xref: /openbmc/linux/drivers/edac/edac_mc_sysfs.c (revision 3e26a691)
1 /*
2  * edac_mc kernel module
3  * (C) 2005-2007 Linux Networx (http://lnxi.com)
4  *
5  * This file may be distributed under the terms of the
6  * GNU General Public License.
7  *
8  * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com
9  *
10  * (c) 2012-2013 - Mauro Carvalho Chehab
11  *	The entire API were re-written, and ported to use struct device
12  *
13  */
14 
15 #include <linux/ctype.h>
16 #include <linux/slab.h>
17 #include <linux/edac.h>
18 #include <linux/bug.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/uaccess.h>
21 
22 #include "edac_core.h"
23 #include "edac_module.h"
24 
25 /* MC EDAC Controls, setable by module parameter, and sysfs */
26 static int edac_mc_log_ue = 1;
27 static int edac_mc_log_ce = 1;
28 static int edac_mc_panic_on_ue;
29 static int edac_mc_poll_msec = 1000;
30 
31 /* Getter functions for above */
32 int edac_mc_get_log_ue(void)
33 {
34 	return edac_mc_log_ue;
35 }
36 
37 int edac_mc_get_log_ce(void)
38 {
39 	return edac_mc_log_ce;
40 }
41 
42 int edac_mc_get_panic_on_ue(void)
43 {
44 	return edac_mc_panic_on_ue;
45 }
46 
47 /* this is temporary */
48 int edac_mc_get_poll_msec(void)
49 {
50 	return edac_mc_poll_msec;
51 }
52 
53 static int edac_set_poll_msec(const char *val, struct kernel_param *kp)
54 {
55 	unsigned long l;
56 	int ret;
57 
58 	if (!val)
59 		return -EINVAL;
60 
61 	ret = kstrtoul(val, 0, &l);
62 	if (ret)
63 		return ret;
64 
65 	if (l < 1000)
66 		return -EINVAL;
67 
68 	*((unsigned long *)kp->arg) = l;
69 
70 	/* notify edac_mc engine to reset the poll period */
71 	edac_mc_reset_delay_period(l);
72 
73 	return 0;
74 }
75 
76 /* Parameter declarations for above */
77 module_param(edac_mc_panic_on_ue, int, 0644);
78 MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
79 module_param(edac_mc_log_ue, int, 0644);
80 MODULE_PARM_DESC(edac_mc_log_ue,
81 		 "Log uncorrectable error to console: 0=off 1=on");
82 module_param(edac_mc_log_ce, int, 0644);
83 MODULE_PARM_DESC(edac_mc_log_ce,
84 		 "Log correctable error to console: 0=off 1=on");
85 module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_int,
86 		  &edac_mc_poll_msec, 0644);
87 MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds");
88 
89 static struct device *mci_pdev;
90 
91 /*
92  * various constants for Memory Controllers
93  */
94 static const char * const mem_types[] = {
95 	[MEM_EMPTY] = "Empty",
96 	[MEM_RESERVED] = "Reserved",
97 	[MEM_UNKNOWN] = "Unknown",
98 	[MEM_FPM] = "FPM",
99 	[MEM_EDO] = "EDO",
100 	[MEM_BEDO] = "BEDO",
101 	[MEM_SDR] = "Unbuffered-SDR",
102 	[MEM_RDR] = "Registered-SDR",
103 	[MEM_DDR] = "Unbuffered-DDR",
104 	[MEM_RDDR] = "Registered-DDR",
105 	[MEM_RMBS] = "RMBS",
106 	[MEM_DDR2] = "Unbuffered-DDR2",
107 	[MEM_FB_DDR2] = "FullyBuffered-DDR2",
108 	[MEM_RDDR2] = "Registered-DDR2",
109 	[MEM_XDR] = "XDR",
110 	[MEM_DDR3] = "Unbuffered-DDR3",
111 	[MEM_RDDR3] = "Registered-DDR3",
112 	[MEM_DDR4] = "Unbuffered-DDR4",
113 	[MEM_RDDR4] = "Registered-DDR4"
114 };
115 
116 static const char * const dev_types[] = {
117 	[DEV_UNKNOWN] = "Unknown",
118 	[DEV_X1] = "x1",
119 	[DEV_X2] = "x2",
120 	[DEV_X4] = "x4",
121 	[DEV_X8] = "x8",
122 	[DEV_X16] = "x16",
123 	[DEV_X32] = "x32",
124 	[DEV_X64] = "x64"
125 };
126 
127 static const char * const edac_caps[] = {
128 	[EDAC_UNKNOWN] = "Unknown",
129 	[EDAC_NONE] = "None",
130 	[EDAC_RESERVED] = "Reserved",
131 	[EDAC_PARITY] = "PARITY",
132 	[EDAC_EC] = "EC",
133 	[EDAC_SECDED] = "SECDED",
134 	[EDAC_S2ECD2ED] = "S2ECD2ED",
135 	[EDAC_S4ECD4ED] = "S4ECD4ED",
136 	[EDAC_S8ECD8ED] = "S8ECD8ED",
137 	[EDAC_S16ECD16ED] = "S16ECD16ED"
138 };
139 
140 #ifdef CONFIG_EDAC_LEGACY_SYSFS
141 /*
142  * EDAC sysfs CSROW data structures and methods
143  */
144 
145 #define to_csrow(k) container_of(k, struct csrow_info, dev)
146 
147 /*
148  * We need it to avoid namespace conflicts between the legacy API
149  * and the per-dimm/per-rank one
