xref: /openbmc/linux/drivers/edac/edac_mc_sysfs.c (revision 05bcf503)
1 /*
2  * edac_mc kernel module
3  * (C) 2005-2007 Linux Networx (http://lnxi.com)
4  *
5  * This file may be distributed under the terms of the
6  * GNU General Public License.
7  *
8  * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com
9  *
10  * (c) 2012 - Mauro Carvalho Chehab <mchehab@redhat.com>
11  *	The entire API were re-written, and ported to use struct device
12  *
13  */
14 
15 #include <linux/ctype.h>
16 #include <linux/slab.h>
17 #include <linux/edac.h>
18 #include <linux/bug.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/uaccess.h>
21 
22 #include "edac_core.h"
23 #include "edac_module.h"
24 
25 /* MC EDAC Controls, setable by module parameter, and sysfs */
26 static int edac_mc_log_ue = 1;
27 static int edac_mc_log_ce = 1;
28 static int edac_mc_panic_on_ue;
29 static int edac_mc_poll_msec = 1000;
30 
31 /* Getter functions for above */
32 int edac_mc_get_log_ue(void)
33 {
34 	return edac_mc_log_ue;
35 }
36 
37 int edac_mc_get_log_ce(void)
38 {
39 	return edac_mc_log_ce;
40 }
41 
42 int edac_mc_get_panic_on_ue(void)
43 {
44 	return edac_mc_panic_on_ue;
45 }
46 
47 /* this is temporary */
48 int edac_mc_get_poll_msec(void)
49 {
50 	return edac_mc_poll_msec;
51 }
52 
53 static int edac_set_poll_msec(const char *val, struct kernel_param *kp)
54 {
55 	long l;
56 	int ret;
57 
58 	if (!val)
59 		return -EINVAL;
60 
61 	ret = strict_strtol(val, 0, &l);
62 	if (ret == -EINVAL || ((int)l != l))
63 		return -EINVAL;
64 	*((int *)kp->arg) = l;
65 
66 	/* notify edac_mc engine to reset the poll period */
67 	edac_mc_reset_delay_period(l);
68 
69 	return 0;
70 }
71 
72 /* Parameter declarations for above */
73 module_param(edac_mc_panic_on_ue, int, 0644);
74 MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
75 module_param(edac_mc_log_ue, int, 0644);
76 MODULE_PARM_DESC(edac_mc_log_ue,
77 		 "Log uncorrectable error to console: 0=off 1=on");
78 module_param(edac_mc_log_ce, int, 0644);
79 MODULE_PARM_DESC(edac_mc_log_ce,
80 		 "Log correctable error to console: 0=off 1=on");
81 module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_int,
82 		  &edac_mc_poll_msec, 0644);
83 MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds");
84 
85 static struct device *mci_pdev;
86 
87 /*
88  * various constants for Memory Controllers
89  */
90 static const char *mem_types[] = {
91 	[MEM_EMPTY] = "Empty",
92 	[MEM_RESERVED] = "Reserved",
93 	[MEM_UNKNOWN] = "Unknown",
94 	[MEM_FPM] = "FPM",
95 	[MEM_EDO] = "EDO",
96 	[MEM_BEDO] = "BEDO",
97 	[MEM_SDR] = "Unbuffered-SDR",
98 	[MEM_RDR] = "Registered-SDR",
99 	[MEM_DDR] = "Unbuffered-DDR",
100 	[MEM_RDDR] = "Registered-DDR",
101 	[MEM_RMBS] = "RMBS",
102 	[MEM_DDR2] = "Unbuffered-DDR2",
103 	[MEM_FB_DDR2] = "FullyBuffered-DDR2",
104 	[MEM_RDDR2] = "Registered-DDR2",
105 	[MEM_XDR] = "XDR",
106 	[MEM_DDR3] = "Unbuffered-DDR3",
107 	[MEM_RDDR3] = "Registered-DDR3"
108 };
109 
110 static const char *dev_types[] = {
111 	[DEV_UNKNOWN] = "Unknown",
112 	[DEV_X1] = "x1",
113 	[DEV_X2] = "x2",
114 	[DEV_X4] = "x4",
115 	[DEV_X8] = "x8",
116 	[DEV_X16] = "x16",
117 	[DEV_X32] = "x32",
118 	[DEV_X64] = "x64"
119 };
120 
121 static const char *edac_caps[] = {
122 	[EDAC_UNKNOWN] = "Unknown",
123 	[EDAC_NONE] = "None",
124 	[EDAC_RESERVED] = "Reserved",
125 	[EDAC_PARITY] = "PARITY",
126 	[EDAC_EC] = "EC",
127 	[EDAC_SECDED] = "SECDED",
128 	[EDAC_S2ECD2ED] = "S2ECD2ED",
129 	[EDAC_S4ECD4ED] = "S4ECD4ED",
130 	[EDAC_S8ECD8ED] = "S8ECD8ED",
131 	[EDAC_S16ECD16ED] = "S16ECD16ED"
132 };
133 
134 #ifdef CONFIG_EDAC_LEGACY_SYSFS
135 /*
136  * EDAC sysfs CSROW data structures and methods
137  */
138 
139 #define to_csrow(k) container_of(k, struct csrow_info, dev)
140 
141 /*
142  * We need it to avoid namespace conflicts between the legacy API
143  * and the per-dimm/per-rank one
144  */
145 #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \
146 	struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store)
147 
148 struct dev_ch_attribute {
149 	struct device_attribute attr;
150 	int channel;
151 };
152 
153 #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \
154 	struct dev_ch_attribute dev_attr_legacy_##_name = \
