1 /* 2 * edac_mc kernel module 3 * (C) 2005-2007 Linux Networx (http://lnxi.com) 4 * 5 * This file may be distributed under the terms of the 6 * GNU General Public License. 7 * 8 * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com 9 * 10 * (c) 2012-2013 - Mauro Carvalho Chehab 11 * The entire API were re-written, and ported to use struct device 12 * 13 */ 14 15 #include <linux/ctype.h> 16 #include <linux/slab.h> 17 #include <linux/edac.h> 18 #include <linux/bug.h> 19 #include <linux/pm_runtime.h> 20 #include <linux/uaccess.h> 21 22 #include "edac_mc.h" 23 #include "edac_module.h" 24 25 /* MC EDAC Controls, setable by module parameter, and sysfs */ 26 static int edac_mc_log_ue = 1; 27 static int edac_mc_log_ce = 1; 28 static int edac_mc_panic_on_ue; 29 static unsigned int edac_mc_poll_msec = 1000; 30 31 /* Getter functions for above */ 32 int edac_mc_get_log_ue(void) 33 { 34 return edac_mc_log_ue; 35 } 36 37 int edac_mc_get_log_ce(void) 38 { 39 return edac_mc_log_ce; 40 } 41 42 int edac_mc_get_panic_on_ue(void) 43 { 44 return edac_mc_panic_on_ue; 45 } 46 47 /* this is temporary */ 48 unsigned int edac_mc_get_poll_msec(void) 49 { 50 return edac_mc_poll_msec; 51 } 52 53 static int edac_set_poll_msec(const char *val, const struct kernel_param *kp) 54 { 55 unsigned int i; 56 int ret; 57 58 if (!val) 59 return -EINVAL; 60 61 ret = kstrtouint(val, 0, &i); 62 if (ret) 63 return ret; 64 65 if (i < 1000) 66 return -EINVAL; 67 68 *((unsigned int *)kp->arg) = i; 69 70 /* notify edac_mc engine to reset the poll period */ 71 edac_mc_reset_delay_period(i); 72 73 return 0; 74 } 75 76 /* Parameter declarations for above */ 77 module_param(edac_mc_panic_on_ue, int, 0644); 78 MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on"); 79 module_param(edac_mc_log_ue, int, 0644); 80 MODULE_PARM_DESC(edac_mc_log_ue, 81 "Log uncorrectable error to console: 0=off 1=on"); 82 module_param(edac_mc_log_ce, int, 0644); 83 MODULE_PARM_DESC(edac_mc_log_ce, 84 "Log correctable error to console: 0=off 1=on"); 85 module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_uint, 86 &edac_mc_poll_msec, 0644); 87 MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds"); 88 89 static struct device *mci_pdev; 90 91 /* 92 * various constants for Memory Controllers 93 */ 94 static const char * const dev_types[] = { 95 [DEV_UNKNOWN] = "Unknown", 96 [DEV_X1] = "x1", 97 [DEV_X2] = "x2", 98 [DEV_X4] = "x4", 99 [DEV_X8] = "x8", 100 [DEV_X16] = "x16", 101 [DEV_X32] = "x32", 102 [DEV_X64] = "x64" 103 }; 104 105 static const char * const edac_caps[] = { 106 [EDAC_UNKNOWN] = "Unknown", 107 [EDAC_NONE] = "None", 108 [EDAC_RESERVED] = "Reserved", 109 [EDAC_PARITY] = "PARITY", 110 [EDAC_EC] = "EC", 111 [EDAC_SECDED] = "SECDED", 112 [EDAC_S2ECD2ED] = "S2ECD2ED", 113 [EDAC_S4ECD4ED] = "S4ECD4ED", 114 [EDAC_S8ECD8ED] = "S8ECD8ED", 115 [EDAC_S16ECD16ED] = "S16ECD16ED" 116 }; 117 118 #ifdef CONFIG_EDAC_LEGACY_SYSFS 119 /* 120 * EDAC sysfs CSROW data structures and methods 121 */ 122 123 #define to_csrow(k) container_of(k, struct csrow_info, dev) 124 125 /* 126 * We need it to avoid namespace conflicts between the legacy API 127 * and the per-dimm/per-rank one 128 */ 129 #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \ 130 static struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store) 131 132 struct dev_ch_attribute { 133 struct device_attribute attr; 134 int channel; 135 }; 136 137 #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \ 138 static struct dev_ch_attribute dev_attr_legacy_##_name = \ 139 { __ATTR(_name, _mode, _show, _store), (_var) } 140 141 #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel) 142 143 /* Set of more default csrow<id> attribute show/store functions */ 144 static ssize_t csrow_ue_count_show(struct device *dev, 145 struct