150  */
151 #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \
152 	static struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store)
153 
154 struct dev_ch_attribute {
155 	struct device_attribute attr;
156 	int channel;
157 };
158 
159 #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \
160 	static struct dev_ch_attribute dev_attr_legacy_##_name = \
161 		{ __ATTR(_name, _mode, _show, _store), (_var) }
162 
163 #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel)
164 
165 /* Set of more default csrow<id> attribute show/store functions */
166 static ssize_t csrow_ue_count_show(struct device *dev,
167 				   struct device_attribute *mattr, char *data)
168 {
169 	struct csrow_info *csrow = to_csrow(dev);
170 
171 	return sprintf(data, "%u\n", csrow->ue_count);
172 }
173 
174 static ssize_t csrow_ce_count_show(struct device *dev,
175 				   struct device_attribute *mattr, char *data)
176 {
177 	struct csrow_info *csrow = to_csrow(dev);
178 
179 	return sprintf(data, "%u\n", csrow->ce_count);
180 }
181 
182 static ssize_t csrow_size_show(struct device *dev,
183 			       struct device_attribute *mattr, char *data)
184 {
185 	struct csrow_info *csrow = to_csrow(dev);
186 	int i;
187 	u32 nr_pages = 0;
188 
189 	for (i = 0; i < csrow->nr_channels; i++)
190 		nr_pages += csrow->channels[i]->dimm->nr_pages;
191 	return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages));
192 }
193 
194 static ssize_t csrow_mem_type_show(struct device *dev,
195 				   struct device_attribute *mattr, char *data)
196 {
197 	struct csrow_info *csrow = to_csrow(dev);
198 
199 	return sprintf(data, "%s\n", mem_types[csrow->channels[0]->dimm->mtype]);
200 }
201 
202 static ssize_t csrow_dev_type_show(struct device *dev,
203 				   struct device_attribute *mattr, char *data)
204 {
205 	struct csrow_info *csrow = to_csrow(dev);
206 
207 	return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]);
208 }
209 
210 static ssize_t csrow_edac_mode_show(struct device *dev,
211 				    struct device_attribute *mattr,
212 				    char *data)
213 {
214 	struct csrow_info *csrow = to_csrow(dev);
215 
216 	return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]);
217 }
218 
219 /* show/store functions for DIMM Label attributes */
220 static ssize_t channel_dimm_label_show(struct device *dev,
221 				       struct device_attribute *mattr,
222 				       char *data)
223 {
224 	struct csrow_info *csrow = to_csrow(dev);
225 	unsigned chan = to_channel(mattr);
226 	struct rank_info *rank = csrow->channels[chan];
227 
228 	/* if field has not been initialized, there is nothing to send */
229 	if (!rank->dimm->label[0])
230 		return 0;
231 
232 	return snprintf(data, sizeof(rank->dimm->label) + 1, "%s\n",
233 			rank->dimm->label);
234 }
235 
236 static ssize_t channel_dimm_label_store(struct device *dev,
237 					struct device_attribute *mattr,
238 					const char *data, size_t count)
239 {
240 	struct csrow_info *csrow = to_csrow(dev);
241 	unsigned chan = to_channel(mattr);
242 	struct rank_info *rank = csrow->channels[chan];
243 	size_t copy_count = count;
244 
245 	if (count == 0)
246 		return -EINVAL;
247 
248 	if (data[count - 1] == '\0' || data[count - 1] == '\n')
249 		copy_count -= 1;
250 
251 	if (copy_count == 0 || copy_count >= sizeof(rank->dimm->label))
252 		return -EINVAL;
253 
254 	strncpy(rank->dimm->label, data, copy_count);
255 	rank->dimm->label[copy_count] = '\0';
256 
257 	return count;
258 }
259 
260 /* show function for dynamic chX_ce_count attribute */
261 static ssize_t channel_ce_count_show(struct device *dev,
262 				     struct device_attribute *mattr, char *data)
263 {
264 	struct csrow_info *csrow = to_csrow(dev);
265 	unsigned chan = to_channel(mattr);
266 	struct rank_info *rank = csrow->channels[chan];
267 
268 	return sprintf(data, "%u\n", rank->ce_count);
269 }
270 
271 /* cwrow<id>/attribute files */
272 DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL);