155 		{ __ATTR(_name, _mode, _show, _store), (_var) }
156 
157 #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel)
158 
159 /* Set of more default csrow<id> attribute show/store functions */
160 static ssize_t csrow_ue_count_show(struct device *dev,
161 				   struct device_attribute *mattr, char *data)
162 {
163 	struct csrow_info *csrow = to_csrow(dev);
164 
165 	return sprintf(data, "%u\n", csrow->ue_count);
166 }
167 
168 static ssize_t csrow_ce_count_show(struct device *dev,
169 				   struct device_attribute *mattr, char *data)
170 {
171 	struct csrow_info *csrow = to_csrow(dev);
172 
173 	return sprintf(data, "%u\n", csrow->ce_count);
174 }
175 
176 static ssize_t csrow_size_show(struct device *dev,
177 			       struct device_attribute *mattr, char *data)
178 {
179 	struct csrow_info *csrow = to_csrow(dev);
180 	int i;
181 	u32 nr_pages = 0;
182 
183 	for (i = 0; i < csrow->nr_channels; i++)
184 		nr_pages += csrow->channels[i]->dimm->nr_pages;
185 	return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages));
186 }
187 
188 static ssize_t csrow_mem_type_show(struct device *dev,
189 				   struct device_attribute *mattr, char *data)
190 {
191 	struct csrow_info *csrow = to_csrow(dev);
192 
193 	return sprintf(data, "%s\n", mem_types[csrow->channels[0]->dimm->mtype]);
194 }
195 
196 static ssize_t csrow_dev_type_show(struct device *dev,
197 				   struct device_attribute *mattr, char *data)
198 {
199 	struct csrow_info *csrow = to_csrow(dev);
200 
201 	return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]);
202 }
203 
204 static ssize_t csrow_edac_mode_show(struct device *dev,
205 				    struct device_attribute *mattr,
206 				    char *data)
207 {
208 	struct csrow_info *csrow = to_csrow(dev);
209 
210 	return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]);
211 }
212 
213 /* show/store functions for DIMM Label attributes */
214 static ssize_t channel_dimm_label_show(struct device *dev,
215 				       struct device_attribute *mattr,
216 				       char *data)
217 {
218 	struct csrow_info *csrow = to_csrow(dev);
219 	unsigned chan = to_channel(mattr);
220 	struct rank_info *rank = csrow->channels[chan];
221 
222 	/* if field has not been initialized, there is nothing to send */
223 	if (!rank->dimm->label[0])
224 		return 0;
225 
226 	return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n",
227 			rank->dimm->label);
228 }
229 
230 static ssize_t channel_dimm_label_store(struct device *dev,
231 					struct device_attribute *mattr,
232 					const char *data, size_t count)
233 {
234 	struct csrow_info *csrow = to_csrow(dev);
235 	unsigned chan = to_channel(mattr);
236 	struct rank_info *rank = csrow->channels[chan];
237 
238 	ssize_t max_size = 0;
239 
240 	max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
241 	strncpy(rank->dimm->label, data, max_size);
242 	rank->dimm->label[max_size] = '\0';
243 
244 	return max_size;
245 }
246 
247 /* show function for dynamic chX_ce_count attribute */
248 static ssize_t channel_ce_count_show(struct device *dev,
249 				     struct device_attribute *mattr, char *data)
250 {
251 	struct csrow_info *csrow = to_csrow(dev);
252 	unsigned chan = to_channel(mattr);
253 	struct rank_info *rank = csrow->channels[chan];
254 
255 	return sprintf(data, "%u\n", rank->ce_count);
256 }
257 
258 /* cwrow<id>/attribute files */
259 DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL);
260 DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL);
261 DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL);
262 DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL);
263 DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL);
264 DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL);
265 
266 /* default attributes of the CSROW<id> object */
267 static struct attribute *csrow_attrs[] = {
268 	&dev_attr_legacy_dev_type.attr,
269 	&dev_attr_legacy_mem_type.attr,
270 	&dev_attr_legacy_edac_mode.attr,
271 	&dev_attr_legacy_size_mb.attr,
272 	&dev_attr_legacy_ue_count.attr,
273 	&dev_attr_legacy_ce_count.attr,
274 	NULL,
275 };
276 
277 static struct attribute_group csrow_attr_grp = {
278 	.attrs	= csrow_attrs,
279 };
280 
281 static const struct attribute_group *csrow_attr_groups[] = {