device_attribute *mattr, char *data) 146 { 147 struct csrow_info *csrow = to_csrow(dev); 148 149 return sprintf(data, "%u\n", csrow->ue_count); 150 } 151 152 static ssize_t csrow_ce_count_show(struct device *dev, 153 struct device_attribute *mattr, char *data) 154 { 155 struct csrow_info *csrow = to_csrow(dev); 156 157 return sprintf(data, "%u\n", csrow->ce_count); 158 } 159 160 static ssize_t csrow_size_show(struct device *dev, 161 struct device_attribute *mattr, char *data) 162 { 163 struct csrow_info *csrow = to_csrow(dev); 164 int i; 165 u32 nr_pages = 0; 166 167 for (i = 0; i < csrow->nr_channels; i++) 168 nr_pages += csrow->channels[i]->dimm->nr_pages; 169 return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages)); 170 } 171 172 static ssize_t csrow_mem_type_show(struct device *dev, 173 struct device_attribute *mattr, char *data) 174 { 175 struct csrow_info *csrow = to_csrow(dev); 176 177 return sprintf(data, "%s\n", edac_mem_types[csrow->channels[0]->dimm->mtype]); 178 } 179 180 static ssize_t csrow_dev_type_show(struct device *dev, 181 struct device_attribute *mattr, char *data) 182 { 183 struct csrow_info *csrow = to_csrow(dev); 184 185 return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]); 186 } 187 188 static ssize_t csrow_edac_mode_show(struct device *dev, 189 struct device_attribute *mattr, 190 char *data) 191 { 192 struct csrow_info *csrow = to_csrow(dev); 193 194 return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]); 195 } 196 197 /* show/store functions for DIMM Label attributes */ 198 static ssize_t channel_dimm_label_show(struct device *dev, 199 struct device_attribute *mattr, 200 char *data) 201 { 202 struct csrow_info *csrow = to_csrow(dev); 203 unsigned chan = to_channel(mattr); 204 struct rank_info *rank = csrow->channels[chan]; 205 206 /* if field has not been initialized, there is nothing to send */ 207 if (!rank->dimm->label[0]) 208 return 0; 209 210 return snprintf(data, sizeof(rank->dimm->label) + 1, "%s\n", 211 rank->dimm->label); 212 } 213 214 static ssize_t channel_dimm_label_store(struct device *dev, 215 struct device_attribute *mattr, 216 const char *data, size_t count) 217 { 218 struct csrow_info *csrow = to_csrow(dev); 219 unsigned chan = to_channel(mattr); 220 struct rank_info *rank = csrow->channels[chan]; 221 size_t copy_count = count; 222 223 if (count == 0) 224 return -EINVAL; 225 226 if (data[count - 1] == '\0' || data[count - 1] == '\n') 227 copy_count -= 1; 228 229 if (copy_count == 0 || copy_count >= sizeof(rank->dimm->label)) 230 return -EINVAL; 231 232 strncpy(rank->dimm->label, data, copy_count); 233 rank->dimm->label[copy_count] = '\0'; 234 235 return count; 236 } 237 238 /* show function for dynamic chX_ce_count attribute */ 239 static ssize_t channel_ce_count_show(struct device *dev, 240 struct device_attribute *mattr, char *data) 241 { 242 struct csrow_info *csrow = to_csrow(dev); 243 unsigned chan = to_channel(mattr); 244 struct rank_info *rank = csrow->channels[chan]; 245 246 return sprintf(data, "%u\n", rank->ce_count); 247 } 248 249 /* cwrow<id>/attribute files */ 250 DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL); 251 DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL); 252 DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL); 253 DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL); 254 DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL); 255 DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL); 256 257 /* default attributes of the CSROW<id> object */ 258 static struct attribute *csrow_attrs[] = { 259 &dev_attr_legacy_dev_type.attr, 260 &dev_attr_legacy_mem_type.attr, 261 &dev_attr_legacy_edac_mode.attr, 262 &dev_attr_legacy_size_mb.attr, 263 &dev_attr_legacy_ue_count.attr, 264 &dev_attr_legacy_ce_count.attr, 265 