *mattr, char *data)
478 {
479 	struct dimm_info *dimm = to_dimm(dev);
480 
481 	return edac_dimm_info_location(dimm, data, PAGE_SIZE);
482 }
483 
484 static ssize_t dimmdev_label_show(struct device *dev,
485 				  struct device_attribute *mattr, char *data)
486 {
487 	struct dimm_info *dimm = to_dimm(dev);
488 
489 	/* if field has not been initialized, there is nothing to send */
490 	if (!dimm->label[0])
491 		return 0;
492 
493 	return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n", dimm->label);
494 }
495 
496 static ssize_t dimmdev_label_store(struct device *dev,
497 				   struct device_attribute *mattr,
498 				   const char *data,
499 				   size_t count)
500 {
501 	struct dimm_info *dimm = to_dimm(dev);
502 
503 	ssize_t max_size = 0;
504 
505 	max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
506 	strncpy(dimm->label, data, max_size);
507 	dimm->label[max_size] = '\0';
508 
509 	return max_size;
510 }
511 
512 static ssize_t dimmdev_size_show(struct device *dev,
513 				 struct device_attribute *mattr, char *data)
514 {
515 	struct dimm_info *dimm = to_dimm(dev);
516 
517 	return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages));
518 }
519 
520 static ssize_t dimmdev_mem_type_show(struct device *dev,
521 				     struct device_attribute *mattr, char *data)
522 {
523 	struct dimm_info *dimm = to_dimm(dev);
524 
525 	return sprintf(data, "%s\n", mem_types[dimm->mtype]);
526 }
527 
528 static ssize_t dimmdev_dev_type_show(struct device *dev,
529 				     struct device_attribute *mattr, char *data)
530 {
531 	struct dimm_info *dimm = to_dimm(dev);
532 
533 	return sprintf(data, "%s\n", dev_types[dimm->dtype]);
534 }
535 
536 static ssize_t dimmdev_edac_mode_show(struct device *dev,
537 				      struct device_attribute *mattr,
538 				      char *data)
539 {
540 	struct dimm_info *dimm = to_dimm(dev);
541 
542 	return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]);
543 }
544 
545 /* dimm/rank attribute files */
546 static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR,
547 		   dimmdev_label_show, dimmdev_label_store);
548 static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL);
549 static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL);
550 static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL);
551 static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL);
552 static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL);
553 
554 /* attributes of the dimm<id>/rank<id> object */
555 static struct attribute *dimm_attrs[] = {
556 	&dev_attr_dimm_label.attr,
557 	&dev_attr_dimm_location.attr,
558 	&dev_attr_size.attr,
559 	&dev_attr_dimm_mem_type.attr,
560 	&dev_attr_dimm_dev_type.attr,
561 	&dev_attr_dimm_edac_mode.attr,
562 	NULL,
563 };
564 
565 static struct attribute_group dimm_attr_grp = {
566 	.attrs	= dimm_attrs,
567 };
568 
569 static const struct attribute_group *dimm_attr_groups[] = {
570 	&dimm_attr_grp,
571 	NULL
572 };
573 
574 static void dimm_attr_release(struct device *dev)
575 {
576 	struct dimm_info *dimm = container_of(dev, struct dimm_info, dev);