282 	&csrow_attr_grp,
283 	NULL
284 };
285 
286 static void csrow_attr_release(struct device *dev)
287 {
288 	struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
289 
290 	edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
291 	kfree(csrow);
292 }
293 
294 static struct device_type csrow_attr_type = {
295 	.groups		= csrow_attr_groups,
296 	.release	= csrow_attr_release,
297 };
298 
299 /*
300  * possible dynamic channel DIMM Label attribute files
301  *
302  */
303 
304 #define EDAC_NR_CHANNELS	6
305 
306 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR,
307 	channel_dimm_label_show, channel_dimm_label_store, 0);
308 DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR,
309 	channel_dimm_label_show, channel_dimm_label_store, 1);
310 DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR,
311 	channel_dimm_label_show, channel_dimm_label_store, 2);
312 DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR,
313 	channel_dimm_label_show, channel_dimm_label_store, 3);
314 DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR,
315 	channel_dimm_label_show, channel_dimm_label_store, 4);
316 DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR,
317 	channel_dimm_label_show, channel_dimm_label_store, 5);
318 
319 /* Total possible dynamic DIMM Label attribute file table */
320 static struct device_attribute *dynamic_csrow_dimm_attr[] = {
321 	&dev_attr_legacy_ch0_dimm_label.attr,
322 	&dev_attr_legacy_ch1_dimm_label.attr,
323 	&dev_attr_legacy_ch2_dimm_label.attr,
324 	&dev_attr_legacy_ch3_dimm_label.attr,
325 	&dev_attr_legacy_ch4_dimm_label.attr,
326 	&dev_attr_legacy_ch5_dimm_label.attr
327 };
328 
329 /* possible dynamic channel ce_count attribute files */
330 DEVICE_CHANNEL(ch0_ce_count, S_IRUGO | S_IWUSR,
331 		   channel_ce_count_show, NULL, 0);
332 DEVICE_CHANNEL(ch1_ce_count, S_IRUGO | S_IWUSR,
333 		   channel_ce_count_show, NULL, 1);
334 DEVICE_CHANNEL(ch2_ce_count, S_IRUGO | S_IWUSR,
335 		   channel_ce_count_show, NULL, 2);
336 DEVICE_CHANNEL(ch3_ce_count, S_IRUGO | S_IWUSR,
337 		   channel_ce_count_show, NULL, 3);
338 DEVICE_CHANNEL(ch4_ce_count, S_IRUGO | S_IWUSR,
339 		   channel_ce_count_show, NULL, 4);
340 DEVICE_CHANNEL(ch5_ce_count, S_IRUGO | S_IWUSR,
341 		   channel_ce_count_show, NULL, 5);
342 
343 /* Total possible dynamic ce_count attribute file table */
344 static struct device_attribute *dynamic_csrow_ce_count_attr[] = {
345 	&dev_attr_legacy_ch0_ce_count.attr,
346 	&dev_attr_legacy_ch1_ce_count.attr,
347 	&dev_attr_legacy_ch2_ce_count.attr,
348 	&dev_attr_legacy_ch3_ce_count.attr,
349 	&dev_attr_legacy_ch4_ce_count.attr,
350 	&dev_attr_legacy_ch5_ce_count.attr
351 };
352 
353 static inline int nr_pages_per_csrow(struct csrow_info *csrow)
354 {
355 	int chan, nr_pages = 0;
356 
357 	for (chan = 0; chan < csrow->nr_channels; chan++)
358 		nr_pages += csrow->channels[chan]->dimm->nr_pages;
359 
360 	return nr_pages;
361 }
362 
363 /* Create a CSROW object under specifed edac_mc_device */
364 static int edac_create_csrow_object(struct mem_ctl_info *mci,
365 				    struct csrow_info *csrow, int index)
366 {
367 	int err, chan;
368 
369 	if (csrow->nr_channels >= EDAC_NR_CHANNELS)
370 		return -ENODEV;
371 
372 	csrow->dev.type = &csrow_attr_type;
373 	csrow->dev.bus = &mci->bus;
374 	device_initialize(&csrow->dev);
375 	csrow->dev.parent = &mci->dev;
376 	dev_set_name(&csrow->dev, "csrow%d", index);
377 	dev_set_drvdata(&csrow->dev, csrow);
378 
379 	edac_dbg(0, "creating (virtual) csrow node %s\n",
380 		 dev_name(&csrow->dev));
381 
382 	err = device_add(&csrow->dev);
383 	if (err < 0)
384 		return err;
385 
386 	for (chan = 0; chan < csrow->nr_channels; chan++) {
387 		/* Only expose populated DIMMs */
388 		if (!csrow->channels[chan]->dimm->nr_pages)
389 			continue;
390 		err = device_create_file(&csrow->dev,
391 					 dynamic_csrow_dimm_attr[chan]);
392 		if (err < 0)
393 			goto error;
394 		err = device_create_file(&csrow->dev,
395 					 dynamic_csrow_ce_count_attr[chan]);
396 		if (err < 0) {
397 			device_remove_file(&csrow->dev,
398 					   dynamic_csrow_dimm_attr[chan]);
399 			goto error;
400 		}
401 	}
402 
403 	return 0;
404 
405 error:
406 	for (--chan; chan >= 0; chan--) {
