xref: /openbmc/linux/drivers/edac/edac_mc_sysfs.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /*
2  * edac_mc kernel module
3  * (C) 2005-2007 Linux Networx (http://lnxi.com)
4  *
5  * This file may be distributed under the terms of the
6  * GNU General Public License.
7  *
8  * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com
9  *
10  * (c) 2012-2013 - Mauro Carvalho Chehab
11  *	The entire API were re-written, and ported to use struct device
12  *
13  */
14 
15 #include <linux/ctype.h>
16 #include <linux/slab.h>
17 #include <linux/edac.h>
18 #include <linux/bug.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/uaccess.h>
21 
22 #include "edac_mc.h"
23 #include "edac_module.h"
24 
25 /* MC EDAC Controls, setable by module parameter, and sysfs */
26 static int edac_mc_log_ue = 1;
27 static int edac_mc_log_ce = 1;
28 static int edac_mc_panic_on_ue;
29 static int edac_mc_poll_msec = 1000;
30 
31 /* Getter functions for above */
32 int edac_mc_get_log_ue(void)
33 {
34 	return edac_mc_log_ue;
35 }
36 
37 int edac_mc_get_log_ce(void)
38 {
39 	return edac_mc_log_ce;
40 }
41 
42 int edac_mc_get_panic_on_ue(void)
43 {
44 	return edac_mc_panic_on_ue;
45 }
46 
47 /* this is temporary */
48 int edac_mc_get_poll_msec(void)
49 {
50 	return edac_mc_poll_msec;
51 }
52 
53 static int edac_set_poll_msec(const char *val, const struct kernel_param *kp)
54 {
55 	unsigned long l;
56 	int ret;
57 
58 	if (!val)
59 		return -EINVAL;
60 
61 	ret = kstrtoul(val, 0, &l);
62 	if (ret)
63 		return ret;
64 
65 	if (l < 1000)
66 		return -EINVAL;
67 
68 	*((unsigned long *)kp->arg) = l;
69 
70 	/* notify edac_mc engine to reset the poll period */
71 	edac_mc_reset_delay_period(l);
72 
73 	return 0;
74 }
75 
76 /* Parameter declarations for above */
77 module_param(edac_mc_panic_on_ue, int, 0644);
78 MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
79 module_param(edac_mc_log_ue, int, 0644);
80 MODULE_PARM_DESC(edac_mc_log_ue,
81 		 "Log uncorrectable error to console: 0=off 1=on");
82 module_param(edac_mc_log_ce, int, 0644);
83 MODULE_PARM_DESC(edac_mc_log_ce,
84 		 "Log correctable error to console: 0=off 1=on");
85 module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_int,
86 		  &edac_mc_poll_msec, 0644);
87 MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds");
88 
89 static struct device *mci_pdev;
90 
91 /*
92  * various constants for Memory Controllers
93  */
94 static const char * const dev_types[] = {
95 	[DEV_UNKNOWN] = "Unknown",
96 	[DEV_X1] = "x1",
97 	[DEV_X2] = "x2",
98 	[DEV_X4] = "x4",
99 	[DEV_X8] = "x8",
100 	[DEV_X16] = "x16",
101 	[DEV_X32] = "x32",
102 	[DEV_X64] = "x64"
103 };
104 
105 static const char * const edac_caps[] = {
106 	[EDAC_UNKNOWN] = "Unknown",
107 	[EDAC_NONE] = "None",
108 	[EDAC_RESERVED] = "Reserved",
109 	[EDAC_PARITY] = "PARITY",
110 	[EDAC_EC] = "EC",
111 	[EDAC_SECDED] = "SECDED",
112 	[EDAC_S2ECD2ED] = "S2ECD2ED",
113 	[EDAC_S4ECD4ED] = "S4ECD4ED",
114 	[EDAC_S8ECD8ED] = "S8ECD8ED",
115 	[EDAC_S16ECD16ED] = "S16ECD16ED"
116 };
117 
118 #ifdef CONFIG_EDAC_LEGACY_SYSFS
119 /*
120  * EDAC sysfs CSROW data structures and methods
121  */
122 
123 #define to_csrow(k) container_of(k, struct csrow_info, dev)
124 
125 /*
126  * We need it to avoid namespace conflicts between the legacy API
127  * and the per-dimm/per-rank one
128  */
129 #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \
130 	static struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store)
131 
132 struct dev_ch_attribute {
133 	struct device_attribute attr;
134 	int channel;
135 };
136 
137 #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \
138 	static struct dev_ch_attribute dev_attr_legacy_##_name = \
139 		{ __ATTR(_name, _mode, _show, _store), (_var) }
140 
141 #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel)
142 
143 /* Set of more default csrow<id> attribute show/store functions */
144 static ssize_t csrow_ue_count_show(struct device *dev,
145 				   struct device_attribute *mattr, char *data)
146 {
147 	struct csrow_info *csrow = to_csrow(dev);
148 
149 	return sprintf(data, "%u\n", csrow->ue_count);
150 }
151 
152 static ssize_t csrow_ce_count_show(struct device *dev,
153 				   struct device_attribute *mattr, char *data)