273 DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL);
274 DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL);
275 DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL);
276 DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL);
277 DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL);
278 
279 /* default attributes of the CSROW<id> object */
280 static struct attribute *csrow_attrs[] = {
281 	&dev_attr_legacy_dev_type.attr,
282 	&dev_attr_legacy_mem_type.attr,
283 	&dev_attr_legacy_edac_mode.attr,
284 	&dev_attr_legacy_size_mb.attr,
285 	&dev_attr_legacy_ue_count.attr,
286 	&dev_attr_legacy_ce_count.attr,
287 	NULL,
288 };
289 
290 static struct attribute_group csrow_attr_grp = {
291 	.attrs	= csrow_attrs,
292 };
293 
294 static const struct attribute_group *csrow_attr_groups[] = {
295 	&csrow_attr_grp,
296 	NULL
297 };
298 
299 static void csrow_attr_release(struct device *dev)
300 {
301 	struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
302 
303 	edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
304 	kfree(csrow);
305 }
306 
307 static struct device_type csrow_attr_type = {
308 	.groups		= csrow_attr_groups,
309 	.release	= csrow_attr_release,
310 };
311 
312 /*
313  * possible dynamic channel DIMM Label attribute files
314  *
315  */
316 
317 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR,
318 	channel_dimm_label_show, channel_dimm_label_store, 0);
319 DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR,
320 	channel_dimm_label_show, channel_dimm_label_store, 1);
321 DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR,
322 	channel_dimm_label_show, channel_dimm_label_store, 2);
323 DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR,
324 	channel_dimm_label_show, channel_dimm_label_store, 3);
325 DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR,
326 	channel_dimm_label_show, channel_dimm_label_store, 4);
327 DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR,
328 	channel_dimm_label_show, channel_dimm_label_store, 5);
329 
330 /* Total possible dynamic DIMM Label attribute file table */
331 static struct attribute *dynamic_csrow_dimm_attr[] = {
332 	&dev_attr_legacy_ch0_dimm_label.attr.attr,
333 	&dev_attr_legacy_ch1_dimm_label.attr.attr,
334 	&dev_attr_legacy_ch2_dimm_label.attr.attr,
335 	&dev_attr_legacy_ch3_dimm_label.attr.attr,
336 	&dev_attr_legacy_ch4_dimm_label.attr.attr,
337 	&dev_attr_legacy_ch5_dimm_label.attr.attr,
338 	NULL
339 };
340 
341 /* possible dynamic channel ce_count attribute files */
342 DEVICE_CHANNEL(ch0_ce_count, S_IRUGO,
343 		   channel_ce_count_show, NULL, 0);
344 DEVICE_CHANNEL(ch1_ce_count, S_IRUGO,
345 		   channel_ce_count_show, NULL, 1);
346 DEVICE_CHANNEL(ch2_ce_count, S_IRUGO,
347 		   channel_ce_count_show, NULL, 2);
348 DEVICE_CHANNEL(ch3_ce_count, S_IRUGO,
349 		   channel_ce_count_show, NULL, 3);
350 DEVICE_CHANNEL(ch4_ce_count, S_IRUGO,
351 		   channel_ce_count_show, NULL, 4);
352 DEVICE_CHANNEL(ch5_ce_count, S_IRUGO,
353 		   channel_ce_count_show, NULL, 5);
354 
355 /* Total possible dynamic ce_count attribute file table */
356 static struct attribute *dynamic_csrow_ce_count_attr[] = {
357 	&dev_attr_legacy_ch0_ce_count.attr.attr,
358 	&dev_attr_legacy_ch1_ce_count.attr.attr,
359 	&dev_attr_legacy_ch2_ce_count.attr.attr,
360 	&dev_attr_legacy_ch3_ce_count.attr.attr,
361 	&dev_attr_legacy_ch4_ce_count.attr.attr,
362 	&dev_attr_legacy_ch5_ce_count.attr.attr,
363 	NULL
364 };
365 
366 static umode_t csrow_dev_is_visible(struct kobject *kobj,
367 				    struct attribute *attr, int idx)
368 {
369 	struct device *dev = kobj_to_dev(kobj);
370 	struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
371 
372 	if (idx >= csrow->nr_channels)
373 		return 0;
374 	/* Only expose populated DIMMs */
375 	if (!csrow->channels[idx]->dimm->nr_pages)
376 		return 0;
377 	return attr->mode;
378 }
379 
380 
381 static const struct attribute_group csrow_dev_dimm_group = {
382 	.attrs = dynamic_csrow_dimm_attr,
