xref: /openbmc/linux/drivers/edac/edac_mc.h (revision 64c70b1c)
1 /*
2  * MC kernel module
3  * (C) 2003 Linux Networx (http://lnxi.com)
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Thayne Harbaugh
8  * Based on work by Dan Hollis <goemon at anime dot net> and others.
9  *	http://www.anime.net/~goemon/linux-ecc/
10  *
11  * NMI handling support added by
12  *     Dave Peterson <dsp@llnl.gov> <dave_peterson@pobox.com>
13  *
14  * $Id: edac_mc.h,v 1.4.2.10 2005/10/05 00:43:44 dsp_llnl Exp $
15  *
16  */
17 
18 #ifndef _EDAC_MC_H_
19 #define _EDAC_MC_H_
20 
21 #include <linux/kernel.h>
22 #include <linux/types.h>
23 #include <linux/module.h>
24 #include <linux/spinlock.h>
25 #include <linux/smp.h>
26 #include <linux/pci.h>
27 #include <linux/time.h>
28 #include <linux/nmi.h>
29 #include <linux/rcupdate.h>
30 #include <linux/completion.h>
31 #include <linux/kobject.h>
32 #include <linux/platform_device.h>
33 
34 #define EDAC_MC_LABEL_LEN	31
35 #define MC_PROC_NAME_MAX_LEN 7
36 
37 #if PAGE_SHIFT < 20
38 #define PAGES_TO_MiB( pages )	( ( pages ) >> ( 20 - PAGE_SHIFT ) )
39 #else				/* PAGE_SHIFT > 20 */
40 #define PAGES_TO_MiB( pages )	( ( pages ) << ( PAGE_SHIFT - 20 ) )
41 #endif
42 
43 #define edac_printk(level, prefix, fmt, arg...) \
44 	printk(level "EDAC " prefix ": " fmt, ##arg)
45 
46 #define edac_mc_printk(mci, level, fmt, arg...) \
47 	printk(level "EDAC MC%d: " fmt, mci->mc_idx, ##arg)
48 
49 #define edac_mc_chipset_printk(mci, level, prefix, fmt, arg...) \
50 	printk(level "EDAC " prefix " MC%d: " fmt, mci->mc_idx, ##arg)
51 
52 /* prefixes for edac_printk() and edac_mc_printk() */
53 #define EDAC_MC "MC"
54 #define EDAC_PCI "PCI"
55 #define EDAC_DEBUG "DEBUG"
56 
57 #ifdef CONFIG_EDAC_DEBUG
58 extern int edac_debug_level;
59 
60 #define edac_debug_printk(level, fmt, arg...)                            \
61 	do {                                                             \
62 		if (level <= edac_debug_level)                           \
63 			edac_printk(KERN_DEBUG, EDAC_DEBUG, fmt, ##arg); \
64 	} while(0)
65 
66 #define debugf0( ... ) edac_debug_printk(0, __VA_ARGS__ )
67 #define debugf1( ... ) edac_debug_printk(1, __VA_ARGS__ )
68 #define debugf2( ... ) edac_debug_printk(2, __VA_ARGS__ )
69 #define debugf3( ... ) edac_debug_printk(3, __VA_ARGS__ )
70 #define debugf4( ... ) edac_debug_printk(4, __VA_ARGS__ )
71 
72 #else  /* !CONFIG_EDAC_DEBUG */
73 
74 #define debugf0( ... )
75 #define debugf1( ... )
76 #define debugf2( ... )
77 #define debugf3( ... )
78 #define debugf4( ... )
79 
80 #endif  /* !CONFIG_EDAC_DEBUG */
81 
82 #define BIT(x) (1 << (x))
83 
84 #define PCI_VEND_DEV(vend, dev) PCI_VENDOR_ID_ ## vend, \
85 	PCI_DEVICE_ID_ ## vend ## _ ## dev
86 
87 #if defined(CONFIG_X86) && defined(CONFIG_PCI)
88 #define dev_name(dev) pci_name(to_pci_dev(dev))
89 #else
90 #define dev_name(dev) to_platform_device(dev)->name
91 #endif
92 
93 /* memory devices */
94 enum dev_type {
95 	DEV_UNKNOWN = 0,
96 	DEV_X1,
97 	DEV_X2,
98 	DEV_X4,
99 	DEV_X8,
100 	DEV_X16,
101 	DEV_X32,		/* Do these parts exist? */
102 	DEV_X64			/* Do these parts exist? */
103 };
104 
105 #define DEV_FLAG_UNKNOWN	BIT(DEV_UNKNOWN)
106 #define DEV_FLAG_X1		BIT(DEV_X1)
107 #define DEV_FLAG_X2		BIT(DEV_X2)
108 #define DEV_FLAG_X4		BIT(DEV_X4)
109 #define DEV_FLAG_X8		BIT(DEV_X8)
110 #define DEV_FLAG_X16		BIT(DEV_X16)