NULL, 266 }; 267 268 static const struct attribute_group csrow_attr_grp = { 269 .attrs = csrow_attrs, 270 }; 271 272 static const struct attribute_group *csrow_attr_groups[] = { 273 &csrow_attr_grp, 274 NULL 275 }; 276 277 static void csrow_attr_release(struct device *dev) 278 { 279 struct csrow_info *csrow = container_of(dev, struct csrow_info, dev); 280 281 edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev)); 282 kfree(csrow); 283 } 284 285 static const struct device_type csrow_attr_type = { 286 .groups = csrow_attr_groups, 287 .release = csrow_attr_release, 288 }; 289 290 /* 291 * possible dynamic channel DIMM Label attribute files 292 * 293 */ 294 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR, 295 channel_dimm_label_show, channel_dimm_label_store, 0); 296 DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR, 297 channel_dimm_label_show, channel_dimm_label_store, 1); 298 DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR, 299 channel_dimm_label_show, channel_dimm_label_store, 2); 300 DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR, 301 channel_dimm_label_show, channel_dimm_label_store, 3); 302 DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR, 303 channel_dimm_label_show, channel_dimm_label_store, 4); 304 DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR, 305 channel_dimm_label_show, channel_dimm_label_store, 5); 306 DEVICE_CHANNEL(ch6_dimm_label, S_IRUGO | S_IWUSR, 307 channel_dimm_label_show, channel_dimm_label_store, 6); 308 DEVICE_CHANNEL(ch7_dimm_label, S_IRUGO | S_IWUSR, 309 channel_dimm_label_show, channel_dimm_label_store, 7); 310 311 /* Total possible dynamic DIMM Label attribute file table */ 312 static struct attribute *dynamic_csrow_dimm_attr[] = { 313 &dev_attr_legacy_ch0_dimm_label.attr.attr, 314 &dev_attr_legacy_ch1_dimm_label.attr.attr, 315 &dev_attr_legacy_ch2_dimm_label.attr.attr, 316 &dev_attr_legacy_ch3_dimm_label.attr.attr, 317 &dev_attr_legacy_ch4_dimm_label.attr.attr, 318 &dev_attr_legacy_ch5_dimm_label.attr.attr, 319 &dev_attr_legacy_ch6_dimm_label.attr.attr, 320 &dev_attr_legacy_ch7_dimm_label.attr.attr, 321 NULL 322 }; 323 324 /* possible dynamic channel ce_count attribute files */ 325 DEVICE_CHANNEL(ch0_ce_count, S_IRUGO, 326 channel_ce_count_show, NULL, 0); 327 DEVICE_CHANNEL(ch1_ce_count, S_IRUGO, 328 channel_ce_count_show, NULL, 1); 329 DEVICE_CHANNEL(ch2_ce_count, S_IRUGO, 330 channel_ce_count_show, NULL, 2); 331 DEVICE_CHANNEL(ch3_ce_count, S_IRUGO, 332 channel_ce_count_show, NULL, 3); 333 DEVICE_CHANNEL(ch4_ce_count, S_IRUGO, 334 channel_ce_count_show, NULL, 4); 335 DEVICE_CHANNEL(ch5_ce_count, S_IRUGO, 336 channel_ce_count_show, NULL, 5); 337 DEVICE_CHANNEL(ch6_ce_count, S_IRUGO, 338 channel_ce_count_show, NULL, 6); 339 DEVICE_CHANNEL(ch7_ce_count, S_IRUGO, 340 channel_ce_count_show, NULL, 7); 341 342 /* Total possible dynamic ce_count attribute file table */ 343 static struct attribute *dynamic_csrow_ce_count_attr[] = { 344 &dev_attr_legacy_ch0_ce_count.attr.attr, 345 &dev_attr_legacy_ch1_ce_count.attr.attr, 346 &dev_attr_legacy_ch2_ce_count.attr.attr, 347 &dev_attr_legacy_ch3_ce_count.attr.attr, 348 &dev_attr_legacy_ch4_ce_count.attr.attr, 349 &dev_attr_legacy_ch5_ce_count.attr.attr, 350 &dev_attr_legacy_ch6_ce_count.attr.attr, 351 &dev_attr_legacy_ch7_ce_count.attr.attr, 352 NULL 353 }; 354 355 static umode_t csrow_dev_is_visible(struct kobject *kobj, 356 struct attribute *attr, int idx) 357 { 358 struct device *dev = kobj_to_dev(kobj); 359 struct csrow_info *csrow = container_of(dev, struct csrow_info, dev); 360 361 if (idx >= csrow->nr_channels) 362 return 0; 363 364 if (idx >= ARRAY_SIZE(dynamic_csrow_ce_count_attr) - 1) { 365 WARN_ONCE(1, "idx: %d\n", idx); 366 return 0; 367 } 368 369 /* Only expose populated DIMMs */ 370 if (!csrow->channels[idx]->dimm->nr_pages) 371 return 0; 372 373 return attr->mode; 374 } 375 376 377 static const struct attribute_group csrow_dev_dimm_group = { 378 .attrs = dynamic_csrow_dimm_attr, 379 .is_visible = csrow_dev_is_visible, 380 }; 381 382 static const struct attribute_group csrow_dev_ce_count_group = { 383 .attrs = dynamic_csrow_ce_count_attr, 384 .is_visible = csrow_dev_is_visible, 385 }; 386 387 static const struct attribute_group *csrow_dev_groups[] = { 388 &csrow_dev_dimm_group, 389 &csrow_dev_ce_count_group, 390 NULL 391 }; 392 393 static inline int nr_pages_per_csrow(struct csrow_info *csrow) 394 { 395 int chan, nr_pages = 0; 396 397 for (chan = 0; chan < csrow->nr_channels; chan++) 398 nr_pages += csrow->channels[chan]->dimm->nr_pages; 399 400 return nr_pages; 401 } 402 403 /* Create a CSROW object under specifed edac_mc_device */ 404 static int edac_create_csrow_object(struct mem_ctl_info *mci, 405 struct csrow_info *csrow, int index) 406 { 407 int err; 408 409 csrow->dev.type = &csrow_attr_type; 410 csrow->dev.groups = csrow_dev_groups; 411 device_initialize(&csrow->dev); 412 csrow->dev.parent = &mci->dev; 413 csrow->mci = mci; 414 dev_set_name(&csrow->dev, "csrow%d", index); 415 dev_set_drvdata(&csrow->dev, csrow); 416 417 edac_dbg(0, "creating (virtual) csrow node %s\n", 418 dev_name(&csrow->dev)); 419 420 err = device_add(&csrow->dev); 421 if (err) 422 put_device(&csrow->dev); 423 424 return err; 425 } 426 427 /* Create a CSROW object under specifed edac_mc_device */ 428 static int edac_create_csrow_objects(struct mem_ctl_info *mci) 429 { 430 int err, i; 431 struct csrow_info *csrow; 432 433 for (i = 0; i < mci->nr_csrows; i++) { 434 csrow = mci->csrows[i]; 435 if (!nr_pages_per_csrow(csrow)) 436 continue; 437 err = edac_create_csrow_object(mci, mci->csrows[i], i); 438 if (err < 0) { 439 edac_dbg(1, 440 "failure: create csrow objects for csrow %d\n", 441 i); 442 goto error; 443 } 444 } 445 return 0; 446 447 error: 448 for (--i; i >= 0; i--) { 449 csrow = mci->csrows[i]; 450 if (!nr_pages_per_csrow(csrow)) 451 continue; 452 453 device_del(&mci->csrows[i]->dev); 454 } 455 456 return err; 457 } 458 459 static void edac_delete_csrow_objects(struct mem_ctl_info *mci) 460 { 461 int i; 462 struct csrow_info *csrow; 463 464 for (i = mci->nr_csrows - 1; i >= 0; i--) { 465 csrow = mci->csrows[i]; 466 if (!nr_pages_per_csrow(csrow)) 467 continue; 468 device_unregister(&mci->csrows[i]->dev); 469 } 470 } 471 #endif 472 473 /* 474 * Per-dimm (or per-rank) devices 475 */ 476 477 #define to_dimm(k) container_of(k, struct dimm_info, dev) 478 479 /* show/store functions for DIMM Label attributes */ 480 static ssize_t dimmdev_location_show(struct device *dev, 481 struct device_attribute *mattr, char *data) 482 { 483 struct dimm_info *dimm = to_dimm(dev); 484 485 return edac_dimm_info_location(dimm, data, PAGE_SIZE); 486 } 487 488 static ssize_t dimmdev_label_show(struct device *dev, 489 struct device_attribute *mattr, char *data) 490 { 491 struct dimm_info *dimm = to_dimm(dev); 492 493 /* if field has not been initialized, there is nothing to send */ 494 if (!dimm->label[0]) 495 return 0; 496 497 return snprintf(data, sizeof(dimm->label) + 1, "%s\n", dimm->label); 498 } 499 500 static ssize_t dimmdev_label_store(struct device *dev, 501 struct device_attribute *mattr, 502 const char *data, 503 size_t count) 504 { 505 struct dimm_info *dimm = to_dimm(dev); 506 size_t copy_count = count; 507 508 if (count == 0) 509 return -EINVAL; 510 511 if (data[count - 1] == '\0' || data[count - 1] == '\n') 512 copy_count -= 1; 513 514 if (copy_count == 0 || copy_count >= sizeof(dimm->label)) 515 return -EINVAL; 516 517 strncpy(dimm->label, data, copy_count); 518 dimm->label[copy_count] = '\0'; 519 520 return count; 521 } 522 523 static