1 /* 2 * edac_mc kernel module 3 * (C) 2005, 2006 Linux Networx (http://lnxi.com) 4 * This file may be distributed under the terms of the 5 * GNU General Public License. 6 * 7 * Written by Thayne Harbaugh 8 * Based on work by Dan Hollis <goemon at anime dot net> and others. 9 * http://www.anime.net/~goemon/linux-ecc/ 10 * 11 * Modified by Dave Peterson and Doug Thompson 12 * 13 */ 14 15 #include <linux/module.h> 16 #include <linux/proc_fs.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/smp.h> 20 #include <linux/init.h> 21 #include <linux/sysctl.h> 22 #include <linux/highmem.h> 23 #include <linux/timer.h> 24 #include <linux/slab.h> 25 #include <linux/jiffies.h> 26 #include <linux/spinlock.h> 27 #include <linux/list.h> 28 #include <linux/ctype.h> 29 #include <linux/edac.h> 30 #include <linux/bitops.h> 31 #include <asm/uaccess.h> 32 #include <asm/page.h> 33 #include <asm/edac.h> 34 #include "edac_core.h" 35 #include "edac_module.h" 36 37 #define CREATE_TRACE_POINTS 38 #define TRACE_INCLUDE_PATH ../../include/ras 39 #include <ras/ras_event.h> 40 41 /* lock to memory controller's control array */ 42 static DEFINE_MUTEX(mem_ctls_mutex); 43 static LIST_HEAD(mc_devices); 44 45 /* 46 * Used to lock EDAC MC to just one module, avoiding two drivers e. g. 47 * apei/ghes and i7core_edac to be used at the same time. 48 */ 49 static void const *edac_mc_owner; 50 51 static struct bus_type mc_bus[EDAC_MAX_MCS]; 52 53 unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf, 54 unsigned len) 55 { 56 struct mem_ctl_info *mci = dimm->mci; 57 int i, n, count = 0; 58 char *p = buf; 59 60 for (i = 0; i < mci->n_layers; i++) { 61 n = snprintf(p, len, "%s %d ", 62 edac_layer_name[mci->layers[i].type], 63 dimm->location[i]); 64 p += n; 65 len -= n; 66 count += n; 67 if (!len) 68 break; 69 } 70 71 return count; 72 } 73 74 #ifdef CONFIG_EDAC_DEBUG 75 76 static void edac_mc_dump_channel(struct rank_info *chan) 77 { 78 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx); 79 edac_dbg(4, " channel = %p\n", chan); 80 edac_dbg(4, " channel->csrow = %p\n", chan->csrow); 81 edac_dbg(4, " channel->dimm = %p\n", chan->dimm); 82 } 83 84 static void edac_mc_dump_dimm(struct dimm_info *dimm, int number) 85 { 86 char location[80]; 87 88 edac_dimm_info_location(dimm, location, sizeof(location)); 89 90 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n", 91 dimm->mci->csbased ? "rank" : "dimm", 92 number, location, dimm->csrow, dimm->cschannel); 93 edac_dbg(4, " dimm = %p\n", dimm); 94 edac_dbg(4, " dimm->label = '%s'\n", dimm->label); 95 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); 96 edac_dbg(4, " dimm->grain = %d\n", dimm->grain); 97 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); 98 } 99 100 static void edac_mc_dump_csrow(struct csrow_info *csrow) 101 { 102 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx); 103 edac_dbg(4, " csrow = %p\n", csrow); 104 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page); 105 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page); 106 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask); 107 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels); 108 edac_dbg(4, " csrow->channels = %p\n", csrow->channels); 109 edac_dbg(4, " csrow->mci = %p\n", csrow->mci); 110 } 111 112 static void edac_mc_dump_mci(struct mem_ctl_info *mci) 113 { 114 edac_dbg(3, "\tmci = %p\n", mci); 115 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap); 116 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap); 117 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap); 