383 	.is_visible = csrow_dev_is_visible,
384 };
385 
386 static const struct attribute_group csrow_dev_ce_count_group = {
387 	.attrs = dynamic_csrow_ce_count_attr,
388 	.is_visible = csrow_dev_is_visible,
389 };
390 
391 static const struct attribute_group *csrow_dev_groups[] = {
392 	&csrow_dev_dimm_group,
393 	&csrow_dev_ce_count_group,
394 	NULL
395 };
396 
397 static inline int nr_pages_per_csrow(struct csrow_info *csrow)
398 {
399 	int chan, nr_pages = 0;
400 
401 	for (chan = 0; chan < csrow->nr_channels; chan++)
402 		nr_pages += csrow->channels[chan]->dimm->nr_pages;
403 
404 	return nr_pages;
405 }
406 
407 /* Create a CSROW object under specifed edac_mc_device */
408 static int edac_create_csrow_object(struct mem_ctl_info *mci,
409 				    struct csrow_info *csrow, int index)
410 {
411 	csrow->dev.type = &csrow_attr_type;
412 	csrow->dev.bus = mci->bus;
413 	csrow->dev.groups = csrow_dev_groups;
414 	device_initialize(&csrow->dev);
415 	csrow->dev.parent = &mci->dev;
416 	csrow->mci = mci;
417 	dev_set_name(&csrow->dev, "csrow%d", index);
418 	dev_set_drvdata(&csrow->dev, csrow);
419 
420 	edac_dbg(0, "creating (virtual) csrow node %s\n",
421 		 dev_name(&csrow->dev));
422 
423 	return device_add(&csrow->dev);
424 }
425 
426 /* Create a CSROW object under specifed edac_mc_device */
427 static int edac_create_csrow_objects(struct mem_ctl_info *mci)
428 {
429 	int err, i;
430 	struct csrow_info *csrow;
431 
432 	for (i = 0; i < mci->nr_csrows; i++) {
433 		csrow = mci->csrows[i];
434 		if (!nr_pages_per_csrow(csrow))
435 			continue;
436 		err = edac_create_csrow_object(mci, mci->csrows[i], i);
437 		if (err < 0) {
438 			edac_dbg(1,
439 				 "failure: create csrow objects for csrow %d\n",
440 				 i);
441 			goto error;
442 		}
443 	}
444 	return 0;
445 
446 error:
447 	for (--i; i >= 0; i--) {
448 		csrow = mci->csrows[i];
449 		if (!nr_pages_per_csrow(csrow))
450 			continue;
451 		put_device(&mci->csrows[i]->dev);
452 	}
453 
454 	return err;
455 }
456 
457 static void edac_delete_csrow_objects(struct mem_ctl_info *mci)
458 {
459 	int i;
460 	struct csrow_info *csrow;
461 
462 	for (i = mci->nr_csrows - 1; i >= 0; i--) {
463 		csrow = mci->csrows[i];
464 		if (!nr_pages_per_csrow(csrow))
465 			continue;
466 		device_unregister(&mci->csrows[i]->dev);
467 	}
468 }
469 #endif
470 
471 /*
472  * Per-dimm (or per-rank) devices
473  */
474 
475 #define to_dimm(k) container_of(k, struct dimm_info, dev)
476 
477 /* show/store functions for DIMM Label attributes */
478 static ssize_t dimmdev_location_show(struct device *dev,
479 				     struct device_attribute *mattr, char *data)
480 {
481 	struct dimm_info *dimm = to_dimm(dev);
482 
483 	return edac_dimm_info_location(dimm, data, PAGE_SIZE);
484 }
485 
486 static ssize_t dimmdev_label_show(struct device *dev,
487 				  struct device_attribute *mattr, char *data)
488 {
489 	struct dimm_info *dimm = to_dimm(dev);
490 
491 	/* if field has not been initialized, there is nothing to send */
492 	if (!dimm->label[0])
493 		return 0;
494 
495 	return snprintf(data, sizeof(dimm->label) + 1, "%s\n", dimm->label);
496 }
497 
498 static ssize_t dimmdev_label_store(struct device *dev,
499 				   struct device_attribute *mattr,
500 				   const char *data,
501 				   size_t count)
502 {
503 	struct dimm_info *dimm = to_dimm(dev);
504 	size_t copy_count = count;
505 
506 	if (count == 0)
507 		return -EINVAL;
508 
509 	if (data[count - 1] == '\0' || data[count - 1] == '\n')
510 		copy_count -= 1;
511 
512 	if (copy_count == 0 || copy_count >= sizeof(dimm->label))
513 		return -EINVAL;
514 
515 	strncpy(dimm->label, data, copy_count);
516 	dimm->label[copy_count] = '\0';
517 
518 	return count;
519 }
520 
521 static ssize_t dimmdev_size_show(struct device *dev,
522 				 struct device_attribute *mattr, char *data)
523 {
524 	struct dimm_info *dimm = to_dimm(dev);
525 
526 	return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages));
527 }
528 