577 
578 	edac_dbg(1, "Releasing dimm device %s\n", dev_name(dev));
579 	kfree(dimm);
580 }
581 
582 static struct device_type dimm_attr_type = {
583 	.groups		= dimm_attr_groups,
584 	.release	= dimm_attr_release,
585 };
586 
587 /* Create a DIMM object under specifed memory controller device */
588 static int edac_create_dimm_object(struct mem_ctl_info *mci,
589 				   struct dimm_info *dimm,
590 				   int index)
591 {
592 	int err;
593 	dimm->mci = mci;
594 
595 	dimm->dev.type = &dimm_attr_type;
596 	dimm->dev.bus = mci->bus;
597 	device_initialize(&dimm->dev);
598 
599 	dimm->dev.parent = &mci->dev;
600 	if (mci->csbased)
601 		dev_set_name(&dimm->dev, "rank%d", index);
602 	else
603 		dev_set_name(&dimm->dev, "dimm%d", index);
604 	dev_set_drvdata(&dimm->dev, dimm);
605 	pm_runtime_forbid(&mci->dev);
606 
607 	err =  device_add(&dimm->dev);
608 
609 	edac_dbg(0, "creating rank/dimm device %s\n", dev_name(&dimm->dev));
610 
611 	return err;
612 }
613 
614 /*
615  * Memory controller device
616  */
617 
618 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
619 
620 static ssize_t mci_reset_counters_store(struct device *dev,
621 					struct device_attribute *mattr,
622 					const char *data, size_t count)
623 {
624 	struct mem_ctl_info *mci = to_mci(dev);
625 	int cnt, row, chan, i;
626 	mci->ue_mc = 0;
627 	mci->ce_mc = 0;
628 	mci->ue_noinfo_count = 0;
629 	mci->ce_noinfo_count = 0;
630 
631 	for (row = 0; row < mci->nr_csrows; row++) {
632 		struct csrow_info *ri = mci->csrows[row];
633 
634 		ri->ue_count = 0;
635 		ri->ce_count = 0;
636 
637 		for (chan = 0; chan < ri->nr_channels; chan++)
638 			ri->channels[chan]->ce_count = 0;
639 	}
640 
641 	cnt = 1;
642 	for (i = 0; i < mci->n_layers; i++) {
643 		cnt *= mci->layers[i].size;
644 		memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32));
645 		memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32));
646 	}
647 
648 	mci->start_time = jiffies;
649 	return count;
650 }
651 
652 /* Memory scrubbing interface:
653  *
654  * A MC driver can limit the scrubbing bandwidth based on the CPU type.
655  * Therefore, ->set_sdram_scrub_rate should be made to return the actual
656  * bandwidth that is accepted or 0 when scrubbing is to be disabled.
657  *
658  * Negative value still means that an error has occurred while setting
659  * the scrub rate.
660  */
661 static ssize_t mci_sdram_scrub_rate_store(struct device *dev,
662 					  struct device_attribute *mattr,
663 					  const char *data, size_t count)
664 {
665 	struct mem_ctl_info *mci = to_mci(dev);
666 	unsigned long bandwidth = 0;
667 	int new_bw = 0;
668 
669 	if (kstrtoul(data, 10, &bandwidth) < 0)
670 		return -EINVAL;
671 
672 	new_bw = mci->set_sdram_scrub_rate(mci, bandwidth);
673 	if (new_bw < 0) {
674 		edac_printk(KERN_WARNING, EDAC_MC,
675 			    "Error setting scrub rate to: %lu\n", bandwidth);
676 		return -EINVAL;
677 	}
678 
679 	return count;
680 }
681 
682 /*
683  * ->get_sdram_scrub_rate() return value semantics same as above.