407 		device_remove_file(&csrow->dev,
408 					dynamic_csrow_dimm_attr[chan]);
409 		device_remove_file(&csrow->dev,
410 					   dynamic_csrow_ce_count_attr[chan]);
411 	}
412 	put_device(&csrow->dev);
413 
414 	return err;
415 }
416 
417 /* Create a CSROW object under specifed edac_mc_device */
418 static int edac_create_csrow_objects(struct mem_ctl_info *mci)
419 {
420 	int err, i, chan;
421 	struct csrow_info *csrow;
422 
423 	for (i = 0; i < mci->nr_csrows; i++) {
424 		csrow = mci->csrows[i];
425 		if (!nr_pages_per_csrow(csrow))
426 			continue;
427 		err = edac_create_csrow_object(mci, mci->csrows[i], i);
428 		if (err < 0)
429 			goto error;
430 	}
431 	return 0;
432 
433 error:
434 	for (--i; i >= 0; i--) {
435 		csrow = mci->csrows[i];
436 		if (!nr_pages_per_csrow(csrow))
437 			continue;
438 		for (chan = csrow->nr_channels - 1; chan >= 0; chan--) {
439 			if (!csrow->channels[chan]->dimm->nr_pages)
440 				continue;
441 			device_remove_file(&csrow->dev,
442 						dynamic_csrow_dimm_attr[chan]);
443 			device_remove_file(&csrow->dev,
444 						dynamic_csrow_ce_count_attr[chan]);
445 		}
446 		put_device(&mci->csrows[i]->dev);
447 	}
448 
449 	return err;
450 }
451 
452 static void edac_delete_csrow_objects(struct mem_ctl_info *mci)
453 {
454 	int i, chan;
455 	struct csrow_info *csrow;
456 
457 	for (i = mci->nr_csrows - 1; i >= 0; i--) {
458 		csrow = mci->csrows[i];
459 		if (!nr_pages_per_csrow(csrow))
460 			continue;
461 		for (chan = csrow->nr_channels - 1; chan >= 0; chan--) {
462 			if (!csrow->channels[chan]->dimm->nr_pages)
463 				continue;
464 			edac_dbg(1, "Removing csrow %d channel %d sysfs nodes\n",
465 				 i, chan);
466 			device_remove_file(&csrow->dev,
467 						dynamic_csrow_dimm_attr[chan]);
468 			device_remove_file(&csrow->dev,
469 						dynamic_csrow_ce_count_attr[chan]);
470 		}
471 		put_device(&mci->csrows[i]->dev);
472 		device_del(&mci->csrows[i]->dev);
473 	}
474 }
475 #endif
476 
477 /*
478  * Per-dimm (or per-rank) devices
479  */
480 
481 #define to_dimm(k) container_of(k, struct dimm_info, dev)
482 
483 /* show/store functions for DIMM Label attributes */
484 static ssize_t dimmdev_location_show(struct device *dev,
485 				     struct device_attribute *mattr, char *data)
486 {
487 	struct dimm_info *dimm = to_dimm(dev);
488 
489 	return edac_dimm_info_location(dimm, data, PAGE_SIZE);
490 }
491 
492 static ssize_t dimmdev_label_show(struct device *dev,
493 				  struct device_attribute *mattr, char *data)
494 {
495 	struct dimm_info *dimm = to_dimm(dev);
496 
497 	/* if field has not been initialized, there is nothing to send */
498 	if (!dimm->label[0])
499 		return 0;
500 
501 	return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n", dimm->label);
502 }
503 
504 static ssize_t dimmdev_label_store(struct device *dev,
505 				   struct device_attribute *mattr,
506 				   const char *data,
507 				   size_t count)
508 {
509 	struct dimm_info *dimm = to_dimm(dev);
510 
511 	ssize_t max_size = 0;
512 
513 	max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
514 	strncpy(dimm->label, data, max_size);
515 	dimm->label[max_size] = '\0';
516 
517 	return max_size;
518 }
519 
520 static ssize_t dimmdev_size_show(struct device *dev,
521 				 struct device_attribute *mattr, char *data)
522 {
523 	struct dimm_info *dimm = to_dimm(dev);
524 
525 	return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages));
526 }
527 
528 static ssize_t dimmdev_mem_type_show(struct device *dev,
529 				     struct device_attribute *mattr, char *data)
530 {
531 	struct dimm_info *dimm = to_dimm(dev);
532 
533 	return sprintf(data, "%s\n", mem_types[dimm->mtype]);
534 }
535 
536 static ssize_t dimmdev_dev_type_show(struct device *dev,
537 				     struct device_attribute *mattr, char *data)
538 {
539 	struct dimm_info *dimm = to_dimm(dev);
540 
541 	return sprintf(data, "%s\n", dev_types[dimm->dtype]);
542 }
543 
544 static ssize_t dimmdev_edac_mode_show(struct device *dev,
545 				      struct device_attribute *mattr,
546 				      char *data)
547 {
548 	struct dimm_info *dimm = to_dimm(dev);
549 
550 	return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]);
551 }
552 
553 /* dimm/rank attribute files */