118 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check); 119 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n", 120 mci->nr_csrows, mci->csrows); 121 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n", 122 mci->tot_dimms, mci->dimms); 123 edac_dbg(3, "\tdev = %p\n", mci->pdev); 124 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n", 125 mci->mod_name, mci->ctl_name); 126 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info); 127 } 128 129 #endif /* CONFIG_EDAC_DEBUG */ 130 131 /* 132 * keep those in sync with the enum mem_type 133 */ 134 const char *edac_mem_types[] = { 135 "Empty csrow", 136 "Reserved csrow type", 137 "Unknown csrow type", 138 "Fast page mode RAM", 139 "Extended data out RAM", 140 "Burst Extended data out RAM", 141 "Single data rate SDRAM", 142 "Registered single data rate SDRAM", 143 "Double data rate SDRAM", 144 "Registered Double data rate SDRAM", 145 "Rambus DRAM", 146 "Unbuffered DDR2 RAM", 147 "Fully buffered DDR2", 148 "Registered DDR2 RAM", 149 "Rambus XDR", 150 "Unbuffered DDR3 RAM", 151 "Registered DDR3 RAM", 152 }; 153 EXPORT_SYMBOL_GPL(edac_mem_types); 154 155 /** 156 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation 157 * @p: pointer to a pointer with the memory offset to be used. At 158 * return, this will be incremented to point to the next offset 159 * @size: Size of the data structure to be reserved 160 * @n_elems: Number of elements that should be reserved 161 * 162 * If 'size' is a constant, the compiler will optimize this whole function 163 * down to either a no-op or the addition of a constant to the value of '*p'. 164 * 165 * The 'p' pointer is absolutely needed to keep the proper advancing 166 * further in memory to the proper offsets when allocating the struct along 167 * with its embedded structs, as edac_device_alloc_ctl_info() does it 168 * above, for example. 169 * 170 * At return, the pointer 'p' will be incremented to be used on a next call 171 * to this function. 172 */ 173 void *edac_align_ptr(void **p, unsigned size, int n_elems) 174 { 175 unsigned align, r; 176 void *ptr = *p; 177 178 *p += size * n_elems; 179 180 /* 181 * 'p' can possibly be an unaligned item X such that sizeof(X) is 182 * 'size'. Adjust 'p' so that its alignment is at least as 183 * stringent as what the compiler would provide for X and return 184 * the aligned result. 185 * Here we assume that the alignment of a "long long" is the most 186 * stringent alignment that the compiler will ever provide by default. 187 * As far as I know, this is a reasonable assumption. 188 */ 189 if (size > sizeof(long)) 190 align = sizeof(long long); 191 else if (size > sizeof(int)) 192 align = sizeof(long); 193 else if (size > sizeof(short)) 194 align = sizeof(int); 195 else if (size > sizeof(char)) 196 align = sizeof(short); 197 else 198 return (char *)ptr; 199 200 r = (unsigned long)p % align; 201 202 if (r == 0) 203 return (char *)ptr; 204 205 *p += align - r; 206 207 return (void *)(((unsigned long)ptr) + align - r); 208 } 209 210 static void _edac_mc_free(struct mem_ctl_info *mci) 211 { 212 int i, chn, row; 213 struct csrow_info *csr; 214 const unsigned int tot_dimms = mci->tot_dimms; 215 const unsigned int tot_channels = mci->num_cschannel; 216 const unsigned int tot_csrows = mci->nr_csrows; 217 218 if (mci->dimms) { 219 for (i = 0; i < tot_dimms; i++) 220 kfree(mci->dimms[i]); 221 kfree(mci->dimms); 222 } 223 if (mci->csrows) { 224 for (row = 0; row < tot_csrows; row++) { 225 csr = mci->csrows[row]; 226 if (csr) { 227 if (csr->channels) { 