ssize_t dimmdev_size_show(struct device *dev, 524 struct device_attribute *mattr, char *data) 525 { 526 struct dimm_info *dimm = to_dimm(dev); 527 528 return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages)); 529 } 530 531 static ssize_t dimmdev_mem_type_show(struct device *dev, 532 struct device_attribute *mattr, char *data) 533 { 534 struct dimm_info *dimm = to_dimm(dev); 535 536 return sprintf(data, "%s\n", edac_mem_types[dimm->mtype]); 537 } 538 539 static ssize_t dimmdev_dev_type_show(struct device *dev, 540 struct device_attribute *mattr, char *data) 541 { 542 struct dimm_info *dimm = to_dimm(dev); 543 544 return sprintf(data, "%s\n", dev_types[dimm->dtype]); 545 } 546 547 static ssize_t dimmdev_edac_mode_show(struct device *dev, 548 struct device_attribute *mattr, 549 char *data) 550 { 551 struct dimm_info *dimm = to_dimm(dev); 552 553 return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]); 554 } 555 556 static ssize_t dimmdev_ce_count_show(struct device *dev, 557 struct device_attribute *mattr, 558 char *data) 559 { 560 struct dimm_info *dimm = to_dimm(dev); 561 u32 count; 562 int off; 563 564 off = EDAC_DIMM_OFF(dimm->mci->layers, 565 dimm->mci->n_layers, 566 dimm->location[0], 567 dimm->location[1], 568 dimm->location[2]); 569 count = dimm->mci->ce_per_layer[dimm->mci->n_layers-1][off]; 570 return sprintf(data, "%u\n", count); 571 } 572 573 static ssize_t dimmdev_ue_count_show(struct device *dev, 574 struct device_attribute *mattr, 575 char *data) 576 { 577 struct dimm_info *dimm = to_dimm(dev); 578 u32 count; 579 int off; 580 581 off = EDAC_DIMM_OFF(dimm->mci->layers, 582 dimm->mci->n_layers, 583 dimm->location[0], 584 dimm->location[1], 585 dimm->location[2]); 586 count = dimm->mci->ue_per_layer[dimm->mci->n_layers-1][off]; 587 return sprintf(data, "%u\n", count); 588 } 589 590 /* dimm/rank attribute files */ 591 static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR, 592 dimmdev_label_show, dimmdev_label_store); 593 static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL); 594 static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL); 595 static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL); 596 static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL); 597 static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL); 598 static DEVICE_ATTR(dimm_ce_count, S_IRUGO, dimmdev_ce_count_show, NULL); 599 static DEVICE_ATTR(dimm_ue_count, S_IRUGO, dimmdev_ue_count_show, NULL); 600 601 /* attributes of the dimm<id>/rank<id> object */ 602 static struct attribute *dimm_attrs[] = { 603 &dev_attr_dimm_label.attr, 604 &dev_attr_dimm_location.attr, 605 &dev_attr_size.attr, 606 &dev_attr_dimm_mem_type.attr, 607 &dev_attr_dimm_dev_type.attr, 608 &dev_attr_dimm_edac_mode.attr, 609 &dev_attr_dimm_ce_count.attr, 610 &dev_attr_dimm_ue_count.attr, 611 NULL, 612 }; 613 614 static const struct attribute_group dimm_attr_grp = { 615 .attrs = dimm_attrs, 616 }; 617 618 static const struct attribute_group *dimm_attr_groups[] = { 619 &dimm_attr_grp, 620 NULL 621 }; 622 623 static void dimm_attr_release(struct device *dev) 624 { 625 struct dimm_info *dimm = container_of(dev, struct dimm_info, dev); 626 627 edac_dbg(1, "Releasing dimm device %s\n", dev_name(dev)); 628 kfree(dimm); 629 } 630 631 static const struct device_type dimm_attr_type = { 632 .groups = dimm_attr_groups, 633 .release = dimm_attr_release, 634 }; 635 636 /* Create a DIMM object under specifed memory controller device */ 637 static int edac_create_dimm_object(struct mem_ctl_info *mci, 638 struct dimm_info *dimm, 639 int index) 640 { 641 int err; 642 dimm->mci = mci; 643 644 dimm->dev.type = &dimm_attr_type; 645 device_initialize(&dimm->dev); 646 647 dimm->dev.parent = &mci->dev; 648 if (mci->csbased) 649 dev_set_name(&dimm->dev, "rank%d", index); 