554 static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR,
555 		   dimmdev_label_show, dimmdev_label_store);
556 static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL);
557 static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL);
558 static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL);
559 static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL);
560 static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL);
561 
562 /* attributes of the dimm<id>/rank<id> object */
563 static struct attribute *dimm_attrs[] = {
564 	&dev_attr_dimm_label.attr,
565 	&dev_attr_dimm_location.attr,
566 	&dev_attr_size.attr,
567 	&dev_attr_dimm_mem_type.attr,
568 	&dev_attr_dimm_dev_type.attr,
569 	&dev_attr_dimm_edac_mode.attr,
570 	NULL,
571 };
572 
573 static struct attribute_group dimm_attr_grp = {
574 	.attrs	= dimm_attrs,
575 };
576 
577 static const struct attribute_group *dimm_attr_groups[] = {
578 	&dimm_attr_grp,
579 	NULL
580 };
581 
582 static void dimm_attr_release(struct device *dev)
583 {
584 	struct dimm_info *dimm = container_of(dev, struct dimm_info, dev);
585 
586 	edac_dbg(1, "Releasing dimm device %s\n", dev_name(dev));
587 	kfree(dimm);
588 }
589 
590 static struct device_type dimm_attr_type = {
591 	.groups		= dimm_attr_groups,
592 	.release	= dimm_attr_release,
593 };
594 
595 /* Create a DIMM object under specifed memory controller device */
596 static int edac_create_dimm_object(struct mem_ctl_info *mci,
597 				   struct dimm_info *dimm,
598 				   int index)
599 {
600 	int err;
601 	dimm->mci = mci;
602 
603 	dimm->dev.type = &dimm_attr_type;
604 	dimm->dev.bus = &mci->bus;
605 	device_initialize(&dimm->dev);
606 
607 	dimm->dev.parent = &mci->dev;
608 	if (mci->mem_is_per_rank)
609 		dev_set_name(&dimm->dev, "rank%d", index);
610 	else
611 		dev_set_name(&dimm->dev, "dimm%d", index);
612 	dev_set_drvdata(&dimm->dev, dimm);
613 	pm_runtime_forbid(&mci->dev);
614 
615 	err =  device_add(&dimm->dev);
616 
617 	edac_dbg(0, "creating rank/dimm device %s\n", dev_name(&dimm->dev));
618 
619 	return err;
620 }
621 
622 /*
623  * Memory controller device
624  */
625 
626 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
627 
628 static ssize_t mci_reset_counters_store(struct device *dev,
629 					struct device_attribute *mattr,
630 					const char *data, size_t count)
631 {
632 	struct mem_ctl_info *mci = to_mci(dev);
633 	int cnt, row, chan, i;
634 	mci->ue_mc = 0;
635 	mci->ce_mc = 0;
636 	mci->ue_noinfo_count = 0;
637 	mci->ce_noinfo_count = 0;
638 
639 	for (row = 0; row < mci->nr_csrows; row++) {
640 		struct csrow_info *ri = mci->csrows[row];
641 
642 		ri->ue_count = 0;
643 		ri->ce_count = 0;
644 
645 		for (chan = 0; chan < ri->nr_channels; chan++)
646 			ri->channels[chan]->ce_count = 0;
647 	}
648 
649 	cnt = 1;
650 	for (i = 0; i < mci->n_layers; i++) {
651 		cnt *= mci->layers[i].size;
652 		memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32));
653 		memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32));
654 	}
655 
656 	mci->start_time = jiffies;
657 	return count;
658 }
659 
660 /* Memory scrubbing interface:
661  *
662  * A MC driver can limit the scrubbing bandwidth based on the CPU type.
663  * Therefore, ->set_sdram_scrub_rate should be made to return the actual
664  * bandwidth that is accepted or 0 when scrubbing is to be disabled.
665  *
666  * Negative value still means that an error has occurred while setting
667  * the scrub rate.
668  */
669 static ssize_t mci_sdram_scrub_rate_store(struct device *dev,
670 					  struct device_attribute *mattr,
671 					  const char *data, size_t count)
672 {
673 	struct mem_ctl_info *mci = to_mci(dev);
674 	unsigned long bandwidth = 0;
675 	int new_bw = 0;
676 
677 	if (!mci->set_sdram_scrub_rate)
678 		return -ENODEV;
679 
680 	if (strict_strtoul(data, 10, &bandwidth) < 0)
681 		return -EINVAL;
682 
683 	new_bw = mci->set_sdram_scrub_rate(mci, bandwidth);
684 	if (new_bw < 0) {
685 		edac_printk(KERN_WARNING, EDAC_MC,
686 			    "Error setting scrub rate to: %lu\n", bandwidth);
687 		return -EINVAL;
688 	}
689 
690 	return count;
691 }
692 
693 /*
694  * ->get_sdram_scrub_rate() return value semantics same as above.