228 for (chn = 0; chn < tot_channels; chn++) 229 kfree(csr->channels[chn]); 230 kfree(csr->channels); 231 } 232 kfree(csr); 233 } 234 } 235 kfree(mci->csrows); 236 } 237 kfree(mci); 238 } 239 240 /** 241 * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure 242 * @mc_num: Memory controller number 243 * @n_layers: Number of MC hierarchy layers 244 * layers: Describes each layer as seen by the Memory Controller 245 * @size_pvt: size of private storage needed 246 * 247 * 248 * Everything is kmalloc'ed as one big chunk - more efficient. 249 * Only can be used if all structures have the same lifetime - otherwise 250 * you have to allocate and initialize your own structures. 251 * 252 * Use edac_mc_free() to free mc structures allocated by this function. 253 * 254 * NOTE: drivers handle multi-rank memories in different ways: in some 255 * drivers, one multi-rank memory stick is mapped as one entry, while, in 256 * others, a single multi-rank memory stick would be mapped into several 257 * entries. Currently, this function will allocate multiple struct dimm_info 258 * on such scenarios, as grouping the multiple ranks require drivers change. 259 * 260 * Returns: 261 * On failure: NULL 262 * On success: struct mem_ctl_info pointer 263 */ 264 struct mem_ctl_info *edac_mc_alloc(unsigned mc_num, 265 unsigned n_layers, 266 struct edac_mc_layer *layers, 267 unsigned sz_pvt) 268 { 269 struct mem_ctl_info *mci; 270 struct edac_mc_layer *layer; 271 struct csrow_info *csr; 272 struct rank_info *chan; 273 struct dimm_info *dimm; 274 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS]; 275 unsigned pos[EDAC_MAX_LAYERS]; 276 unsigned size, tot_dimms = 1, count = 1; 277 unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0; 278 void *pvt, *p, *ptr = NULL; 279 int i, j, row, chn, n, len, off; 280 bool per_rank = false; 281 282 BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0); 283 /* 284 * Calculate the total amount of dimms and csrows/cschannels while 285 * in the old API emulation mode 286 */ 287 for (i = 0; i < n_layers; i++) { 288 tot_dimms *= layers[i].size; 289 if (layers[i].is_virt_csrow) 290 tot_csrows *= layers[i].size; 291 else 292 tot_channels *= layers[i].size; 293 294 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT) 295 per_rank = true; 296 } 297 298 /* Figure out the offsets of the various items from the start of an mc 299 * structure. We want the alignment of each item to be at least as 300 * stringent as what the compiler would provide if we could simply 301 * hardcode everything into a single struct. 302 */ 303 mci = edac_align_ptr(&ptr, sizeof(*mci), 1); 304 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers); 305 for (i = 0; i < n_layers; i++) { 306 count *= layers[i].size; 307 edac_dbg(4, "errcount layer %d size %d\n", i, count); 308 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count); 309 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count); 310 tot_errcount += 2 * count; 311 } 312 313 edac_dbg(4, "allocating %d error counters\n", tot_errcount); 314 pvt = edac_align_ptr(&ptr, sz_pvt, 1); 315 size = ((unsigned long)pvt) + sz_pvt; 316 317 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n", 318 size, 319 tot_dimms, 320 per_rank ? "ranks" : "dimms", 321 tot_csrows * tot_channels); 322 323 mci = kzalloc(size, GFP_KERNEL); 324 if (mci == NULL) 325 return NULL; 326 327 /* Adjust pointers so they point within the memory we just allocated 328 * rather than an imaginary chunk of memory located at address 0. 