529 static ssize_t dimmdev_mem_type_show(struct device *dev,
530 				     struct device_attribute *mattr, char *data)
531 {
532 	struct dimm_info *dimm = to_dimm(dev);
533 
534 	return sprintf(data, "%s\n", mem_types[dimm->mtype]);
535 }
536 
537 static ssize_t dimmdev_dev_type_show(struct device *dev,
538 				     struct device_attribute *mattr, char *data)
539 {
540 	struct dimm_info *dimm = to_dimm(dev);
541 
542 	return sprintf(data, "%s\n", dev_types[dimm->dtype]);
543 }
544 
545 static ssize_t dimmdev_edac_mode_show(struct device *dev,
546 				      struct device_attribute *mattr,
547 				      char *data)
548 {
549 	struct dimm_info *dimm = to_dimm(dev);
550 
551 	return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]);
552 }
553 
554 /* dimm/rank attribute files */
555 static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR,
556 		   dimmdev_label_show, dimmdev_label_store);
557 static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL);
558 static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL);
559 static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL);
560 static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL);
561 static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL);
562 
563 /* attributes of the dimm<id>/rank<id> object */
564 static struct attribute *dimm_attrs[] = {
565 	&dev_attr_dimm_label.attr,
566 	&dev_attr_dimm_location.attr,
567 	&dev_attr_size.attr,
568 	&dev_attr_dimm_mem_type.attr,
569 	&dev_attr_dimm_dev_type.attr,
570 	&dev_attr_dimm_edac_mode.attr,
571 	NULL,
572 };
573 
574 static struct attribute_group dimm_attr_grp = {
575 	.attrs	= dimm_attrs,
576 };
577 
578 static const struct attribute_group *dimm_attr_groups[] = {
579 	&dimm_attr_grp,
580 	NULL
581 };
582 
583 static void dimm_attr_release(struct device *dev)
584 {
585 	struct dimm_info *dimm = container_of(dev, struct dimm_info, dev);
586 
587 	edac_dbg(1, "Releasing dimm device %s\n", dev_name(dev));
588 	kfree(dimm);
589 }
590 
591 static struct device_type dimm_attr_type = {
592 	.groups		= dimm_attr_groups,
593 	.release	= dimm_attr_release,
594 };
595 
596 /* Create a DIMM object under specifed memory controller device */
597 static int edac_create_dimm_object(struct mem_ctl_info *mci,
598 				   struct dimm_info *dimm,
599 				   int index)
600 {
601 	int err;
602 	dimm->mci = mci;
603 
604 	dimm->dev.type = &dimm_attr_type;
605 	dimm->dev.bus = mci->bus;
606 	device_initialize(&dimm->dev);
607 
608 	dimm->dev.parent = &mci->dev;
609 	if (mci->csbased)
610 		dev_set_name(&dimm->dev, "rank%d", index);
611 	else
612 		dev_set_name(&dimm->dev, "dimm%d", index);
613 	dev_set_drvdata(&dimm->dev, dimm);
614 	pm_runtime_forbid(&mci->dev);
615 
616 	err =  device_add(&dimm->dev);
617 
618 	edac_dbg(0, "creating rank/dimm device %s\n", dev_name(&dimm->dev));
619 
620 	return err;
621 }
622 
623 /*
624  * Memory controller device
625  */
626 
627 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
628 
629 static ssize_t mci_reset_counters_store(struct device *dev,
630 					struct device_attribute *mattr,
631 					const char *data, size_t count)
632 {
633 	struct mem_ctl_info *mci = to_mci(dev);
634 	int cnt, row, chan, i;
635 	mci->ue_mc = 0;
636 	mci->ce_mc = 0;
637 	mci->ue_noinfo_count = 0;
638 	mci->ce_noinfo_count = 0;
639 
640 	for (row = 0; row < mci->nr_csrows; row++) {
641 		struct csrow_info *ri = mci->csrows[row];
642 
643 		ri->ue_count = 0;
644 		ri->ce_count = 0;
645 
646 		for (chan = 0; chan < ri->nr_channels; chan++)
647 			ri->channels[chan]->ce_count = 0;
648 	}
649 
650 	cnt = 1;
651 	for (i = 0; i < mci->n_layers; i++) {
652 		cnt *= mci->layers[i].size;
653 		memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32));
654 		memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32));
655 	}
656 
657 	mci->start_time = jiffies;
658 	return count;
659 }
660 
661 /* Memory scrubbing interface:
662  *
663  * A MC driver can limit the scrubbing bandwidth based on the CPU type.