154 {
155 	struct csrow_info *csrow = to_csrow(dev);
156 
157 	return sprintf(data, "%u\n", csrow->ce_count);
158 }
159 
160 static ssize_t csrow_size_show(struct device *dev,
161 			       struct device_attribute *mattr, char *data)
162 {
163 	struct csrow_info *csrow = to_csrow(dev);
164 	int i;
165 	u32 nr_pages = 0;
166 
167 	for (i = 0; i < csrow->nr_channels; i++)
168 		nr_pages += csrow->channels[i]->dimm->nr_pages;
169 	return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages));
170 }
171 
172 static ssize_t csrow_mem_type_show(struct device *dev,
173 				   struct device_attribute *mattr, char *data)
174 {
175 	struct csrow_info *csrow = to_csrow(dev);
176 
177 	return sprintf(data, "%s\n", edac_mem_types[csrow->channels[0]->dimm->mtype]);
178 }
179 
180 static ssize_t csrow_dev_type_show(struct device *dev,
181 				   struct device_attribute *mattr, char *data)
182 {
183 	struct csrow_info *csrow = to_csrow(dev);
184 
185 	return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]);
186 }
187 
188 static ssize_t csrow_edac_mode_show(struct device *dev,
189 				    struct device_attribute *mattr,
190 				    char *data)
191 {
192 	struct csrow_info *csrow = to_csrow(dev);
193 
194 	return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]);
195 }
196 
197 /* show/store functions for DIMM Label attributes */
198 static ssize_t channel_dimm_label_show(struct device *dev,
199 				       struct device_attribute *mattr,
200 				       char *data)
201 {
202 	struct csrow_info *csrow = to_csrow(dev);
203 	unsigned chan = to_channel(mattr);
204 	struct rank_info *rank = csrow->channels[chan];
205 
206 	/* if field has not been initialized, there is nothing to send */
207 	if (!rank->dimm->label[0])
208 		return 0;
209 
210 	return snprintf(data, sizeof(rank->dimm->label) + 1, "%s\n",
211 			rank->dimm->label);
212 }
213 
214 static ssize_t channel_dimm_label_store(struct device *dev,
215 					struct device_attribute *mattr,
216 					const char *data, size_t count)
217 {
218 	struct csrow_info *csrow = to_csrow(dev);
219 	unsigned chan = to_channel(mattr);
220 	struct rank_info *rank = csrow->channels[chan];
221 	size_t copy_count = count;
222 
223 	if (count == 0)
224 		return -EINVAL;
225 
226 	if (data[count - 1] == '\0' || data[count - 1] == '\n')
227 		copy_count -= 1;
228 
229 	if (copy_count == 0 || copy_count >= sizeof(rank->dimm->label))
230 		return -EINVAL;
231 
232 	strncpy(rank->dimm->label, data, copy_count);
233 	rank->dimm->label[copy_count] = '\0';
234 
235 	return count;
236 }
237 
238 /* show function for dynamic chX_ce_count attribute */
239 static ssize_t channel_ce_count_show(struct device *dev,
240 				     struct device_attribute *mattr, char *data)
241 {
242 	struct csrow_info *csrow = to_csrow(dev);
243 	unsigned chan = to_channel(mattr);
244 	struct rank_info *rank = csrow->channels[chan];
245 
246 	return sprintf(data, "%u\n", rank->ce_count);
247 }
248 
249 /* cwrow<id>/attribute files */
250 DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL);
251 DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL);
252 DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL);
253 DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL);
254 DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL);
255 DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL);
256 
257 /* default attributes of the CSROW<id> object */
258 static struct attribute *csrow_attrs[] = {
259 	&dev_attr_legacy_dev_type.attr,
260 	&dev_attr_legacy_mem_type.attr,
261 	&dev_attr_legacy_edac_mode.attr,
262 	&dev_attr_legacy_size_mb.attr,
263 	&dev_attr_legacy_ue_count.attr,
264 	&dev_attr_legacy_ce_count.attr,
265 	NULL,
266 };
267 
268 static const struct attribute_group csrow_attr_grp = {
269 	.attrs	= csrow_attrs,
270 };
271 
272 static const struct attribute_group *csrow_attr_groups[] = {
273 	&csrow_attr_grp,
274 	NULL
275 };
276 
277 static void csrow_attr_release(struct device *dev)
278 {
279 	struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
280 
281 	edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
282 	kfree(csrow);
283 }
284 
285 static const struct device_type csrow_attr_type = {
286 	.groups		= csrow_attr_groups,
287 	.release	= csrow_attr_release,