695  */
696 static ssize_t mci_sdram_scrub_rate_show(struct device *dev,
697 					 struct device_attribute *mattr,
698 					 char *data)
699 {
700 	struct mem_ctl_info *mci = to_mci(dev);
701 	int bandwidth = 0;
702 
703 	if (!mci->get_sdram_scrub_rate)
704 		return -ENODEV;
705 
706 	bandwidth = mci->get_sdram_scrub_rate(mci);
707 	if (bandwidth < 0) {
708 		edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n");
709 		return bandwidth;
710 	}
711 
712 	return sprintf(data, "%d\n", bandwidth);
713 }
714 
715 /* default attribute files for the MCI object */
716 static ssize_t mci_ue_count_show(struct device *dev,
717 				 struct device_attribute *mattr,
718 				 char *data)
719 {
720 	struct mem_ctl_info *mci = to_mci(dev);
721 
722 	return sprintf(data, "%d\n", mci->ue_mc);
723 }
724 
725 static ssize_t mci_ce_count_show(struct device *dev,
726 				 struct device_attribute *mattr,
727 				 char *data)
728 {
729 	struct mem_ctl_info *mci = to_mci(dev);
730 
731 	return sprintf(data, "%d\n", mci->ce_mc);
732 }
733 
734 static ssize_t mci_ce_noinfo_show(struct device *dev,
735 				  struct device_attribute *mattr,
736 				  char *data)
737 {
738 	struct mem_ctl_info *mci = to_mci(dev);
739 
740 	return sprintf(data, "%d\n", mci->ce_noinfo_count);
741 }
742 
743 static ssize_t mci_ue_noinfo_show(struct device *dev,
744 				  struct device_attribute *mattr,
745 				  char *data)
746 {
747 	struct mem_ctl_info *mci = to_mci(dev);
748 
749 	return sprintf(data, "%d\n", mci->ue_noinfo_count);
750 }
751 
752 static ssize_t mci_seconds_show(struct device *dev,
753 				struct device_attribute *mattr,
754 				char *data)
755 {
756 	struct mem_ctl_info *mci = to_mci(dev);
757 
758 	return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ);
759 }
760 
761 static ssize_t mci_ctl_name_show(struct device *dev,
762 				 struct device_attribute *mattr,
763 				 char *data)
764 {
765 	struct mem_ctl_info *mci = to_mci(dev);
766 
767 	return sprintf(data, "%s\n", mci->ctl_name);
768 }
769 
770 static ssize_t mci_size_mb_show(struct device *dev,
771 				struct device_attribute *mattr,
772 				char *data)
773 {
774 	struct mem_ctl_info *mci = to_mci(dev);
775 	int total_pages = 0, csrow_idx, j;
776 
777 	for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) {
778 		struct csrow_info *csrow = mci->csrows[csrow_idx];
779 
780 		for (j = 0; j < csrow->nr_channels; j++) {
781 			struct dimm_info *dimm = csrow->channels[j]->dimm;
782 
783 			total_pages += dimm->nr_pages;
784 		}
785 	}
786 
787 	return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages));
788 }
789 
790 static ssize_t mci_max_location_show(struct device *dev,
791 				     struct device_attribute *mattr,
792 				     char *data)
793 {
794 	struct mem_ctl_info *mci = to_mci(dev);
795 	int i;
796 	char *p = data;
797 
798 	for (i = 0; i < mci->n_layers; i++) {
799 		p += sprintf(p, "%s %d ",
800 			     edac_layer_name[mci->layers[i].type],
801 			     mci->layers[i].size - 1);
802 	}
803 
804 	return p - data;
805 }
806 
807 #ifdef CONFIG_EDAC_DEBUG
808 static ssize_t edac_fake_inject_write(struct file *file,
809 				      const char __user *data,
810 				      size_t count, loff_t *ppos)
811 {
812 	struct device *dev = file->private_data;
813 	struct mem_ctl_info *mci = to_mci(dev);
814 	static enum hw_event_mc_err_type type;
815 	u16 errcount = mci->fake_inject_count;
816 
817 	if (!errcount)
818 		errcount = 1;
819 
820 	type = mci->fake_inject_ue ? HW_EVENT_ERR_UNCORRECTED
821 				   : HW_EVENT_ERR_CORRECTED;
822 
823 	printk(KERN_DEBUG
824 	       "Generating %d %s fake error%s to %d.%d.%d to test core handling. NOTE: this won't test the driver-specific decoding logic.\n",
825 		errcount,
826 		(type == HW_EVENT_ERR_UNCORRECTED) ? "UE" : "CE",
827 		errcount > 1 ? "s" : "",
828 		mci->fake_inject_layer[0],
829 		mci->fake_inject_layer[1],
830 		mci->fake_inject_layer[2]
831 	       );
832 	edac_mc_handle_error(type, mci, errcount, 0, 0, 0,
833 			     mci->fake_inject_layer[0],
834 			     mci->fake_inject_layer[1],
835 			     mci->fake_inject_layer[2],