684  */
685 static ssize_t mci_sdram_scrub_rate_show(struct device *dev,
686 					 struct device_attribute *mattr,
687 					 char *data)
688 {
689 	struct mem_ctl_info *mci = to_mci(dev);
690 	int bandwidth = 0;
691 
692 	bandwidth = mci->get_sdram_scrub_rate(mci);
693 	if (bandwidth < 0) {
694 		edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n");
695 		return bandwidth;
696 	}
697 
698 	return sprintf(data, "%d\n", bandwidth);
699 }
700 
701 /* default attribute files for the MCI object */
702 static ssize_t mci_ue_count_show(struct device *dev,
703 				 struct device_attribute *mattr,
704 				 char *data)
705 {
706 	struct mem_ctl_info *mci = to_mci(dev);
707 
708 	return sprintf(data, "%d\n", mci->ue_mc);
709 }
710 
711 static ssize_t mci_ce_count_show(struct device *dev,
712 				 struct device_attribute *mattr,
713 				 char *data)
714 {
715 	struct mem_ctl_info *mci = to_mci(dev);
716 
717 	return sprintf(data, "%d\n", mci->ce_mc);
718 }
719 
720 static ssize_t mci_ce_noinfo_show(struct device *dev,
721 				  struct device_attribute *mattr,
722 				  char *data)
723 {
724 	struct mem_ctl_info *mci = to_mci(dev);
725 
726 	return sprintf(data, "%d\n", mci->ce_noinfo_count);
727 }
728 
729 static ssize_t mci_ue_noinfo_show(struct device *dev,
730 				  struct device_attribute *mattr,
731 				  char *data)
732 {
733 	struct mem_ctl_info *mci = to_mci(dev);
734 
735 	return sprintf(data, "%d\n", mci->ue_noinfo_count);
736 }
737 
738 static ssize_t mci_seconds_show(struct device *dev,
739 				struct device_attribute *mattr,
740 				char *data)
741 {
742 	struct mem_ctl_info *mci = to_mci(dev);
743 
744 	return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ);
745 }
746 
747 static ssize_t mci_ctl_name_show(struct device *dev,
748 				 struct device_attribute *mattr,
749 				 char *data)
750 {
751 	struct mem_ctl_info *mci = to_mci(dev);
752 
753 	return sprintf(data, "%s\n", mci->ctl_name);
754 }
755 
756 static ssize_t mci_size_mb_show(struct device *dev,
757 				struct device_attribute *mattr,
758 				char *data)
759 {
760 	struct mem_ctl_info *mci = to_mci(dev);
761 	int total_pages = 0, csrow_idx, j;
762 
763 	for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) {
764 		struct csrow_info *csrow = mci->csrows[csrow_idx];
765 
766 		for (j = 0; j < csrow->nr_channels; j++) {
767 			struct dimm_info *dimm = csrow->channels[j]->dimm;
768 
769 			total_pages += dimm->nr_pages;
770 		}
771 	}
772 
773 	return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages));
774 }
775 
776 static ssize_t mci_max_location_show(struct device *dev,
777 				     struct device_attribute *mattr,
778 				     char *data)
779 {
780 	struct mem_ctl_info *mci = to_mci(dev);
781 	int i;
782 	char *p = data;
783 
784 	for (i = 0; i < mci->n_layers; i++) {
785 		p += sprintf(p, "%s %d ",
786 			     edac_layer_name[mci->layers[i].type],
787 			     mci->layers[i].size - 1);
788 	}
789 
790 	return p - data;
791 }
792 
793 #ifdef CONFIG_EDAC_DEBUG
794 static ssize_t edac_fake_inject_write(struct file *file,
795 				      const char __user *data,
796 				      size_t count, loff_t *ppos)
797 {
798 	struct device *dev = file->private_data;
799 	struct mem_ctl_info *mci = to_mci(dev);
800 	static enum hw_event_mc_err_type type;
801 	u16 errcount = mci->fake_inject_count;
802 
803 	if (!errcount)