650 else 651 dev_set_name(&dimm->dev, "dimm%d", index); 652 dev_set_drvdata(&dimm->dev, dimm); 653 pm_runtime_forbid(&mci->dev); 654 655 err = device_add(&dimm->dev); 656 if (err) 657 put_device(&dimm->dev); 658 659 edac_dbg(0, "created rank/dimm device %s\n", dev_name(&dimm->dev)); 660 661 return err; 662 } 663 664 /* 665 * Memory controller device 666 */ 667 668 #define to_mci(k) container_of(k, struct mem_ctl_info, dev) 669 670 static ssize_t mci_reset_counters_store(struct device *dev, 671 struct device_attribute *mattr, 672 const char *data, size_t count) 673 { 674 struct mem_ctl_info *mci = to_mci(dev); 675 int cnt, row, chan, i; 676 mci->ue_mc = 0; 677 mci->ce_mc = 0; 678 mci->ue_noinfo_count = 0; 679 mci->ce_noinfo_count = 0; 680 681 for (row = 0; row < mci->nr_csrows; row++) { 682 struct csrow_info *ri = mci->csrows[row]; 683 684 ri->ue_count = 0; 685 ri->ce_count = 0; 686 687 for (chan = 0; chan < ri->nr_channels; chan++) 688 ri->channels[chan]->ce_count = 0; 689 } 690 691 cnt = 1; 692 for (i = 0; i < mci->n_layers; i++) { 693 cnt *= mci->layers[i].size; 694 memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32)); 695 memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32)); 696 } 697 698 mci->start_time = jiffies; 699 return count; 700 } 701 702 /* Memory scrubbing interface: 703 * 704 * A MC driver can limit the scrubbing bandwidth based on the CPU type. 705 * Therefore, ->set_sdram_scrub_rate should be made to return the actual 706 * bandwidth that is accepted or 0 when scrubbing is to be disabled. 707 * 708 * Negative value still means that an error has occurred while setting 709 * the scrub rate. 710 */ 711 static ssize_t mci_sdram_scrub_rate_store(struct device *dev, 712 struct device_attribute *mattr, 713 const char *data, size_t count) 714 { 715 struct mem_ctl_info *mci = to_mci(dev); 716 unsigned long bandwidth = 0; 717 int new_bw = 0; 718 719 if (kstrtoul(data, 10, &bandwidth) < 0) 720 return -EINVAL; 721 722 new_bw = mci->set_sdram_scrub_rate(mci, bandwidth); 723 if (new_bw < 0) { 724 edac_printk(KERN_WARNING, EDAC_MC, 725 "Error setting scrub rate to: %lu\n", bandwidth); 726 return -EINVAL; 727 } 728 729 return count; 730 } 731 732 /* 733 * ->get_sdram_scrub_rate() return value semantics same as above. 734 */ 735 static ssize_t mci_sdram_scrub_rate_show(struct device *dev, 736 struct device_attribute *mattr, 737 char *data) 738 { 739 struct mem_ctl_info *mci = to_mci(dev); 740 int bandwidth = 0; 741 742 bandwidth = mci->get_sdram_scrub_rate(mci); 743 if (bandwidth < 0) { 744 edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n"); 745 return bandwidth; 746 } 747 748 return sprintf(data, "%d\n", bandwidth); 749 } 750 751 /* default attribute files for the MCI object */ 752 static ssize_t mci_ue_count_show(struct device *dev, 753 struct device_attribute *mattr, 754 char *data) 755 { 756 struct mem_ctl_info *mci = to_mci(dev); 757 758 return sprintf(data, "%d\n", mci->ue_mc); 759 } 760 761 static ssize_t mci_ce_count_show(struct device *dev, 762 struct device_attribute *mattr, 763 char *data) 764 { 765 struct mem_ctl_info *mci = to_mci(dev); 766 767 return sprintf(data, "%d\n", mci->ce_mc); 768 } 769 770 static ssize_t mci_ce_noinfo_show(struct device *dev, 771 struct device_attribute *mattr, 772 char *data) 773 { 774 struct mem_ctl_info *mci = to_mci(dev); 775 776 return sprintf(data, "%d\n", mci->ce_noinfo_count); 777 } 778 779 static ssize_t mci_ue_noinfo_show(struct device *dev, 780 struct device_attribute *mattr, 781 char *data) 782 { 783 struct mem_ctl_info *mci = to_mci(dev); 784 785 return sprintf(data, "%d\n", mci->ue_noinfo_count); 786 } 787 788 static ssize_t mci_seconds_show(struct device *dev, 789 struct device_attribute *mattr, 790 char *data) 791 { 792 struct