288 };
289 
290 /*
291  * possible dynamic channel DIMM Label attribute files
292  *
293  */
294 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR,
295 	channel_dimm_label_show, channel_dimm_label_store, 0);
296 DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR,
297 	channel_dimm_label_show, channel_dimm_label_store, 1);
298 DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR,
299 	channel_dimm_label_show, channel_dimm_label_store, 2);
300 DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR,
301 	channel_dimm_label_show, channel_dimm_label_store, 3);
302 DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR,
303 	channel_dimm_label_show, channel_dimm_label_store, 4);
304 DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR,
305 	channel_dimm_label_show, channel_dimm_label_store, 5);
306 DEVICE_CHANNEL(ch6_dimm_label, S_IRUGO | S_IWUSR,
307 	channel_dimm_label_show, channel_dimm_label_store, 6);
308 DEVICE_CHANNEL(ch7_dimm_label, S_IRUGO | S_IWUSR,
309 	channel_dimm_label_show, channel_dimm_label_store, 7);
310 
311 /* Total possible dynamic DIMM Label attribute file table */
312 static struct attribute *dynamic_csrow_dimm_attr[] = {
313 	&dev_attr_legacy_ch0_dimm_label.attr.attr,
314 	&dev_attr_legacy_ch1_dimm_label.attr.attr,
315 	&dev_attr_legacy_ch2_dimm_label.attr.attr,
316 	&dev_attr_legacy_ch3_dimm_label.attr.attr,
317 	&dev_attr_legacy_ch4_dimm_label.attr.attr,
318 	&dev_attr_legacy_ch5_dimm_label.attr.attr,
319 	&dev_attr_legacy_ch6_dimm_label.attr.attr,
320 	&dev_attr_legacy_ch7_dimm_label.attr.attr,
321 	NULL
322 };
323 
324 /* possible dynamic channel ce_count attribute files */
325 DEVICE_CHANNEL(ch0_ce_count, S_IRUGO,
326 		   channel_ce_count_show, NULL, 0);
327 DEVICE_CHANNEL(ch1_ce_count, S_IRUGO,
328 		   channel_ce_count_show, NULL, 1);
329 DEVICE_CHANNEL(ch2_ce_count, S_IRUGO,
330 		   channel_ce_count_show, NULL, 2);
331 DEVICE_CHANNEL(ch3_ce_count, S_IRUGO,
332 		   channel_ce_count_show, NULL, 3);
333 DEVICE_CHANNEL(ch4_ce_count, S_IRUGO,
334 		   channel_ce_count_show, NULL, 4);
335 DEVICE_CHANNEL(ch5_ce_count, S_IRUGO,
336 		   channel_ce_count_show, NULL, 5);
337 DEVICE_CHANNEL(ch6_ce_count, S_IRUGO,
338 		   channel_ce_count_show, NULL, 6);
339 DEVICE_CHANNEL(ch7_ce_count, S_IRUGO,
340 		   channel_ce_count_show, NULL, 7);
341 
342 /* Total possible dynamic ce_count attribute file table */
343 static struct attribute *dynamic_csrow_ce_count_attr[] = {
344 	&dev_attr_legacy_ch0_ce_count.attr.attr,
345 	&dev_attr_legacy_ch1_ce_count.attr.attr,
346 	&dev_attr_legacy_ch2_ce_count.attr.attr,
347 	&dev_attr_legacy_ch3_ce_count.attr.attr,
348 	&dev_attr_legacy_ch4_ce_count.attr.attr,
349 	&dev_attr_legacy_ch5_ce_count.attr.attr,
350 	&dev_attr_legacy_ch6_ce_count.attr.attr,
351 	&dev_attr_legacy_ch7_ce_count.attr.attr,
352 	NULL
353 };
354 
355 static umode_t csrow_dev_is_visible(struct kobject *kobj,
356 				    struct attribute *attr, int idx)
357 {
358 	struct device *dev = kobj_to_dev(kobj);
359 	struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
360 
361 	if (idx >= csrow->nr_channels)
362 		return 0;
363 
364 	if (idx >= ARRAY_SIZE(dynamic_csrow_ce_count_attr) - 1) {
365 		WARN_ONCE(1, "idx: %d\n", idx);
366 		return 0;
367 	}
368 
369 	/* Only expose populated DIMMs */
370 	if (!csrow->channels[idx]->dimm->nr_pages)
371 		return 0;
372 
373 	return attr->mode;
374 }
375 
376 
377 static const struct attribute_group csrow_dev_dimm_group = {
378 	.attrs = dynamic_csrow_dimm_attr,
379 	.is_visible = csrow_dev_is_visible,
380 };
381 
382 static const struct attribute_group csrow_dev_ce_count_group = {
383 	.attrs = dynamic_csrow_ce_count_attr,
384 	.is_visible = csrow_dev_is_visible,
385 };
386 
387 static const struct attribute_group *csrow_dev_groups[] = {
388 	&csrow_dev_dimm_group,
389 	&csrow_dev_ce_count_group,
390 	NULL
391 };
392 
393 static inline int nr_pages_per_csrow(struct csrow_info *csrow)
394 {
395 	int chan, nr_pages = 0;
396 
397 	for (chan = 0; chan < csrow->nr_channels; chan++)
398 		nr_pages += csrow->channels[chan]->dimm->nr_pages;
399 
400 	return nr_pages;
401 }
402 
403 /* Create a CSROW object under specifed edac_mc_device */
404 static int edac_create_csrow_object(struct mem_ctl_info *mci,