664  * Therefore, ->set_sdram_scrub_rate should be made to return the actual
665  * bandwidth that is accepted or 0 when scrubbing is to be disabled.
666  *
667  * Negative value still means that an error has occurred while setting
668  * the scrub rate.
669  */
670 static ssize_t mci_sdram_scrub_rate_store(struct device *dev,
671 					  struct device_attribute *mattr,
672 					  const char *data, size_t count)
673 {
674 	struct mem_ctl_info *mci = to_mci(dev);
675 	unsigned long bandwidth = 0;
676 	int new_bw = 0;
677 
678 	if (kstrtoul(data, 10, &bandwidth) < 0)
679 		return -EINVAL;
680 
681 	new_bw = mci->set_sdram_scrub_rate(mci, bandwidth);
682 	if (new_bw < 0) {
683 		edac_printk(KERN_WARNING, EDAC_MC,
684 			    "Error setting scrub rate to: %lu\n", bandwidth);
685 		return -EINVAL;
686 	}
687 
688 	return count;
689 }
690 
691 /*
692  * ->get_sdram_scrub_rate() return value semantics same as above.
693  */
694 static ssize_t mci_sdram_scrub_rate_show(struct device *dev,
695 					 struct device_attribute *mattr,
696 					 char *data)
697 {
698 	struct mem_ctl_info *mci = to_mci(dev);
699 	int bandwidth = 0;
700 
701 	bandwidth = mci->get_sdram_scrub_rate(mci);
702 	if (bandwidth < 0) {
703 		edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n");
704 		return bandwidth;
705 	}
706 
707 	return sprintf(data, "%d\n", bandwidth);
708 }
709 
710 /* default attribute files for the MCI object */
711 static ssize_t mci_ue_count_show(struct device *dev,
712 				 struct device_attribute *mattr,
713 				 char *data)
714 {
715 	struct mem_ctl_info *mci = to_mci(dev);
716 
717 	return sprintf(data, "%d\n", mci->ue_mc);
718 }
719 
720 static ssize_t mci_ce_count_show(struct device *dev,
721 				 struct device_attribute *mattr,
722 				 char *data)
723 {
724 	struct mem_ctl_info *mci = to_mci(dev);
725 
726 	return sprintf(data, "%d\n", mci->ce_mc);
727 }
728 
729 static ssize_t mci_ce_noinfo_show(struct device *dev,
730 				  struct device_attribute *mattr,
731 				  char *data)
732 {
733 	struct mem_ctl_info *mci = to_mci(dev);
734 
735 	return sprintf(data, "%d\n", mci->ce_noinfo_count);
736 }
737 
738 static ssize_t mci_ue_noinfo_show(struct device *dev,
739 				  struct device_attribute *mattr,
740 				  char *data)
741 {
742 	struct mem_ctl_info *mci = to_mci(dev);
743 
744 	return sprintf(data, "%d\n", mci->ue_noinfo_count);
745 }
746 
747 static ssize_t mci_seconds_show(struct device *dev,
748 				struct device_attribute *mattr,
749 				char *data)
750 {
751 	struct mem_ctl_info *mci = to_mci(dev);
752 
753 	return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ);
754 }
755 
756 static ssize_t mci_ctl_name_show(struct device *dev,
757 				 struct device_attribute *mattr,
758 				 char *data)
759 {
760 	struct mem_ctl_info *mci = to_mci(dev);
761 
762 	return sprintf(data, "%s\n", mci->ctl_name);
763 }
764 
765 static ssize_t mci_size_mb_show(struct device *dev,
766 				struct device_attribute *mattr,
767 				char *data)
768 {
769 	struct mem_ctl_info *mci = to_mci(dev);
770 	int total_pages = 0, csrow_idx, j;
771 
772 	for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) {
773 		struct csrow_info *csrow = mci->csrows[csrow_idx];
774 
775 		for (j = 0; j < csrow->nr_channels; j++) {
776 			struct dimm_info *dimm = csrow->channels[j]->dimm;
777 