mem_ctl_info *mci = to_mci(dev); 793 794 return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ); 795 } 796 797 static ssize_t mci_ctl_name_show(struct device *dev, 798 struct device_attribute *mattr, 799 char *data) 800 { 801 struct mem_ctl_info *mci = to_mci(dev); 802 803 return sprintf(data, "%s\n", mci->ctl_name); 804 } 805 806 static ssize_t mci_size_mb_show(struct device *dev, 807 struct device_attribute *mattr, 808 char *data) 809 { 810 struct mem_ctl_info *mci = to_mci(dev); 811 int total_pages = 0, csrow_idx, j; 812 813 for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) { 814 struct csrow_info *csrow = mci->csrows[csrow_idx]; 815 816 for (j = 0; j < csrow->nr_channels; j++) { 817 struct dimm_info *dimm = csrow->channels[j]->dimm; 818 819 total_pages += dimm->nr_pages; 820 } 821 } 822 823 return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages)); 824 } 825 826 static ssize_t mci_max_location_show(struct device *dev, 827 struct device_attribute *mattr, 828 char *data) 829 { 830 struct mem_ctl_info *mci = to_mci(dev); 831 int i; 832 char *p = data; 833 834 for (i = 0; i < mci->n_layers; i++) { 835 p += sprintf(p, "%s %d ", 836 edac_layer_name[mci->layers[i].type], 837 mci->layers[i].size - 1); 838 } 839 840 return p - data; 841 } 842 843 /* default Control file */ 844 static DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store); 845 846 /* default Attribute files */ 847 static DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL); 848 static DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL); 849 static DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL); 850 static DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL); 851 static DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL); 852 static DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL); 853 static DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL); 854 static DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL); 855 856 /* memory scrubber attribute file */ 857 static DEVICE_ATTR(sdram_scrub_rate, 0, mci_sdram_scrub_rate_show, 858 mci_sdram_scrub_rate_store); /* umode set later in is_visible */ 859 860 static struct attribute *mci_attrs[] = { 861 &dev_attr_reset_counters.attr, 862 &dev_attr_mc_name.attr, 863 &dev_attr_size_mb.attr, 864 &dev_attr_seconds_since_reset.attr, 865 &dev_attr_ue_noinfo_count.attr, 866 &dev_attr_ce_noinfo_count.attr, 867 &dev_attr_ue_count.attr, 868 &dev_attr_ce_count.attr, 869 &dev_attr_max_location.attr, 870 &dev_attr_sdram_scrub_rate.attr, 871 NULL 872 }; 873 874 static umode_t mci_attr_is_visible(struct kobject *kobj, 875 struct attribute *attr, int idx) 876 { 877 struct device *dev = kobj_to_dev(kobj); 878 struct mem_ctl_info *mci = to_mci(dev); 879 umode_t mode = 0; 880 881 if (attr != &dev_attr_sdram_scrub_rate.attr) 882 return attr->mode; 883 if (mci->get_sdram_scrub_rate) 884 mode |= S_IRUGO; 885 if (mci->set_sdram_scrub_rate) 886 mode |= S_IWUSR; 887 return mode; 888 } 889 890 static const struct attribute_group mci_attr_grp = { 891 .attrs = mci_attrs, 892 .is_visible = mci_attr_is_visible, 893 }; 894 895 static const struct attribute_group *mci_attr_groups[] = { 896 &mci_attr_grp, 897 NULL 898 }; 899 900 static void mci_attr_release(struct device *dev) 901 { 902 struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev); 903 904 edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev)); 905 kfree(mci); 906 } 907 908 static const struct device_type mci_attr_type = { 909 .groups = mci_attr_groups, 910 .release = mci_attr_release, 911 }; 912 913 /* 914 * Create a new Memory Controller kobject instance, 915 * mc<id> under the 'mc' directory 916 * 917 * Return: 918 * 0 Success 919 * !0 Failure 920 */ 921 int edac_create_sysfs_mci_device(struct mem_ctl_info *mci, 