804 		errcount = 1;
805 
806 	type = mci->fake_inject_ue ? HW_EVENT_ERR_UNCORRECTED
807 				   : HW_EVENT_ERR_CORRECTED;
808 
809 	printk(KERN_DEBUG
810 	       "Generating %d %s fake error%s to %d.%d.%d to test core handling. NOTE: this won't test the driver-specific decoding logic.\n",
811 		errcount,
812 		(type == HW_EVENT_ERR_UNCORRECTED) ? "UE" : "CE",
813 		errcount > 1 ? "s" : "",
814 		mci->fake_inject_layer[0],
815 		mci->fake_inject_layer[1],
816 		mci->fake_inject_layer[2]
817 	       );
818 	edac_mc_handle_error(type, mci, errcount, 0, 0, 0,
819 			     mci->fake_inject_layer[0],
820 			     mci->fake_inject_layer[1],
821 			     mci->fake_inject_layer[2],
822 			     "FAKE ERROR", "for EDAC testing only");
823 
824 	return count;
825 }
826 
827 static const struct file_operations debug_fake_inject_fops = {
828 	.open = simple_open,
829 	.write = edac_fake_inject_write,
830 	.llseek = generic_file_llseek,
831 };
832 #endif
833 
834 /* default Control file */
835 static DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store);
836 
837 /* default Attribute files */
838 static DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL);
839 static DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL);
840 static DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL);
841 static DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL);
842 static DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL);
843 static DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL);
844 static DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL);
845 static DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL);
846 
847 /* memory scrubber attribute file */
848 DEVICE_ATTR(sdram_scrub_rate, 0, mci_sdram_scrub_rate_show,
849 	    mci_sdram_scrub_rate_store); /* umode set later in is_visible */
850 
851 static struct attribute *mci_attrs[] = {
852 	&dev_attr_reset_counters.attr,
853 	&dev_attr_mc_name.attr,
854 	&dev_attr_size_mb.attr,
855 	&dev_attr_seconds_since_reset.attr,
856 	&dev_attr_ue_noinfo_count.attr,
857 	&dev_attr_ce_noinfo_count.attr,
858 	&dev_attr_ue_count.attr,
859 	&dev_attr_ce_count.attr,
860 	&dev_attr_max_location.attr,
861 	&dev_attr_sdram_scrub_rate.attr,
862 	NULL
863 };
864 
865 static umode_t mci_attr_is_visible(struct kobject *kobj,
866 				   struct attribute *attr, int idx)
867 {
868 	struct device *dev = kobj_to_dev(kobj);
869 	struct mem_ctl_info *mci = to_mci(dev);
870 	umode_t mode = 0;
871 
872 	if (attr != &dev_attr_sdram_scrub_rate.attr)
873 		return attr->mode;
874 	if (mci->get_sdram_scrub_rate)
875 		mode |= S_IRUGO;
876 	if (mci->set_sdram_scrub_rate)
877 		mode |= S_IWUSR;
878 	return mode;
879 }
880 
881 static struct attribute_group mci_attr_grp = {
882 	.attrs	= mci_attrs,
883 	.is_visible = mci_attr_is_visible,
884 };
885 
886 static const struct attribute_group *mci_attr_groups[] = {
887 	&mci_attr_grp,
888 	NULL
889 };
890 
891 static void mci_attr_release(struct device *dev)
892 {
893 	struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
894 
895 	edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
896 	kfree(mci);
897 }
898 
899 static struct device_type mci_attr_type = {
900 	.groups		= mci_attr_groups,
901 	.release	= mci_attr_release,
902 };
903 
904 #ifdef CONFIG_EDAC_DEBUG
905 static struct dentry *edac_debugfs;