111 #define DEV_FLAG_X32		BIT(DEV_X32)
112 #define DEV_FLAG_X64		BIT(DEV_X64)
113 
114 /* memory types */
115 enum mem_type {
116 	MEM_EMPTY = 0,		/* Empty csrow */
117 	MEM_RESERVED,		/* Reserved csrow type */
118 	MEM_UNKNOWN,		/* Unknown csrow type */
119 	MEM_FPM,		/* Fast page mode */
120 	MEM_EDO,		/* Extended data out */
121 	MEM_BEDO,		/* Burst Extended data out */
122 	MEM_SDR,		/* Single data rate SDRAM */
123 	MEM_RDR,		/* Registered single data rate SDRAM */
124 	MEM_DDR,		/* Double data rate SDRAM */
125 	MEM_RDDR,		/* Registered Double data rate SDRAM */
126 	MEM_RMBS,		/* Rambus DRAM */
127 	MEM_DDR2,               /* DDR2 RAM */
128 	MEM_FB_DDR2,            /* fully buffered DDR2 */
129 };
130 
131 #define MEM_FLAG_EMPTY		BIT(MEM_EMPTY)
132 #define MEM_FLAG_RESERVED	BIT(MEM_RESERVED)
133 #define MEM_FLAG_UNKNOWN	BIT(MEM_UNKNOWN)
134 #define MEM_FLAG_FPM		BIT(MEM_FPM)
135 #define MEM_FLAG_EDO		BIT(MEM_EDO)
136 #define MEM_FLAG_BEDO		BIT(MEM_BEDO)
137 #define MEM_FLAG_SDR		BIT(MEM_SDR)
138 #define MEM_FLAG_RDR		BIT(MEM_RDR)
139 #define MEM_FLAG_DDR		BIT(MEM_DDR)
140 #define MEM_FLAG_RDDR		BIT(MEM_RDDR)
141 #define MEM_FLAG_RMBS		BIT(MEM_RMBS)
142 #define MEM_FLAG_DDR2           BIT(MEM_DDR2)
143 #define MEM_FLAG_FB_DDR2        BIT(MEM_FB_DDR2)
144 
145 /* chipset Error Detection and Correction capabilities and mode */
146 enum edac_type {
147 	EDAC_UNKNOWN = 0,	/* Unknown if ECC is available */
148 	EDAC_NONE,		/* Doesnt support ECC */
149 	EDAC_RESERVED,		/* Reserved ECC type */
150 	EDAC_PARITY,		/* Detects parity errors */
151 	EDAC_EC,		/* Error Checking - no correction */
152 	EDAC_SECDED,		/* Single bit error correction, Double detection */
153 	EDAC_S2ECD2ED,		/* Chipkill x2 devices - do these exist? */
154 	EDAC_S4ECD4ED,		/* Chipkill x4 devices */
155 	EDAC_S8ECD8ED,		/* Chipkill x8 devices */
156 	EDAC_S16ECD16ED,	/* Chipkill x16 devices */
157 };
158 
159 #define EDAC_FLAG_UNKNOWN	BIT(EDAC_UNKNOWN)
160 #define EDAC_FLAG_NONE		BIT(EDAC_NONE)
161 #define EDAC_FLAG_PARITY	BIT(EDAC_PARITY)
162 #define EDAC_FLAG_EC		BIT(EDAC_EC)
163 #define EDAC_FLAG_SECDED	BIT(EDAC_SECDED)
164 #define EDAC_FLAG_S2ECD2ED	BIT(EDAC_S2ECD2ED)
165 #define EDAC_FLAG_S4ECD4ED	BIT(EDAC_S4ECD4ED)
166 #define EDAC_FLAG_S8ECD8ED	BIT(EDAC_S8ECD8ED)
167 #define EDAC_FLAG_S16ECD16ED	BIT(EDAC_S16ECD16ED)
168 
169 /* scrubbing capabilities */
170 enum scrub_type {
171 	SCRUB_UNKNOWN = 0,	/* Unknown if scrubber is available */
172 	SCRUB_NONE,		/* No scrubber */
173 	SCRUB_SW_PROG,		/* SW progressive (sequential) scrubbing */
174 	SCRUB_SW_SRC,		/* Software scrub only errors */
175 	SCRUB_SW_PROG_SRC,	/* Progressive software scrub from an error */
176 	SCRUB_SW_TUNABLE,	/* Software scrub frequency is tunable */
177 	SCRUB_HW_PROG,		/* HW progressive (sequential) scrubbing */
178 	SCRUB_HW_SRC,		/* Hardware scrub only errors */
179 	SCRUB_HW_PROG_SRC,	/* Progressive hardware scrub from an error */
180 	SCRUB_HW_TUNABLE	/* Hardware scrub frequency is tunable */
181 };
182 
183 #define SCRUB_FLAG_SW_PROG	BIT(SCRUB_SW_PROG)
184 #define SCRUB_FLAG_SW_SRC	BIT(SCRUB_SW_SRC_CORR)
185 #define SCRUB_FLAG_SW_PROG_SRC	BIT(SCRUB_SW_PROG_SRC_CORR)
186 #define SCRUB_FLAG_SW_TUN	BIT(SCRUB_SW_SCRUB_TUNABLE)
187 #define SCRUB_FLAG_HW_PROG	BIT(SCRUB_HW_PROG)
188 #define SCRUB_FLAG_HW_SRC	BIT(SCRUB_HW_SRC_CORR)