405 				    struct csrow_info *csrow, int index)
406 {
407 	csrow->dev.type = &csrow_attr_type;
408 	csrow->dev.bus = mci->bus;
409 	csrow->dev.groups = csrow_dev_groups;
410 	device_initialize(&csrow->dev);
411 	csrow->dev.parent = &mci->dev;
412 	csrow->mci = mci;
413 	dev_set_name(&csrow->dev, "csrow%d", index);
414 	dev_set_drvdata(&csrow->dev, csrow);
415 
416 	edac_dbg(0, "creating (virtual) csrow node %s\n",
417 		 dev_name(&csrow->dev));
418 
419 	return device_add(&csrow->dev);
420 }
421 
422 /* Create a CSROW object under specifed edac_mc_device */
423 static int edac_create_csrow_objects(struct mem_ctl_info *mci)
424 {
425 	int err, i;
426 	struct csrow_info *csrow;
427 
428 	for (i = 0; i < mci->nr_csrows; i++) {
429 		csrow = mci->csrows[i];
430 		if (!nr_pages_per_csrow(csrow))
431 			continue;
432 		err = edac_create_csrow_object(mci, mci->csrows[i], i);
433 		if (err < 0) {
434 			edac_dbg(1,
435 				 "failure: create csrow objects for csrow %d\n",
436 				 i);
437 			goto error;
438 		}
439 	}
440 	return 0;
441 
442 error:
443 	for (--i; i >= 0; i--) {
444 		csrow = mci->csrows[i];
445 		if (!nr_pages_per_csrow(csrow))
446 			continue;
447 		put_device(&mci->csrows[i]->dev);
448 	}
449 
450 	return err;
451 }
452 
453 static void edac_delete_csrow_objects(struct mem_ctl_info *mci)
454 {
455 	int i;
456 	struct csrow_info *csrow;
457 
458 	for (i = mci->nr_csrows - 1; i >= 0; i--) {
459 		csrow = mci->csrows[i];
460 		if (!nr_pages_per_csrow(csrow))
461 			continue;
462 		device_unregister(&mci->csrows[i]->dev);
463 	}
464 }
465 #endif
466 
467 /*
468  * Per-dimm (or per-rank) devices
469  */
470 
471 #define to_dimm(k) container_of(k, struct dimm_info, dev)
472 
473 /* show/store functions for DIMM Label attributes */
474 static ssize_t dimmdev_location_show(struct device *dev,
475 				     struct device_attribute *mattr, char *data)
476 {
477 	struct dimm_info *dimm = to_dimm(dev);
478 
479 	return edac_dimm_info_location(dimm, data, PAGE_SIZE);
480 }
481 
482 static ssize_t dimmdev_label_show(struct device *dev,
483 				  struct device_attribute *mattr, char *data)
484 {
485 	struct dimm_info *dimm = to_dimm(dev);
486 
487 	/* if field has not been initialized, there is nothing to send */
488 	if (!dimm->label[0])
489 		return 0;
490 
491 	return snprintf(data, sizeof(dimm->label) + 1, "%s\n", dimm->label);
492 }
493 
494 static ssize_t dimmdev_label_store(struct device *dev,
495 				   struct device_attribute *mattr,
496 				   const char *data,
497 				   size_t count)
498 {
499 	struct dimm_info *dimm = to_dimm(dev);
500 	size_t copy_count = count;
501 
502 	if (count == 0)
503 		return -EINVAL;
504 
505 	if (data[count - 1] == '\0' || data[count - 1] == '\n')
506 		copy_count -= 1;
507 
508 	if (copy_count == 0 || copy_count >= sizeof(dimm->label))
509 		return -EINVAL;
510 
511 	strncpy(dimm->label, data, copy_count);
512 	dimm->label[copy_count] = '\0';
513 
514 	return count;
515 }
516 
517 static ssize_t dimmdev_size_show(struct device *dev,
518 				 struct device_attribute *mattr, char *data)
519 {
520 	struct dimm_info *dimm = to_dimm(dev);
521 
522 	return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages));
523 }
524 
525 static ssize_t dimmdev_mem_type_show(struct device *dev,
526 				     struct device_attribute *mattr, char *data)
527 {
528 	struct dimm_info *dimm = to_dimm(dev);
529 
530 	return sprintf(data, "%s\n", edac_mem_types[dimm->mtype]);
531 }
532 
533 static ssize_t dimmdev_dev_type_show(struct device *dev,
534 				     struct device_attribute *mattr, char *data)
535 {
536 	struct dimm_info *dimm = to_dimm(dev);
537 
538 	return sprintf(data, "%s\n", dev_types[dimm->dtype]);
539 }
540 
541 static ssize_t dimmdev_edac_mode_show(struct device *dev,
542 				      struct device_attribute *mattr,
543 				      char *data)
544 {
545 	struct dimm_info *dimm = to_dimm(dev);
546 
547 	return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]);
548 }
549 
550 static ssize_t dimmdev_ce_count_show(struct device *dev,
551 				      struct device_attribute *mattr,
552 				      char *data)
553 {
554 	struct dimm_info *dimm = to_dimm(dev);
555 	u32 count;
556 	int off;
557 
558 	off = EDAC_DIMM_OFF(dimm->mci->layers,