906 
907 int __init edac_debugfs_init(void)
908 {
909 	edac_debugfs = debugfs_create_dir("edac", NULL);
910 	if (IS_ERR(edac_debugfs)) {
911 		edac_debugfs = NULL;
912 		return -ENOMEM;
913 	}
914 	return 0;
915 }
916 
917 void edac_debugfs_exit(void)
918 {
919 	debugfs_remove(edac_debugfs);
920 }
921 
922 static int edac_create_debug_nodes(struct mem_ctl_info *mci)
923 {
924 	struct dentry *d, *parent;
925 	char name[80];
926 	int i;
927 
928 	if (!edac_debugfs)
929 		return -ENODEV;
930 
931 	d = debugfs_create_dir(mci->dev.kobj.name, edac_debugfs);
932 	if (!d)
933 		return -ENOMEM;
934 	parent = d;
935 
936 	for (i = 0; i < mci->n_layers; i++) {
937 		sprintf(name, "fake_inject_%s",
938 			     edac_layer_name[mci->layers[i].type]);
939 		d = debugfs_create_u8(name, S_IRUGO | S_IWUSR, parent,
940 				      &mci->fake_inject_layer[i]);
941 		if (!d)
942 			goto nomem;
943 	}
944 
945 	d = debugfs_create_bool("fake_inject_ue", S_IRUGO | S_IWUSR, parent,
946 				&mci->fake_inject_ue);
947 	if (!d)
948 		goto nomem;
949 
950 	d = debugfs_create_u16("fake_inject_count", S_IRUGO | S_IWUSR, parent,
951 				&mci->fake_inject_count);
952 	if (!d)
953 		goto nomem;
954 
955 	d = debugfs_create_file("fake_inject", S_IWUSR, parent,
956 				&mci->dev,
957 				&debug_fake_inject_fops);
958 	if (!d)
959 		goto nomem;
960 
961 	mci->debugfs = parent;
962 	return 0;
963 nomem:
964 	debugfs_remove(mci->debugfs);
965 	return -ENOMEM;
966 }
967 #endif
968 
969 /*
970  * Create a new Memory Controller kobject instance,
971  *	mc<id> under the 'mc' directory
972  *
973  * Return:
974  *	0	Success
975  *	!0	Failure
976  */
977 int edac_create_sysfs_mci_device(struct mem_ctl_info *mci,
978 				 const struct attribute_group **groups)
979 {
980 	int i, err;
981 
982 	/*
983 	 * The memory controller needs its own bus, in order to avoid
984 	 * namespace conflicts at /sys/bus/edac.
985 	 */
986 	mci->bus->name = kasprintf(GFP_KERNEL, "mc%d", mci->mc_idx);
987 	if (!mci->bus->name)
988 		return -ENOMEM;
989 
990 	edac_dbg(0, "creating bus %s\n", mci->bus->name);
991 
992 	err = bus_register(mci->bus);
993 	if (err < 0)
994 		goto fail_free_name;
995 
996 	/* get the /sys/devices/system/edac subsys reference */
997 	mci->dev.type = &mci_attr_type;
998 	device_initialize(&mci->dev);
999 
1000 	mci->dev.parent = mci_pdev;
1001 	mci->dev.bus = mci->bus;
1002 	mci->dev.groups = groups;
1003 	dev_set_name(&mci->dev, "mc%d", mci->mc_idx);
1004 	dev_set_drvdata(&mci->dev, mci);
1005 	pm_runtime_forbid(&mci->dev);
1006 
1007 	edac_dbg(0, "creating device %s\n", dev_name(&mci->dev));
1008 	err = device_add(&mci->dev);
1009 	if (err < 0) {
1010 		edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev));
1011 		goto fail_unregister_bus;
1012 	}
1013 
1014 	/*
1015 	 * Create the dimm/rank devices
1016 	 */
1017 	for (i = 0; i < mci->tot_dimms; i++) {
1018 		struct dimm_info *dimm = mci->dimms[i];
1019 		/* Only expose populated DIMMs */
1020 		if (!dimm->nr_pages)
1021 			continue;
1022 
1023 #ifdef CONFIG_EDAC_DEBUG
1024 		edac_dbg(1, "creating dimm%d, located at ", i);
1025 		if (edac_debug_level >= 1) {
1026 			int lay;
1027 			for (lay = 0; lay < mci->n_layers; lay++)
1028 				printk(KERN_CONT "%s %d ",
1029 					edac_layer_name[mci->layers[lay].type],
1030 					dimm->location[lay]);
1031 			printk(KERN_CONT "\n");