329 */ 330 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer)); 331 for (i = 0; i < n_layers; i++) { 332 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i])); 333 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i])); 334 } 335 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL; 336 337 /* setup index and various internal pointers */ 338 mci->mc_idx = mc_num; 339 mci->tot_dimms = tot_dimms; 340 mci->pvt_info = pvt; 341 mci->n_layers = n_layers; 342 mci->layers = layer; 343 memcpy(mci->layers, layers, sizeof(*layer) * n_layers); 344 mci->nr_csrows = tot_csrows; 345 mci->num_cschannel = tot_channels; 346 mci->csbased = per_rank; 347 348 /* 349 * Alocate and fill the csrow/channels structs 350 */ 351 mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL); 352 if (!mci->csrows) 353 goto error; 354 for (row = 0; row < tot_csrows; row++) { 355 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL); 356 if (!csr) 357 goto error; 358 mci->csrows[row] = csr; 359 csr->csrow_idx = row; 360 csr->mci = mci; 361 csr->nr_channels = tot_channels; 362 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels), 363 GFP_KERNEL); 364 if (!csr->channels) 365 goto error; 366 367 for (chn = 0; chn < tot_channels; chn++) { 368 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL); 369 if (!chan) 370 goto error; 371 csr->channels[chn] = chan; 372 chan->chan_idx = chn; 373 chan->csrow = csr; 374 } 375 } 376 377 /* 378 * Allocate and fill the dimm structs 379 */ 380 mci->dimms = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL); 381 if (!mci->dimms) 382 goto error; 383 384 memset(&pos, 0, sizeof(pos)); 385 row = 0; 386 chn = 0; 387 for (i = 0; i < tot_dimms; i++) { 388 chan = mci->csrows[row]->channels[chn]; 389 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]); 390 if (off < 0 || off >= tot_dimms) { 391 edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n"); 392 goto error; 393 } 394 395 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL); 396 if (!dimm) 397 goto error; 398 mci->dimms[off] = dimm; 399 dimm->mci = mci; 400 401 /* 402 * Copy DIMM location and initialize it. 403 */ 404 len = sizeof(dimm->label); 405 p = dimm->label; 406 n = snprintf(p, len, "mc#%u", mc_num); 407 p += n; 408 len -= n; 409 for (j = 0; j < n_layers; j++) { 410 n = snprintf(p, len, "%s#%u", 411 edac_layer_name[layers[j].type], 412 pos[j]); 413 p += n; 414 len -= n; 415 dimm->location[j] = pos[j]; 416 417 if (len <= 0) 418 break; 419 } 420 421 /* Link it to the csrows old API data */ 422 chan->dimm = dimm; 423 dimm->csrow = row; 424 dimm->cschannel = chn; 425 426 /* Increment csrow location */ 427 if (layers[0].is_virt_csrow) { 428 chn++; 429 if (chn == tot_channels) { 430 chn = 0; 431 row++; 432 } 433 } else { 434 row++; 435 if (row == tot_csrows) { 436 row = 0; 437 chn++; 438 } 439 } 440 441 /* Increment dimm location */ 442 for (j = n_layers - 1; j >= 0; j--) { 443 pos[j]++; 444 if (pos[j] < layers[j].size) 445 break; 446 pos[j] = 0; 447 } 448 } 449 450 mci->op_state = OP_ALLOC; 451 452 return mci; 453 454 error: 455 _edac_mc_free(mci); 456 457 return NULL; 458 } 459 EXPORT_SYMBOL_GPL(edac_mc_alloc); 460 461 /** 462 * edac_mc_free 463 * 'Free' a previously allocated 'mci' structure 464 * @mci: pointer to a struct mem_ctl_info structure 465 */ 466 void edac_mc_free(struct mem_ctl_info *mci) 467 { 468 edac_dbg(1, "\n"); 469 470 /* If we're not yet registered with sysfs free only what was allocated 471 * in edac_mc_alloc(). 