559 			    dimm->mci->n_layers,
560 			    dimm->location[0],
561 			    dimm->location[1],
562 			    dimm->location[2]);
563 	count = dimm->mci->ce_per_layer[dimm->mci->n_layers-1][off];
564 	return sprintf(data, "%u\n", count);
565 }
566 
567 static ssize_t dimmdev_ue_count_show(struct device *dev,
568 				      struct device_attribute *mattr,
569 				      char *data)
570 {
571 	struct dimm_info *dimm = to_dimm(dev);
572 	u32 count;
573 	int off;
574 
575 	off = EDAC_DIMM_OFF(dimm->mci->layers,
576 			    dimm->mci->n_layers,
577 			    dimm->location[0],
578 			    dimm->location[1],
579 			    dimm->location[2]);
580 	count = dimm->mci->ue_per_layer[dimm->mci->n_layers-1][off];
581 	return sprintf(data, "%u\n", count);
582 }
583 
584 /* dimm/rank attribute files */
585 static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR,
586 		   dimmdev_label_show, dimmdev_label_store);
587 static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL);
588 static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL);
589 static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL);
590 static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL);
591 static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL);
592 static DEVICE_ATTR(dimm_ce_count, S_IRUGO, dimmdev_ce_count_show, NULL);
593 static DEVICE_ATTR(dimm_ue_count, S_IRUGO, dimmdev_ue_count_show, NULL);
594 
595 /* attributes of the dimm<id>/rank<id> object */
596 static struct attribute *dimm_attrs[] = {
597 	&dev_attr_dimm_label.attr,
598 	&dev_attr_dimm_location.attr,
599 	&dev_attr_size.attr,
600 	&dev_attr_dimm_mem_type.attr,
601 	&dev_attr_dimm_dev_type.attr,
602 	&dev_attr_dimm_edac_mode.attr,
603 	&dev_attr_dimm_ce_count.attr,
604 	&dev_attr_dimm_ue_count.attr,
605 	NULL,
606 };
607 
608 static const struct attribute_group dimm_attr_grp = {
609 	.attrs	= dimm_attrs,
610 };
611 
612 static const struct attribute_group *dimm_attr_groups[] = {
613 	&dimm_attr_grp,
614 	NULL
615 };
616 
617 static void dimm_attr_release(struct device *dev)
618 {
619 	struct dimm_info *dimm = container_of(dev, struct dimm_info, dev);
620 
621 	edac_dbg(1, "Releasing dimm device %s\n", dev_name(dev));
622 	kfree(dimm);
623 }
624 
625 static const struct device_type dimm_attr_type = {
626 	.groups		= dimm_attr_groups,
627 	.release	= dimm_attr_release,
628 };
629 
630 /* Create a DIMM object under specifed memory controller device */
631 static int edac_create_dimm_object(struct mem_ctl_info *mci,
632 				   struct dimm_info *dimm,
633 				   int index)
634 {
635 	int err;
636 	dimm->mci = mci;
637 
638 	dimm->dev.type = &dimm_attr_type;
639 	dimm->dev.bus = mci->bus;
640 	device_initialize(&dimm->dev);
641 
642 	dimm->dev.parent = &mci->dev;
643 	if (mci->csbased)
644 		dev_set_name(&dimm->dev, "rank%d", index);
645 	else
646 		dev_set_name(&dimm->dev, "dimm%d", index);
647 	dev_set_drvdata(&dimm->dev, dimm);
648 	pm_runtime_forbid(&mci->dev);
649 
650 	err =  device_add(&dimm->dev);
651 
652 	edac_dbg(0, "creating rank/dimm device %s\n", dev_name(&dimm->dev));
653 
654 	return err;
655 }
656 
657 /*
658  * Memory controller device
659  */
660 
661 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
662 
663 static ssize_t mci_reset_counters_store(struct device *dev,
664 					struct device_attribute *mattr,
665 					const char *data, size_t count)
666 {
667 	struct mem_ctl_info *mci = to_mci(dev);
668 	int cnt, row, chan, i;
669 	mci->ue_mc = 0;
670 	mci->ce_mc = 0;
671 	mci->ue_noinfo_count = 0;
672 	mci->ce_noinfo_count = 0;
673 
674 	for (row = 0; row < mci->nr_csrows; row++) {
675 		struct csrow_info *ri = mci->csrows[row];
676 
677 		ri->ue_count = 0;
678 		ri->ce_count = 0;
679 
680 		for (chan = 0; chan < ri->nr_channels; chan++)
681 			ri->channels[chan]->ce_count = 0;
682 	}
683 
684 	cnt = 1;
685 	for (i = 0; i < mci->n_layers; i++) {
686 		cnt *= mci->layers[i].size;
687 		memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32));
688 		memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32));
689 	}
690 
691 	mci->start_time = jiffies;
692 	return count;
693 }
694 
695 /* Memory scrubbing interface:
696  *
697  * A MC driver can limit the scrubbing bandwidth based on the CPU type.