922 const struct attribute_group **groups) 923 { 924 int i, err; 925 926 /* get the /sys/devices/system/edac subsys reference */ 927 mci->dev.type = &mci_attr_type; 928 device_initialize(&mci->dev); 929 930 mci->dev.parent = mci_pdev; 931 mci->dev.groups = groups; 932 dev_set_name(&mci->dev, "mc%d", mci->mc_idx); 933 dev_set_drvdata(&mci->dev, mci); 934 pm_runtime_forbid(&mci->dev); 935 936 edac_dbg(0, "creating device %s\n", dev_name(&mci->dev)); 937 err = device_add(&mci->dev); 938 if (err < 0) { 939 edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev)); 940 put_device(&mci->dev); 941 goto out; 942 } 943 944 /* 945 * Create the dimm/rank devices 946 */ 947 for (i = 0; i < mci->tot_dimms; i++) { 948 struct dimm_info *dimm = mci->dimms[i]; 949 /* Only expose populated DIMMs */ 950 if (!dimm->nr_pages) 951 continue; 952 953 #ifdef CONFIG_EDAC_DEBUG 954 edac_dbg(1, "creating dimm%d, located at ", i); 955 if (edac_debug_level >= 1) { 956 int lay; 957 for (lay = 0; lay < mci->n_layers; lay++) 958 printk(KERN_CONT "%s %d ", 959 edac_layer_name[mci->layers[lay].type], 960 dimm->location[lay]); 961 printk(KERN_CONT "\n"); 962 } 963 #endif 964 err = edac_create_dimm_object(mci, dimm, i); 965 if (err) { 966 edac_dbg(1, "failure: create dimm %d obj\n", i); 967 goto fail_unregister_dimm; 968 } 969 } 970 971 #ifdef CONFIG_EDAC_LEGACY_SYSFS 972 err = edac_create_csrow_objects(mci); 973 if (err < 0) 974 goto fail_unregister_dimm; 975 #endif 976 977 edac_create_debugfs_nodes(mci); 978 return 0; 979 980 fail_unregister_dimm: 981 for (i--; i >= 0; i--) { 982 struct dimm_info *dimm = mci->dimms[i]; 983 if (!dimm->nr_pages) 984 continue; 985 986 device_unregister(&dimm->dev); 987 } 988 device_unregister(&mci->dev); 989 990 out: 991 return err; 992 } 993 994 /* 995 * remove a Memory Controller instance 996 */ 997 void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci) 998 { 999 int i; 1000 1001 edac_dbg(0, "\n"); 1002 1003 #ifdef CONFIG_EDAC_DEBUG 1004 edac_debugfs_remove_recursive(mci->debugfs); 1005 #endif 1006 #ifdef CONFIG_EDAC_LEGACY_SYSFS 1007 edac_delete_csrow_objects(mci); 1008 #endif 1009 1010 for (i = 0; i < mci->tot_dimms; i++) { 1011 struct dimm_info *dimm = mci->dimms[i]; 1012 if (dimm->nr_pages == 0) 1013 continue; 1014 edac_dbg(0, "removing device %s\n", dev_name(&dimm->dev)); 1015 device_unregister(&dimm->dev); 1016 } 1017 } 1018 1019 void edac_unregister_sysfs(struct mem_ctl_info *mci) 1020 { 1021 edac_dbg(1, "Unregistering device %s\n", dev_name(&mci->dev)); 1022 device_unregister(&mci->dev); 1023 } 1024 1025 static void mc_attr_release(struct device *dev) 1026 { 1027 /* 1028 * There's no container structure here, as this is just the mci 1029 * parent device, used to create the /sys/devices/mc sysfs node. 1030 * So, there are no attributes on it. 1031 */ 1032 edac_dbg(1, "Releasing device %s\n", dev_name(dev)); 1033 kfree(dev); 1034 } 1035 1036 static const struct device_type mc_attr_type = { 1037 .release = mc_attr_release, 1038 }; 1039 /* 1040 * Init/exit code for the module. Basically, creates/removes /sys/class/rc 1041 */ 1042 int __init edac_mc_sysfs_init(void) 1043 { 1044 int err; 1045 1046 mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL); 1047 if (!mci_pdev) { 1048 err = -ENOMEM; 1049 goto out; 1050 } 1051 1052 mci_pdev->bus = edac_get_sysfs_subsys(); 1053 mci_pdev->type = &mc_attr_type; 1054 device_initialize(mci_pdev); 1055 dev_set_name(mci_pdev, "mc"); 1056 1057 err = device_add(mci_pdev); 1058 if (err < 0) 1059 goto out_put_device; 1060 1061 edac_dbg(0, "device %s created\n", dev_name(mci_pdev)); 1062 1063 return 0; 1064 1065 out_put_device: 1066 put_device(mci_pdev); 1067 out: 1068 return err; 1069 } 1070 1071 void edac_mc_sysfs_exit(void) 1072 { 1073 device_unregister(mci_pdev); 1074 } 1075