472 */ 473 if (!device_is_registered(&mci->dev)) { 474 _edac_mc_free(mci); 475 return; 476 } 477 478 /* the mci instance is freed here, when the sysfs object is dropped */ 479 edac_unregister_sysfs(mci); 480 } 481 EXPORT_SYMBOL_GPL(edac_mc_free); 482 483 484 /** 485 * find_mci_by_dev 486 * 487 * scan list of controllers looking for the one that manages 488 * the 'dev' device 489 * @dev: pointer to a struct device related with the MCI 490 */ 491 struct mem_ctl_info *find_mci_by_dev(struct device *dev) 492 { 493 struct mem_ctl_info *mci; 494 struct list_head *item; 495 496 edac_dbg(3, "\n"); 497 498 list_for_each(item, &mc_devices) { 499 mci = list_entry(item, struct mem_ctl_info, link); 500 501 if (mci->pdev == dev) 502 return mci; 503 } 504 505 return NULL; 506 } 507 EXPORT_SYMBOL_GPL(find_mci_by_dev); 508 509 /* 510 * handler for EDAC to check if NMI type handler has asserted interrupt 511 */ 512 static int edac_mc_assert_error_check_and_clear(void) 513 { 514 int old_state; 515 516 if (edac_op_state == EDAC_OPSTATE_POLL) 517 return 1; 518 519 old_state = edac_err_assert; 520 edac_err_assert = 0; 521 522 return old_state; 523 } 524 525 /* 526 * edac_mc_workq_function 527 * performs the operation scheduled by a workq request 528 */ 529 static void edac_mc_workq_function(struct work_struct *work_req) 530 { 531 struct delayed_work *d_work = to_delayed_work(work_req); 532 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work); 533 534 mutex_lock(&mem_ctls_mutex); 535 536 /* if this control struct has movd to offline state, we are done */ 537 if (mci->op_state == OP_OFFLINE) { 538 mutex_unlock(&mem_ctls_mutex); 539 return; 540 } 541 542 /* Only poll controllers that are running polled and have a check */ 543 if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL)) 544 mci->edac_check(mci); 545 546 mutex_unlock(&mem_ctls_mutex); 547 548 /* Reschedule */ 549 queue_delayed_work(edac_workqueue, &mci->work, 550 msecs_to_jiffies(edac_mc_get_poll_msec())); 551 } 552 553 /* 554 * edac_mc_workq_setup 555 * initialize a workq item for this mci 556 * passing in the new delay period in msec 557 * 558 * locking model: 559 * 560 * called with the mem_ctls_mutex held 561 */ 562 static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec, 563 bool init) 564 { 565 edac_dbg(0, "\n"); 566 567 /* if this instance is not in the POLL state, then simply return */ 568 if (mci->op_state != OP_RUNNING_POLL) 569 return; 570 571 if (init) 572 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function); 573 574 mod_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec)); 575 } 576 577 /* 578 * edac_mc_workq_teardown 579 * stop the workq processing on this mci 580 * 581 * locking model: 582 * 583 * called WITHOUT lock held 584 */ 585 static void edac_mc_workq_teardown(struct mem_ctl_info *mci) 586 { 587 int status; 588 589 if (mci->op_state != OP_RUNNING_POLL) 590 return; 591 592 status = cancel_delayed_work(&mci->work); 593 if (status == 0) { 594 edac_dbg(0, "not canceled, flush the queue\n"); 595 596 /* workq instance might be running, wait for it */ 597 flush_workqueue(edac_workqueue); 598 } 599 } 600 601 /* 602 * edac_mc_reset_delay_period(unsigned long value) 603 * 604 * user space has updated our poll period value, need to 605 * reset our workq delays 606 */ 607 void edac_mc_reset_delay_period(unsigned long value) 608 { 609 struct mem_ctl_info *mci; 610 struct list_head *item; 611 612 mutex_lock(&mem_ctls_mutex); 613 614 list_for_each(item, &mc_devices) { 615 mci = list_entry(item, struct mem_ctl_info, link); 616 617 edac_mc_workq_setup(mci, value, false); 618 } 619 620 mutex_unlock(&mem_ctls_mutex); 621 } 622 623 624 625 /* Return 0 on success, 1 on failure. 