698  * Therefore, ->set_sdram_scrub_rate should be made to return the actual
699  * bandwidth that is accepted or 0 when scrubbing is to be disabled.
700  *
701  * Negative value still means that an error has occurred while setting
702  * the scrub rate.
703  */
704 static ssize_t mci_sdram_scrub_rate_store(struct device *dev,
705 					  struct device_attribute *mattr,
706 					  const char *data, size_t count)
707 {
708 	struct mem_ctl_info *mci = to_mci(dev);
709 	unsigned long bandwidth = 0;
710 	int new_bw = 0;
711 
712 	if (kstrtoul(data, 10, &bandwidth) < 0)
713 		return -EINVAL;
714 
715 	new_bw = mci->set_sdram_scrub_rate(mci, bandwidth);
716 	if (new_bw < 0) {
717 		edac_printk(KERN_WARNING, EDAC_MC,
718 			    "Error setting scrub rate to: %lu\n", bandwidth);
719 		return -EINVAL;
720 	}
721 
722 	return count;
723 }
724 
725 /*
726  * ->get_sdram_scrub_rate() return value semantics same as above.
727  */
728 static ssize_t mci_sdram_scrub_rate_show(struct device *dev,
729 					 struct device_attribute *mattr,
730 					 char *data)
731 {
732 	struct mem_ctl_info *mci = to_mci(dev);
733 	int bandwidth = 0;
734 
735 	bandwidth = mci->get_sdram_scrub_rate(mci);
736 	if (bandwidth < 0) {
737 		edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n");
738 		return bandwidth;
739 	}
740 
741 	return sprintf(data, "%d\n", bandwidth);
742 }
743 
744 /* default attribute files for the MCI object */
745 static ssize_t mci_ue_count_show(struct device *dev,
746 				 struct device_attribute *mattr,
747 				 char *data)
748 {
749 	struct mem_ctl_info *mci = to_mci(dev);
750 
751 	return sprintf(data, "%d\n", mci->ue_mc);
752 }
753 
754 static ssize_t mci_ce_count_show(struct device *dev,
755 				 struct device_attribute *mattr,
756 				 char *data)
757 {
758 	struct mem_ctl_info *mci = to_mci(dev);
759 
760 	return sprintf(data, "%d\n", mci->ce_mc);
761 }
762 
763 static ssize_t mci_ce_noinfo_show(struct device *dev,
764 				  struct device_attribute *mattr,
765 				  char *data)
766 {
767 	struct mem_ctl_info *mci = to_mci(dev);
768 
769 	return sprintf(data, "%d\n", mci->ce_noinfo_count);
770 }
771 
772 static ssize_t mci_ue_noinfo_show(struct device *dev,
773 				  struct device_attribute *mattr,
774 				  char *data)
775 {
776 	struct mem_ctl_info *mci = to_mci(dev);
777 
778 	return sprintf(data, "%d\n", mci->ue_noinfo_count);
779 }
780 
781 static ssize_t mci_seconds_show(struct device *dev,
782 				struct device_attribute *mattr,
783 				char *data)
784 {
785 	struct mem_ctl_info *mci = to_mci(dev);
786 
787 	return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ);
788 }
789 
790 static ssize_t mci_ctl_name_show(struct device *dev,
791 				 struct device_attribute *mattr,
792 				 char *data)
793 {
794 	struct mem_ctl_info *mci = to_mci(dev);
795 
796 	return sprintf(data, "%s\n", mci->ctl_name);
797 }
798 
799 static ssize_t mci_size_mb_show(struct device *dev,
800 				struct device_attribute *mattr,
801 				char *data)
802 {
803 	struct mem_ctl_info *mci = to_mci(dev);
804 	int total_pages = 0, csrow_idx, j;
805 
806 	for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) {
807 		struct csrow_info *csrow = mci->csrows[csrow_idx];
808 
809 		for (j = 0; j < csrow->nr_channels; j++) {
810 			struct dimm_info *dimm = csrow->channels[j]->dimm;
811 