836 			     "FAKE ERROR", "for EDAC testing only");
837 
838 	return count;
839 }
840 
841 static int debugfs_open(struct inode *inode, struct file *file)
842 {
843 	file->private_data = inode->i_private;
844 	return 0;
845 }
846 
847 static const struct file_operations debug_fake_inject_fops = {
848 	.open = debugfs_open,
849 	.write = edac_fake_inject_write,
850 	.llseek = generic_file_llseek,
851 };
852 #endif
853 
854 /* default Control file */
855 DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store);
856 
857 /* default Attribute files */
858 DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL);
859 DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL);
860 DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL);
861 DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL);
862 DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL);
863 DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL);
864 DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL);
865 DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL);
866 
867 /* memory scrubber attribute file */
868 DEVICE_ATTR(sdram_scrub_rate, S_IRUGO | S_IWUSR, mci_sdram_scrub_rate_show,
869 	mci_sdram_scrub_rate_store);
870 
871 static struct attribute *mci_attrs[] = {
872 	&dev_attr_reset_counters.attr,
873 	&dev_attr_mc_name.attr,
874 	&dev_attr_size_mb.attr,
875 	&dev_attr_seconds_since_reset.attr,
876 	&dev_attr_ue_noinfo_count.attr,
877 	&dev_attr_ce_noinfo_count.attr,
878 	&dev_attr_ue_count.attr,
879 	&dev_attr_ce_count.attr,
880 	&dev_attr_sdram_scrub_rate.attr,
881 	&dev_attr_max_location.attr,
882 	NULL
883 };
884 
885 static struct attribute_group mci_attr_grp = {
886 	.attrs	= mci_attrs,
887 };
888 
889 static const struct attribute_group *mci_attr_groups[] = {
890 	&mci_attr_grp,
891 	NULL
892 };
893 
894 static void mci_attr_release(struct device *dev)
895 {
896 	struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
897 
898 	edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
899 	kfree(mci);
900 }
901 
902 static struct device_type mci_attr_type = {
903 	.groups		= mci_attr_groups,
904 	.release	= mci_attr_release,
905 };
906 
907 #ifdef CONFIG_EDAC_DEBUG
908 static struct dentry *edac_debugfs;
909 
910 int __init edac_debugfs_init(void)
911 {
912 	edac_debugfs = debugfs_create_dir("edac", NULL);
913 	if (IS_ERR(edac_debugfs)) {
914 		edac_debugfs = NULL;
915 		return -ENOMEM;
916 	}
917 	return 0;
918 }
919 
920 void __exit edac_debugfs_exit(void)
921 {
922 	debugfs_remove(edac_debugfs);
923 }
924 
925 int edac_create_debug_nodes(struct mem_ctl_info *mci)
926 {
927 	struct dentry *d, *parent;
928 	char name[80];
929 	int i;
930 
931 	if (!edac_debugfs)
932 		return -ENODEV;
933 
934 	d = debugfs_create_dir(mci->dev.kobj.name, edac_debugfs);
935 	if (!d)
936 		return -ENOMEM;
937 	parent = d;
938 
939 	for (i = 0; i < mci->n_layers; i++) {
940 		sprintf(name, "fake_inject_%s",
941 			     edac_layer_name[mci->layers[i].type]);
942 		d = debugfs_create_u8(name, S_IRUGO | S_IWUSR, parent,
943 				      &mci->fake_inject_layer[i]);
944 		if (!d)
945 			goto nomem;
946 	}
947 
948 	d = debugfs_create_bool("fake_inject_ue", S_IRUGO | S_IWUSR, parent,
949 				&mci->fake_inject_ue);
950 	if (!d)
951 		goto nomem;
952 
953 	d = debugfs_create_u16("fake_inject_count", S_IRUGO | S_IWUSR, parent,
954 				&mci->fake_inject_count);
955 	if (!d)
956 		goto nomem;
957 
958 	d = debugfs_create_file("fake_inject", S_IWUSR, parent,
959 				&mci->dev,
960 				&debug_fake_inject_fops);
961 	if (!d)
962 		goto nomem;
963 
964 	mci->debugfs = parent;
965 	return 0;
966 nomem:
967 	debugfs_remove(mci->debugfs);
968 	return -ENOMEM;
969 }
970 #endif
971 
972 /*
973  * Create a new Memory Controller kobject instance,
974  *	mc<id> under the 'mc' directory
975  *
976  * Return:
977  *	0	Success
978  *	!0	Failure
979  */
980 int edac_create_sysfs_mci_device(struct mem_ctl_info *mci)
981 {
982 	int i, err;
983 
984 	/*
985 	 * The memory controller needs its own bus, in order to avoid
986 	 * namespace conflicts at /sys/bus/edac.