626 * Before calling this function, caller must 627 * assign a unique value to mci->mc_idx. 628 * 629 * locking model: 630 * 631 * called with the mem_ctls_mutex lock held 632 */ 633 static int add_mc_to_global_list(struct mem_ctl_info *mci) 634 { 635 struct list_head *item, *insert_before; 636 struct mem_ctl_info *p; 637 638 insert_before = &mc_devices; 639 640 p = find_mci_by_dev(mci->pdev); 641 if (unlikely(p != NULL)) 642 goto fail0; 643 644 list_for_each(item, &mc_devices) { 645 p = list_entry(item, struct mem_ctl_info, link); 646 647 if (p->mc_idx >= mci->mc_idx) { 648 if (unlikely(p->mc_idx == mci->mc_idx)) 649 goto fail1; 650 651 insert_before = item; 652 break; 653 } 654 } 655 656 list_add_tail_rcu(&mci->link, insert_before); 657 atomic_inc(&edac_handlers); 658 return 0; 659 660 fail0: 661 edac_printk(KERN_WARNING, EDAC_MC, 662 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev), 663 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx); 664 return 1; 665 666 fail1: 667 edac_printk(KERN_WARNING, EDAC_MC, 668 "bug in low-level driver: attempt to assign\n" 669 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__); 670 return 1; 671 } 672 673 static int del_mc_from_global_list(struct mem_ctl_info *mci) 674 { 675 int handlers = atomic_dec_return(&edac_handlers); 676 list_del_rcu(&mci->link); 677 678 /* these are for safe removal of devices from global list while 679 * NMI handlers may be traversing list 680 */ 681 synchronize_rcu(); 682 INIT_LIST_HEAD(&mci->link); 683 684 return handlers; 685 } 686 687 /** 688 * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'. 689 * 690 * If found, return a pointer to the structure. 691 * Else return NULL. 692 * 693 * Caller must hold mem_ctls_mutex. 694 */ 695 struct mem_ctl_info *edac_mc_find(int idx) 696 { 697 struct list_head *item; 698 struct mem_ctl_info *mci; 699 700 list_for_each(item, &mc_devices) { 701 mci = list_entry(item, struct mem_ctl_info, link); 702 703 if (mci->mc_idx >= idx) { 704 if (mci->mc_idx == idx) 705 return mci; 706 707 break; 708 } 709 } 710 711 return NULL; 712 } 713 EXPORT_SYMBOL(edac_mc_find); 714 715 /** 716 * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and 717 * create sysfs entries associated with mci structure 718 * @mci: pointer to the mci structure to be added to the list 719 * 720 * Return: 721 * 0 Success 722 * !0 Failure 723 */ 724 725 /* FIXME - should a warning be printed if no error detection? correction? */ 726 int edac_mc_add_mc(struct mem_ctl_info *mci) 727 { 728 int ret = -EINVAL; 729 edac_dbg(0, "\n"); 730 731 if (mci->mc_idx >= EDAC_MAX_MCS) { 732 pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx); 733 return -ENODEV; 734 } 735 736 #ifdef CONFIG_EDAC_DEBUG 737 if (edac_debug_level >= 3) 738 edac_mc_dump_mci(mci); 739 740 if (edac_debug_level >= 4) { 741 int i; 742 743 for (i = 0; i < mci->nr_csrows; i++) { 744 struct csrow_info *csrow = mci->csrows[i]; 745 u32 nr_pages = 0; 746 int j; 747 748 for (j = 0; j < csrow->nr_channels; j++) 749 nr_pages += csrow->channels[j]->dimm->nr_pages; 750 if (!nr_pages) 751 continue; 752 edac_mc_dump_csrow(csrow); 753 for (j = 0; j < csrow->nr_channels; j++) 754 if (csrow->channels[j]->dimm->nr_pages) 755 edac_mc_dump_channel(csrow->channels[j]); 756 } 757 for (i = 0; i < mci->tot_dimms; i++) 758 if (mci->dimms[i]->nr_pages) 759 edac_mc_dump_dimm(mci->dimms[i], i); 760 } 761 #endif 762 mutex_lock(&mem_ctls_mutex); 763 764 if (edac_mc_owner && edac_mc_owner != mci->mod_name) { 765 ret = -EPERM; 