812 			total_pages += dimm->nr_pages;
813 		}
814 	}
815 
816 	return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages));
817 }
818 
819 static ssize_t mci_max_location_show(struct device *dev,
820 				     struct device_attribute *mattr,
821 				     char *data)
822 {
823 	struct mem_ctl_info *mci = to_mci(dev);
824 	int i;
825 	char *p = data;
826 
827 	for (i = 0; i < mci->n_layers; i++) {
828 		p += sprintf(p, "%s %d ",
829 			     edac_layer_name[mci->layers[i].type],
830 			     mci->layers[i].size - 1);
831 	}
832 
833 	return p - data;
834 }
835 
836 /* default Control file */
837 static DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store);
838 
839 /* default Attribute files */
840 static DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL);
841 static DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL);
842 static DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL);
843 static DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL);
844 static DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL);
845 static DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL);
846 static DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL);
847 static DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL);
848 
849 /* memory scrubber attribute file */
850 static DEVICE_ATTR(sdram_scrub_rate, 0, mci_sdram_scrub_rate_show,
851 	    mci_sdram_scrub_rate_store); /* umode set later in is_visible */
852 
853 static struct attribute *mci_attrs[] = {
854 	&dev_attr_reset_counters.attr,
855 	&dev_attr_mc_name.attr,
856 	&dev_attr_size_mb.attr,
857 	&dev_attr_seconds_since_reset.attr,
858 	&dev_attr_ue_noinfo_count.attr,
859 	&dev_attr_ce_noinfo_count.attr,
860 	&dev_attr_ue_count.attr,
861 	&dev_attr_ce_count.attr,
862 	&dev_attr_max_location.attr,
863 	&dev_attr_sdram_scrub_rate.attr,
864 	NULL
865 };
866 
867 static umode_t mci_attr_is_visible(struct kobject *kobj,
868 				   struct attribute *attr, int idx)
869 {
870 	struct device *dev = kobj_to_dev(kobj);
871 	struct mem_ctl_info *mci = to_mci(dev);
872 	umode_t mode = 0;
873 
874 	if (attr != &dev_attr_sdram_scrub_rate.attr)
875 		return attr->mode;
876 	if (mci->get_sdram_scrub_rate)
877 		mode |= S_IRUGO;
878 	if (mci->set_sdram_scrub_rate)
879 		mode |= S_IWUSR;
880 	return mode;
881 }
882 
883 static const struct attribute_group mci_attr_grp = {
884 	.attrs	= mci_attrs,
885 	.is_visible = mci_attr_is_visible,
886 };
887 
888 static const struct attribute_group *mci_attr_groups[] = {
889 	&mci_attr_grp,
890 	NULL
891 };
892 
893 static void mci_attr_release(struct device *dev)
894 {
895 	struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
896 
897 	edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
898 	kfree(mci);
899 }
900 
901 static const struct device_type mci_attr_type = {
902 	.groups		= mci_attr_groups,
903 	.release	= mci_attr_release,
904 };
905 
906 /*
907  * Create a new Memory Controller kobject instance,
908  *	mc<id> under the 'mc' directory
909  *
910  * Return:
911  *	0	Success
912  *	!0	Failure
913  */
914 int edac_create_sysfs_mci_device(struct mem_ctl_info *mci,
915 				 const struct attribute_group **groups)
916 {
917 	char *name;
918 	int i, err;
919 
920 	/*
921 	 * The memory controller needs its own bus, in order to avoid
922 	 * namespace conflicts at /sys/bus/edac.