778 			total_pages += dimm->nr_pages;
779 		}
780 	}
781 
782 	return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages));
783 }
784 
785 static ssize_t mci_max_location_show(struct device *dev,
786 				     struct device_attribute *mattr,
787 				     char *data)
788 {
789 	struct mem_ctl_info *mci = to_mci(dev);
790 	int i;
791 	char *p = data;
792 
793 	for (i = 0; i < mci->n_layers; i++) {
794 		p += sprintf(p, "%s %d ",
795 			     edac_layer_name[mci->layers[i].type],
796 			     mci->layers[i].size - 1);
797 	}
798 
799 	return p - data;
800 }
801 
802 /* default Control file */
803 static DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store);
804 
805 /* default Attribute files */
806 static DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL);
807 static DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL);
808 static DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL);
809 static DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL);
810 static DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL);
811 static DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL);
812 static DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL);
813 static DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL);
814 
815 /* memory scrubber attribute file */
816 DEVICE_ATTR(sdram_scrub_rate, 0, mci_sdram_scrub_rate_show,
817 	    mci_sdram_scrub_rate_store); /* umode set later in is_visible */
818 
819 static struct attribute *mci_attrs[] = {
820 	&dev_attr_reset_counters.attr,
821 	&dev_attr_mc_name.attr,
822 	&dev_attr_size_mb.attr,
823 	&dev_attr_seconds_since_reset.attr,
824 	&dev_attr_ue_noinfo_count.attr,
825 	&dev_attr_ce_noinfo_count.attr,
826 	&dev_attr_ue_count.attr,
827 	&dev_attr_ce_count.attr,
828 	&dev_attr_max_location.attr,
829 	&dev_attr_sdram_scrub_rate.attr,
830 	NULL
831 };
832 
833 static umode_t mci_attr_is_visible(struct kobject *kobj,
834 				   struct attribute *attr, int idx)
835 {
836 	struct device *dev = kobj_to_dev(kobj);
837 	struct mem_ctl_info *mci = to_mci(dev);
838 	umode_t mode = 0;
839 
840 	if (attr != &dev_attr_sdram_scrub_rate.attr)
841 		return attr->mode;
842 	if (mci->get_sdram_scrub_rate)
843 		mode |= S_IRUGO;
844 	if (mci->set_sdram_scrub_rate)
845 		mode |= S_IWUSR;
846 	return mode;
847 }
848 
849 static struct attribute_group mci_attr_grp = {
850 	.attrs	= mci_attrs,
851 	.is_visible = mci_attr_is_visible,
852 };
853 
854 static const struct attribute_group *mci_attr_groups[] = {
855 	&mci_attr_grp,
856 	NULL
857 };
858 
859 static void mci_attr_release(struct device *dev)
860 {
861 	struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
862 
863 	edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
864 	kfree(mci);
865 }
866 
867 static struct device_type mci_attr_type = {
868 	.groups		= mci_attr_groups,
869 	.release	= mci_attr_release,
870 };
871 
872 /*
873  * Create a new Memory Controller kobject instance,
874  *	mc<id> under the 'mc' directory
875  *
876  * Return:
877  *	0	Success
878  *	!0	Failure
879  */
880 int edac_create_sysfs_mci_device(struct mem_ctl_info *mci,
881 				 const struct attribute_group **groups)
882 {
883 	char *name;
884 	int i, err;
885 
886 	/*
887 	 * The memory controller needs its own bus, in order to avoid
888 	 * namespace conflicts at /sys/bus/edac.