189 #define SCRUB_FLAG_HW_PROG_SRC	BIT(SCRUB_HW_PROG_SRC_CORR)
190 #define SCRUB_FLAG_HW_TUN	BIT(SCRUB_HW_TUNABLE)
191 
192 /* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */
193 
194 /*
195  * There are several things to be aware of that aren't at all obvious:
196  *
197  *
198  * SOCKETS, SOCKET SETS, BANKS, ROWS, CHIP-SELECT ROWS, CHANNELS, etc..
199  *
200  * These are some of the many terms that are thrown about that don't always
201  * mean what people think they mean (Inconceivable!).  In the interest of
202  * creating a common ground for discussion, terms and their definitions
203  * will be established.
204  *
205  * Memory devices:	The individual chip on a memory stick.  These devices
206  *			commonly output 4 and 8 bits each.  Grouping several
207  *			of these in parallel provides 64 bits which is common
208  *			for a memory stick.
209  *
210  * Memory Stick:	A printed circuit board that agregates multiple
211  *			memory devices in parallel.  This is the atomic
212  *			memory component that is purchaseable by Joe consumer
213  *			and loaded into a memory socket.
214  *
215  * Socket:		A physical connector on the motherboard that accepts
216  *			a single memory stick.
217  *
218  * Channel:		Set of memory devices on a memory stick that must be
219  *			grouped in parallel with one or more additional
220  *			channels from other memory sticks.  This parallel
221  *			grouping of the output from multiple channels are
222  *			necessary for the smallest granularity of memory access.
223  *			Some memory controllers are capable of single channel -
224  *			which means that memory sticks can be loaded
225  *			individually.  Other memory controllers are only
226  *			capable of dual channel - which means that memory
227  *			sticks must be loaded as pairs (see "socket set").
228  *
229  * Chip-select row:	All of the memory devices that are selected together.
230  *			for a single, minimum grain of memory access.
231  *			This selects all of the parallel memory devices across
232  *			all of the parallel channels.  Common chip-select rows
233  *			for single channel are 64 bits, for dual channel 128
234  *			bits.
235  *
236  * Single-Ranked stick:	A Single-ranked stick has 1 chip-select row of memmory.
237  *			Motherboards commonly drive two chip-select pins to
238  *			a memory stick. A single-ranked stick, will occupy
239  *			only one of those rows. The other will be unused.
240  *
241  * Double-Ranked stick:	A double-ranked stick has two chip-select rows which
242  *			access different sets of memory devices.  The two
243  *			rows cannot be accessed concurrently.
244  *
245  * Double-sided stick:	DEPRECATED TERM, see Double-Ranked stick.
246  *			A double-sided stick has two chip-select rows which
247  *			access different sets of memory devices.  The two
248  *			rows cannot be accessed concurrently.  "Double-sided"
249  *			is irrespective of the memory devices being mounted
250  *			on both sides of the memory stick.
251  *
252  * Socket set:		All of the memory sticks that are required for for
253  *			a single memory access or all of the memory sticks
254  *			spanned by a chip-select row.  A single socket set
255  *			has two chip-select rows and if double-sided sticks
256  *			are used these will occupy those chip-select rows.