923 	 */
924 	name = kasprintf(GFP_KERNEL, "mc%d", mci->mc_idx);
925 	if (!name)
926 		return -ENOMEM;
927 
928 	mci->bus->name = name;
929 
930 	edac_dbg(0, "creating bus %s\n", mci->bus->name);
931 
932 	err = bus_register(mci->bus);
933 	if (err < 0) {
934 		kfree(name);
935 		return err;
936 	}
937 
938 	/* get the /sys/devices/system/edac subsys reference */
939 	mci->dev.type = &mci_attr_type;
940 	device_initialize(&mci->dev);
941 
942 	mci->dev.parent = mci_pdev;
943 	mci->dev.bus = mci->bus;
944 	mci->dev.groups = groups;
945 	dev_set_name(&mci->dev, "mc%d", mci->mc_idx);
946 	dev_set_drvdata(&mci->dev, mci);
947 	pm_runtime_forbid(&mci->dev);
948 
949 	edac_dbg(0, "creating device %s\n", dev_name(&mci->dev));
950 	err = device_add(&mci->dev);
951 	if (err < 0) {
952 		edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev));
953 		goto fail_unregister_bus;
954 	}
955 
956 	/*
957 	 * Create the dimm/rank devices
958 	 */
959 	for (i = 0; i < mci->tot_dimms; i++) {
960 		struct dimm_info *dimm = mci->dimms[i];
961 		/* Only expose populated DIMMs */
962 		if (!dimm->nr_pages)
963 			continue;
964 
965 #ifdef CONFIG_EDAC_DEBUG
966 		edac_dbg(1, "creating dimm%d, located at ", i);
967 		if (edac_debug_level >= 1) {
968 			int lay;
969 			for (lay = 0; lay < mci->n_layers; lay++)
970 				printk(KERN_CONT "%s %d ",
971 					edac_layer_name[mci->layers[lay].type],
972 					dimm->location[lay]);
973 			printk(KERN_CONT "\n");
974 		}
975 #endif
976 		err = edac_create_dimm_object(mci, dimm, i);
977 		if (err) {
978 			edac_dbg(1, "failure: create dimm %d obj\n", i);
979 			goto fail_unregister_dimm;
980 		}
981 	}
982 
983 #ifdef CONFIG_EDAC_LEGACY_SYSFS
984 	err = edac_create_csrow_objects(mci);
985 	if (err < 0)
986 		goto fail_unregister_dimm;
987 #endif
988 
989 	edac_create_debugfs_nodes(mci);
990 	return 0;
991 
992 fail_unregister_dimm:
993 	for (i--; i >= 0; i--) {
994 		struct dimm_info *dimm = mci->dimms[i];
995 		if (!dimm->nr_pages)
996 			continue;
997 
998 		device_unregister(&dimm->dev);
999 	}
1000 	device_unregister(&mci->dev);
1001 fail_unregister_bus:
1002 	bus_unregister(mci->bus);
1003 	kfree(name);
1004 
1005 	return err;
1006 }
1007 
1008 /*
1009  * remove a Memory Controller instance
1010  */
1011 void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
1012 {
1013 	int i;
1014 
1015 	edac_dbg(0, "\n");
1016 
1017 #ifdef CONFIG_EDAC_DEBUG
1018 	edac_debugfs_remove_recursive(mci->debugfs);
1019 #endif
1020 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1021 	edac_delete_csrow_objects(mci);
1022 #endif
1023 
1024 	for (i = 0; i < mci->tot_dimms; i++) {
1025 		struct dimm_info *dimm = mci->dimms[i];
1026 		if (dimm->nr_pages == 0)
1027 			continue;
1028 		edac_dbg(0, "removing device %s\n", dev_name(&dimm->dev));
1029 		device_unregister(&dimm->dev);
1030 	}
1031 }
1032 
1033 void edac_unregister_sysfs(struct mem_ctl_info *mci)
1034 {
1035 	struct bus_type *bus = mci->bus;
1036 	const char *name = mci->bus->name;
1037 
1038 	edac_dbg(1, "Unregistering device %s\n", dev_name(&mci->dev));
1039 	device_unregister(&mci->dev);
1040 	bus_unregister(bus);
1041 	kfree(name);
1042 }
1043 
1044 static void mc_attr_release(struct device *dev)
1045 {
1046 	/*
1047 	 * There's no container structure here, as this is just the mci
1048 	 * parent device, used to create the /sys/devices/mc sysfs node.
1049 	 * So, there are no attributes on it.
1050 	 */
1051 	edac_dbg(1, "Releasing device %s\n", dev_name(dev));
1052 	kfree(dev);
1053 }
1054 
1055 static const struct device_type mc_attr_type = {
1056 	.release	= mc_attr_release,
1057 };
1058 /*
1059  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1060  */
1061 int __init edac_mc_sysfs_init(void)
1062 {
1063 	int err;
1064 
1065 	mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL);
1066 	if (!mci_pdev) {
1067 		err = -ENOMEM;
1068 		goto out;
1069 	}
1070 
1071 	mci_pdev->bus = edac_get_sysfs_subsys();
1072 	mci_pdev->type = &mc_attr_type;
1073 	device_initialize(mci_pdev);
1074 	dev_set_name(mci_pdev, "mc");
1075 
1076 	err = device_add(mci_pdev);
1077 	if (err < 0)
1078 		goto out_put_device;
1079 
1080 	edac_dbg(0, "device %s created\n", dev_name(mci_pdev));
1081 
1082 	return 0;
1083 
1084  out_put_device:
1085 	put_device(mci_pdev);
1086  out:
1087 	return err;
1088 }
1089 
1090 void edac_mc_sysfs_exit(void)
1091 {
1092 	device_unregister(mci_pdev);
1093 }
1094