987 	 */
988 	mci->bus.name = kasprintf(GFP_KERNEL, "mc%d", mci->mc_idx);
989 	if (!mci->bus.name)
990 		return -ENOMEM;
991 	edac_dbg(0, "creating bus %s\n", mci->bus.name);
992 	err = bus_register(&mci->bus);
993 	if (err < 0)
994 		return err;
995 
996 	/* get the /sys/devices/system/edac subsys reference */
997 	mci->dev.type = &mci_attr_type;
998 	device_initialize(&mci->dev);
999 
1000 	mci->dev.parent = mci_pdev;
1001 	mci->dev.bus = &mci->bus;
1002 	dev_set_name(&mci->dev, "mc%d", mci->mc_idx);
1003 	dev_set_drvdata(&mci->dev, mci);
1004 	pm_runtime_forbid(&mci->dev);
1005 
1006 	edac_dbg(0, "creating device %s\n", dev_name(&mci->dev));
1007 	err = device_add(&mci->dev);
1008 	if (err < 0) {
1009 		bus_unregister(&mci->bus);
1010 		kfree(mci->bus.name);
1011 		return err;
1012 	}
1013 
1014 	/*
1015 	 * Create the dimm/rank devices
1016 	 */
1017 	for (i = 0; i < mci->tot_dimms; i++) {
1018 		struct dimm_info *dimm = mci->dimms[i];
1019 		/* Only expose populated DIMMs */
1020 		if (dimm->nr_pages == 0)
1021 			continue;
1022 #ifdef CONFIG_EDAC_DEBUG
1023 		edac_dbg(1, "creating dimm%d, located at ", i);
1024 		if (edac_debug_level >= 1) {
1025 			int lay;
1026 			for (lay = 0; lay < mci->n_layers; lay++)
1027 				printk(KERN_CONT "%s %d ",
1028 					edac_layer_name[mci->layers[lay].type],
1029 					dimm->location[lay]);
1030 			printk(KERN_CONT "\n");
1031 		}
1032 #endif
1033 		err = edac_create_dimm_object(mci, dimm, i);
1034 		if (err) {
1035 			edac_dbg(1, "failure: create dimm %d obj\n", i);
1036 			goto fail;
1037 		}
1038 	}
1039 
1040 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1041 	err = edac_create_csrow_objects(mci);
1042 	if (err < 0)
1043 		goto fail;
1044 #endif
1045 
1046 #ifdef CONFIG_EDAC_DEBUG
1047 	edac_create_debug_nodes(mci);
1048 #endif
1049 	return 0;
1050 
1051 fail:
1052 	for (i--; i >= 0; i--) {
1053 		struct dimm_info *dimm = mci->dimms[i];
1054 		if (dimm->nr_pages == 0)
1055 			continue;
1056 		put_device(&dimm->dev);
1057 		device_del(&dimm->dev);
1058 	}
1059 	put_device(&mci->dev);
1060 	device_del(&mci->dev);
1061 	bus_unregister(&mci->bus);
1062 	kfree(mci->bus.name);
1063 	return err;
1064 }
1065 
1066 /*
1067  * remove a Memory Controller instance
1068  */
1069 void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
1070 {
1071 	int i;
1072 
1073 	edac_dbg(0, "\n");
1074 
1075 #ifdef CONFIG_EDAC_DEBUG
1076 	debugfs_remove(mci->debugfs);
1077 #endif
1078 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1079 	edac_delete_csrow_objects(mci);
1080 #endif
1081 
1082 	for (i = 0; i < mci->tot_dimms; i++) {
1083 		struct dimm_info *dimm = mci->dimms[i];
1084 		if (dimm->nr_pages == 0)
1085 			continue;
1086 		edac_dbg(0, "removing device %s\n", dev_name(&dimm->dev));
1087 		put_device(&dimm->dev);
1088 		device_del(&dimm->dev);
1089 	}
1090 }
1091 
1092 void edac_unregister_sysfs(struct mem_ctl_info *mci)
1093 {
1094 	edac_dbg(1, "Unregistering device %s\n", dev_name(&mci->dev));
1095 	put_device(&mci->dev);
1096 	device_del(&mci->dev);
1097 	bus_unregister(&mci->bus);
1098 	kfree(mci->bus.name);
1099 }
1100 
1101 static void mc_attr_release(struct device *dev)
1102 {
1103 	/*
1104 	 * There's no container structure here, as this is just the mci
1105 	 * parent device, used to create the /sys/devices/mc sysfs node.
1106 	 * So, there are no attributes on it.
1107 	 */
1108 	edac_dbg(1, "Releasing device %s\n", dev_name(dev));
1109 	kfree(dev);
1110 }
1111 
1112 static struct device_type mc_attr_type = {
1113 	.release	= mc_attr_release,
1114 };
1115 /*
1116  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1117  */
1118 int __init edac_mc_sysfs_init(void)
1119 {
1120 	struct bus_type *edac_subsys;
1121 	int err;
1122 
1123 	/* get the /sys/devices/system/edac subsys reference */
1124 	edac_subsys = edac_get_sysfs_subsys();
1125 	if (edac_subsys == NULL) {
1126 		edac_dbg(1, "no edac_subsys\n");
1127 		return -EINVAL;
1128 	}
1129 
1130 	mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL);
1131 
1132 	mci_pdev->bus = edac_subsys;
1133 	mci_pdev->type = &mc_attr_type;
1134 	device_initialize(mci_pdev);
1135 	dev_set_name(mci_pdev, "mc");
1136 
1137 	err = device_add(mci_pdev);
1138 	if (err < 0)
1139 		return err;
1140 
1141 	edac_dbg(0, "device %s created\n", dev_name(mci_pdev));
1142 
1143 	return 0;
1144 }
1145 
1146 void __exit edac_mc_sysfs_exit(void)
1147 {
1148 	put_device(mci_pdev);
1149 	device_del(mci_pdev);
1150 	edac_put_sysfs_subsys();
1151 }
1152