1032 		}
1033 #endif
1034 		err = edac_create_dimm_object(mci, dimm, i);
1035 		if (err) {
1036 			edac_dbg(1, "failure: create dimm %d obj\n", i);
1037 			goto fail_unregister_dimm;
1038 		}
1039 	}
1040 
1041 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1042 	err = edac_create_csrow_objects(mci);
1043 	if (err < 0)
1044 		goto fail_unregister_dimm;
1045 #endif
1046 
1047 #ifdef CONFIG_EDAC_DEBUG
1048 	edac_create_debug_nodes(mci);
1049 #endif
1050 	return 0;
1051 
1052 fail_unregister_dimm:
1053 	for (i--; i >= 0; i--) {
1054 		struct dimm_info *dimm = mci->dimms[i];
1055 		if (!dimm->nr_pages)
1056 			continue;
1057 
1058 		device_unregister(&dimm->dev);
1059 	}
1060 	device_unregister(&mci->dev);
1061 fail_unregister_bus:
1062 	bus_unregister(mci->bus);
1063 fail_free_name:
1064 	kfree(mci->bus->name);
1065 	return err;
1066 }
1067 
1068 /*
1069  * remove a Memory Controller instance
1070  */
1071 void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
1072 {
1073 	int i;
1074 
1075 	edac_dbg(0, "\n");
1076 
1077 #ifdef CONFIG_EDAC_DEBUG
1078 	debugfs_remove(mci->debugfs);
1079 #endif
1080 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1081 	edac_delete_csrow_objects(mci);
1082 #endif
1083 
1084 	for (i = 0; i < mci->tot_dimms; i++) {
1085 		struct dimm_info *dimm = mci->dimms[i];
1086 		if (dimm->nr_pages == 0)
1087 			continue;
1088 		edac_dbg(0, "removing device %s\n", dev_name(&dimm->dev));
1089 		device_unregister(&dimm->dev);
1090 	}
1091 }
1092 
1093 void edac_unregister_sysfs(struct mem_ctl_info *mci)
1094 {
1095 	edac_dbg(1, "Unregistering device %s\n", dev_name(&mci->dev));
1096 	device_unregister(&mci->dev);
1097 	bus_unregister(mci->bus);
1098 	kfree(mci->bus->name);
1099 }
1100 
1101 static void mc_attr_release(struct device *dev)
1102 {
1103 	/*
1104 	 * There's no container structure here, as this is just the mci
1105 	 * parent device, used to create the /sys/devices/mc sysfs node.
1106 	 * So, there are no attributes on it.
1107 	 */
1108 	edac_dbg(1, "Releasing device %s\n", dev_name(dev));
1109 	kfree(dev);
1110 }
1111 
1112 static struct device_type mc_attr_type = {
1113 	.release	= mc_attr_release,
1114 };
1115 /*
1116  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1117  */
1118 int __init edac_mc_sysfs_init(void)
1119 {
1120 	struct bus_type *edac_subsys;
1121 	int err;
1122 
1123 	/* get the /sys/devices/system/edac subsys reference */
1124 	edac_subsys = edac_get_sysfs_subsys();
1125 	if (edac_subsys == NULL) {
1126 		edac_dbg(1, "no edac_subsys\n");
1127 		err = -EINVAL;
1128 		goto out;
1129 	}
1130 
1131 	mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL);
1132 	if (!mci_pdev) {
1133 		err = -ENOMEM;
1134 		goto out_put_sysfs;
1135 	}
1136 
1137 	mci_pdev->bus = edac_subsys;
1138 	mci_pdev->type = &mc_attr_type;
1139 	device_initialize(mci_pdev);
1140 	dev_set_name(mci_pdev, "mc");
1141 
1142 	err = device_add(mci_pdev);
1143 	if (err < 0)
1144 		goto out_dev_free;
1145 
1146 	edac_dbg(0, "device %s created\n", dev_name(mci_pdev));
1147 
1148 	return 0;
1149 
1150  out_dev_free:
1151 	kfree(mci_pdev);
1152  out_put_sysfs:
1153 	edac_put_sysfs_subsys();
1154  out:
1155 	return err;
1156 }
1157 
1158 void edac_mc_sysfs_exit(void)
1159 {
1160 	device_unregister(mci_pdev);
1161 	edac_put_sysfs_subsys();
1162 }
1163