257  *
258  * Bank:		This term is avoided because it is unclear when
259  *			needing to distinguish between chip-select rows and
260  *			socket sets.
261  *
262  * Controller pages:
263  *
264  * Physical pages:
265  *
266  * Virtual pages:
267  *
268  *
269  * STRUCTURE ORGANIZATION AND CHOICES
270  *
271  *
272  *
273  * PS - I enjoyed writing all that about as much as you enjoyed reading it.
274  */
275 
276 struct channel_info {
277 	int chan_idx;		/* channel index */
278 	u32 ce_count;		/* Correctable Errors for this CHANNEL */
279 	char label[EDAC_MC_LABEL_LEN + 1];  /* DIMM label on motherboard */
280 	struct csrow_info *csrow;	/* the parent */
281 };
282 
283 struct csrow_info {
284 	unsigned long first_page;	/* first page number in dimm */
285 	unsigned long last_page;	/* last page number in dimm */
286 	unsigned long page_mask;	/* used for interleaving -
287 					 * 0UL for non intlv
288 					 */
289 	u32 nr_pages;		/* number of pages in csrow */
290 	u32 grain;		/* granularity of reported error in bytes */
291 	int csrow_idx;		/* the chip-select row */
292 	enum dev_type dtype;	/* memory device type */
293 	u32 ue_count;		/* Uncorrectable Errors for this csrow */
294 	u32 ce_count;		/* Correctable Errors for this csrow */
295 	enum mem_type mtype;	/* memory csrow type */
296 	enum edac_type edac_mode;	/* EDAC mode for this csrow */
297 	struct mem_ctl_info *mci;	/* the parent */
298 
299 	struct kobject kobj;	/* sysfs kobject for this csrow */
300 	struct completion kobj_complete;
301 
302 	/* FIXME the number of CHANNELs might need to become dynamic */
303 	u32 nr_channels;
304 	struct channel_info *channels;
305 };
306 
307 struct mem_ctl_info {
308 	struct list_head link;  /* for global list of mem_ctl_info structs */
309 	unsigned long mtype_cap;	/* memory types supported by mc */
310 	unsigned long edac_ctl_cap;	/* Mem controller EDAC capabilities */
311 	unsigned long edac_cap;	/* configuration capabilities - this is
312 				 * closely related to edac_ctl_cap.  The
313 				 * difference is that the controller may be
314 				 * capable of s4ecd4ed which would be listed
315 				 * in edac_ctl_cap, but if channels aren't
316 				 * capable of s4ecd4ed then the edac_cap would
317 				 * not have that capability.
318 				 */
319 	unsigned long scrub_cap;	/* chipset scrub capabilities */
320 	enum scrub_type scrub_mode;	/* current scrub mode */
321 
322 	/* Translates sdram memory scrub rate given in bytes/sec to the
323 	   internal representation and configures whatever else needs
324 	   to be configured.
325 	*/
326 	int (*set_sdram_scrub_rate) (struct mem_ctl_info *mci, u32 *bw);
327 
328 	/* Get the current sdram memory scrub rate from the internal
329 	   representation and converts it to the closest matching
330 	   bandwith in bytes/sec.
331 	*/
332 	int (*get_sdram_scrub_rate) (struct mem_ctl_info *mci, u32 *bw);
333 
334 	/* pointer to edac checking routine */
335 	void (*edac_check) (struct mem_ctl_info * mci);
336 
337 	/*
338 	 * Remaps memory pages: controller pages to physical pages.
339 	 * For most MC's, this will be NULL.
340 	 */
341 	/* FIXME - why not send the phys page to begin with? */
342 	unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci,
343 					unsigned long page);
344 	int mc_idx;
345 	int nr_csrows;
346 	struct csrow_info *csrows;
347 	/*
348 	 * FIXME - what about controllers on other busses? - IDs must be
349 	 * unique.  dev pointer should be sufficiently unique, but
350 	 * BUS:SLOT.FUNC numbers may not be unique.