889 	 */
890 	name = kasprintf(GFP_KERNEL, "mc%d", mci->mc_idx);
891 	if (!name)
892 		return -ENOMEM;
893 
894 	mci->bus->name = name;
895 
896 	edac_dbg(0, "creating bus %s\n", mci->bus->name);
897 
898 	err = bus_register(mci->bus);
899 	if (err < 0) {
900 		kfree(name);
901 		return err;
902 	}
903 
904 	/* get the /sys/devices/system/edac subsys reference */
905 	mci->dev.type = &mci_attr_type;
906 	device_initialize(&mci->dev);
907 
908 	mci->dev.parent = mci_pdev;
909 	mci->dev.bus = mci->bus;
910 	mci->dev.groups = groups;
911 	dev_set_name(&mci->dev, "mc%d", mci->mc_idx);
912 	dev_set_drvdata(&mci->dev, mci);
913 	pm_runtime_forbid(&mci->dev);
914 
915 	edac_dbg(0, "creating device %s\n", dev_name(&mci->dev));
916 	err = device_add(&mci->dev);
917 	if (err < 0) {
918 		edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev));
919 		goto fail_unregister_bus;
920 	}
921 
922 	/*
923 	 * Create the dimm/rank devices
924 	 */
925 	for (i = 0; i < mci->tot_dimms; i++) {
926 		struct dimm_info *dimm = mci->dimms[i];
927 		/* Only expose populated DIMMs */
928 		if (!dimm->nr_pages)
929 			continue;
930 
931 #ifdef CONFIG_EDAC_DEBUG
932 		edac_dbg(1, "creating dimm%d, located at ", i);
933 		if (edac_debug_level >= 1) {
934 			int lay;
935 			for (lay = 0; lay < mci->n_layers; lay++)
936 				printk(KERN_CONT "%s %d ",
937 					edac_layer_name[mci->layers[lay].type],
938 					dimm->location[lay]);
939 			printk(KERN_CONT "\n");
940 		}
941 #endif
942 		err = edac_create_dimm_object(mci, dimm, i);
943 		if (err) {
944 			edac_dbg(1, "failure: create dimm %d obj\n", i);
945 			goto fail_unregister_dimm;
946 		}
947 	}
948 
949 #ifdef CONFIG_EDAC_LEGACY_SYSFS
950 	err = edac_create_csrow_objects(mci);
951 	if (err < 0)
952 		goto fail_unregister_dimm;
953 #endif
954 
955 	edac_create_debugfs_nodes(mci);
956 	return 0;
957 
958 fail_unregister_dimm:
959 	for (i--; i >= 0; i--) {
960 		struct dimm_info *dimm = mci->dimms[i];
961 		if (!dimm->nr_pages)
962 			continue;
963 
964 		device_unregister(&dimm->dev);
965 	}
966 	device_unregister(&mci->dev);
967 fail_unregister_bus:
968 	bus_unregister(mci->bus);
969 	kfree(name);
970 
971 	return err;
972 }
973 
974 /*
975  * remove a Memory Controller instance
976  */
977 void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
978 {
979 	int i;
980 
981 	edac_dbg(0, "\n");
982 
983 #ifdef CONFIG_EDAC_DEBUG
984 	edac_debugfs_remove_recursive(mci->debugfs);
985 #endif
986 #ifdef CONFIG_EDAC_LEGACY_SYSFS
987 	edac_delete_csrow_objects(mci);
988 #endif
989 
990 	for (i = 0; i < mci->tot_dimms; i++) {
991 		struct dimm_info *dimm = mci->dimms[i];
992 		if (dimm->nr_pages == 0)
993 			continue;
994 		edac_dbg(0, "removing device %s\n", dev_name(&dimm->dev));
995 		device_unregister(&dimm->dev);
996 	}
997 }
998 
999 void edac_unregister_sysfs(struct mem_ctl_info *mci)
1000 {
1001 	const char *name = mci->bus->name;
1002 
1003 	edac_dbg(1, "Unregistering device %s\n", dev_name(&mci->dev));
1004 	device_unregister(&mci->dev);
1005 	bus_unregister(mci->bus);
1006 	kfree(name);
1007 }
1008 
1009 static void mc_attr_release(struct device *dev)
1010 {
1011 	/*
1012 	 * There's no container structure here, as this is just the mci
1013 	 * parent device, used to create the /sys/devices/mc sysfs node.
1014 	 * So, there are no attributes on it.
1015 	 */
1016 	edac_dbg(1, "Releasing device %s\n", dev_name(dev));
1017 	kfree(dev);
1018 }
1019 
1020 static struct device_type mc_attr_type = {
1021 	.release	= mc_attr_release,
1022 };
1023 /*
1024  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1025  */
1026 int __init edac_mc_sysfs_init(void)
1027 {
1028 	int err;
1029 
1030 	mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL);
1031 	if (!mci_pdev) {
1032 		err = -ENOMEM;
1033 		goto out;
1034 	}
1035 
1036 	mci_pdev->bus = edac_get_sysfs_subsys();
1037 	mci_pdev->type = &mc_attr_type;
1038 	device_initialize(mci_pdev);
1039 	dev_set_name(mci_pdev, "mc");
1040 
1041 	err = device_add(mci_pdev);
1042 	if (err < 0)
1043 		goto out_dev_free;
1044 
1045 	edac_dbg(0, "device %s created\n", dev_name(mci_pdev));
1046 
1047 	return 0;
1048 
1049  out_dev_free:
1050 	kfree(mci_pdev);
1051  out:
1052 	return err;
1053 }
1054 
1055 void edac_mc_sysfs_exit(void)
1056 {
1057 	device_unregister(mci_pdev);
1058 }
1059