351 	 */
352 	struct device *dev;
353 	const char *mod_name;
354 	const char *mod_ver;
355 	const char *ctl_name;
356 	char proc_name[MC_PROC_NAME_MAX_LEN + 1];
357 	void *pvt_info;
358 	u32 ue_noinfo_count;	/* Uncorrectable Errors w/o info */
359 	u32 ce_noinfo_count;	/* Correctable Errors w/o info */
360 	u32 ue_count;		/* Total Uncorrectable Errors for this MC */
361 	u32 ce_count;		/* Total Correctable Errors for this MC */
362 	unsigned long start_time;	/* mci load start time (in jiffies) */
363 
364 	/* this stuff is for safe removal of mc devices from global list while
365 	 * NMI handlers may be traversing list
366 	 */
367 	struct rcu_head rcu;
368 	struct completion complete;
369 
370 	/* edac sysfs device control */
371 	struct kobject edac_mci_kobj;
372 	struct completion kobj_complete;
373 };
374 
375 #ifdef CONFIG_PCI
376 
377 /* write all or some bits in a byte-register*/
378 static inline void pci_write_bits8(struct pci_dev *pdev, int offset, u8 value,
379 		u8 mask)
380 {
381 	if (mask != 0xff) {
382 		u8 buf;
383 
384 		pci_read_config_byte(pdev, offset, &buf);
385 		value &= mask;
386 		buf &= ~mask;
387 		value |= buf;
388 	}
389 
390 	pci_write_config_byte(pdev, offset, value);
391 }
392 
393 /* write all or some bits in a word-register*/
394 static inline void pci_write_bits16(struct pci_dev *pdev, int offset,
395 		u16 value, u16 mask)
396 {
397 	if (mask != 0xffff) {
398 		u16 buf;
399 
400 		pci_read_config_word(pdev, offset, &buf);
401 		value &= mask;
402 		buf &= ~mask;
403 		value |= buf;
404 	}
405 
406 	pci_write_config_word(pdev, offset, value);
407 }
408 
409 /* write all or some bits in a dword-register*/
410 static inline void pci_write_bits32(struct pci_dev *pdev, int offset,
411 		u32 value, u32 mask)
412 {
413 	if (mask != 0xffff) {
414 		u32 buf;
415 
416 		pci_read_config_dword(pdev, offset, &buf);
417 		value &= mask;
418 		buf &= ~mask;
419 		value |= buf;
420 	}
421 
422 	pci_write_config_dword(pdev, offset, value);
423 }
424 
425 #endif /* CONFIG_PCI */
426 
427 #ifdef CONFIG_EDAC_DEBUG
428 void edac_mc_dump_channel(struct channel_info *chan);
429 void edac_mc_dump_mci(struct mem_ctl_info *mci);
430 void edac_mc_dump_csrow(struct csrow_info *csrow);
431 #endif  /* CONFIG_EDAC_DEBUG */
432 
433 extern int edac_mc_add_mc(struct mem_ctl_info *mci,int mc_idx);
434 extern struct mem_ctl_info * edac_mc_del_mc(struct device *dev);
435 extern int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci,
436 					unsigned long page);
437 extern void edac_mc_scrub_block(unsigned long page, unsigned long offset,
438 		u32 size);
439 
440 /*
441  * The no info errors are used when error overflows are reported.
442  * There are a limited number of error logging registers that can
443  * be exausted.  When all registers are exhausted and an additional
444  * error occurs then an error overflow register records that an
445  * error occured and the type of error, but doesn't have any
446  * further information.  The ce/ue versions make for cleaner
447  * reporting logic and function interface - reduces conditional
448  * statement clutter and extra function arguments.
449  */
450 extern void edac_mc_handle_ce(struct mem_ctl_info *mci,
451 		unsigned long page_frame_number, unsigned long offset_in_page,
452 		unsigned long syndrome, int row, int channel,
453 		const char *msg);
454 extern void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci,
455 		const char *msg);
456 extern void edac_mc_handle_ue(struct mem_ctl_info *mci,
457 		unsigned long page_frame_number, unsigned long offset_in_page,
458 		int row, const char *msg);
459 extern void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci,
460 		const char *msg);
461 extern void edac_mc_handle_fbd_ue(struct mem_ctl_info *mci,
462 		unsigned int csrow,
463 		unsigned int channel0,
464 		unsigned int channel1,
465 		char *msg);
466 extern void edac_mc_handle_fbd_ce(struct mem_ctl_info *mci,
467 		unsigned int csrow,
468 		unsigned int channel,
469 		char *msg);
470 
471 /*
472  * This kmalloc's and initializes all the structures.
473  * Can't be used if all structures don't have the same lifetime.
474  */
475 extern struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows,
476 		unsigned nr_chans);
477 
478 /* Free an mc previously allocated by edac_mc_alloc() */
479 extern void edac_mc_free(struct mem_ctl_info *mci);
480 
481 #endif				/* _EDAC_MC_H_ */
482