766 goto fail0; 767 } 768 769 if (add_mc_to_global_list(mci)) 770 goto fail0; 771 772 /* set load time so that error rate can be tracked */ 773 mci->start_time = jiffies; 774 775 mci->bus = &mc_bus[mci->mc_idx]; 776 777 if (edac_create_sysfs_mci_device(mci)) { 778 edac_mc_printk(mci, KERN_WARNING, 779 "failed to create sysfs device\n"); 780 goto fail1; 781 } 782 783 /* If there IS a check routine, then we are running POLLED */ 784 if (mci->edac_check != NULL) { 785 /* This instance is NOW RUNNING */ 786 mci->op_state = OP_RUNNING_POLL; 787 788 edac_mc_workq_setup(mci, edac_mc_get_poll_msec(), true); 789 } else { 790 mci->op_state = OP_RUNNING_INTERRUPT; 791 } 792 793 /* Report action taken */ 794 edac_mc_printk(mci, KERN_INFO, 795 "Giving out device to module %s controller %s: DEV %s (%s)\n", 796 mci->mod_name, mci->ctl_name, mci->dev_name, 797 edac_op_state_to_string(mci->op_state)); 798 799 edac_mc_owner = mci->mod_name; 800 801 mutex_unlock(&mem_ctls_mutex); 802 return 0; 803 804 fail1: 805 del_mc_from_global_list(mci); 806 807 fail0: 808 mutex_unlock(&mem_ctls_mutex); 809 return ret; 810 } 811 EXPORT_SYMBOL_GPL(edac_mc_add_mc); 812 813 /** 814 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and 815 * remove mci structure from global list 816 * @pdev: Pointer to 'struct device' representing mci structure to remove. 817 * 818 * Return pointer to removed mci structure, or NULL if device not found. 819 */ 820 struct mem_ctl_info *edac_mc_del_mc(struct device *dev) 821 { 822 struct mem_ctl_info *mci; 823 824 edac_dbg(0, "\n"); 825 826 mutex_lock(&mem_ctls_mutex); 827 828 /* find the requested mci struct in the global list */ 829 mci = find_mci_by_dev(dev); 830 if (mci == NULL) { 831 mutex_unlock(&mem_ctls_mutex); 832 return NULL; 833 } 834 835 if (!del_mc_from_global_list(mci)) 836 edac_mc_owner = NULL; 837 mutex_unlock(&mem_ctls_mutex); 838 839 /* flush workq processes */ 840 edac_mc_workq_teardown(mci); 841 842 /* marking MCI offline */ 843 mci->op_state = OP_OFFLINE; 844 845 /* remove from sysfs */ 846 edac_remove_sysfs_mci_device(mci); 847 848 edac_printk(KERN_INFO, EDAC_MC, 849 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx, 850 mci->mod_name, mci->ctl_name, edac_dev_name(mci)); 851 852 return mci; 853 } 854 EXPORT_SYMBOL_GPL(edac_mc_del_mc); 855 856 static void edac_mc_scrub_block(unsigned long page, unsigned long offset, 857 u32 size) 858 { 859 struct page *pg; 860 void *virt_addr; 861 unsigned long flags = 0; 862 863 edac_dbg(3, "\n"); 864 865 /* ECC error page was not in our memory. Ignore it. */ 866 if (!pfn_valid(page)) 867 return; 868 869 /* Find the actual page structure then map it and fix */ 870 pg = pfn_to_page(page); 871 872 if (PageHighMem(pg)) 873 local_irq_save(flags); 874 875 virt_addr = kmap_atomic(pg); 876 877 /* Perform architecture specific atomic scrub operation */ 878 atomic_scrub(virt_addr + offset, size); 879 880 /* Unmap and complete */ 881 kunmap_atomic(virt_addr); 882 883 if (PageHighMem(pg)) 884 local_irq_restore(flags); 885 } 886 887 /* FIXME - should return -1 */ 888 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page) 889 { 890 struct csrow_info **csrows = mci->csrows; 891 int row, i, j, n; 892 893 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page); 894 row = -1; 895 896 for (i = 0; i < mci->nr_csrows; i++) { 897 struct csrow_info *csrow = csrows[i]; 898 n = 0; 899 for (j = 0; j < csrow->nr_channels; j++) { 900 struct dimm_info *dimm = csrow->channels[j]->dimm; 901 n += dimm->nr_pages; 902 } 903 if (n == 0) 904 continue; 905 906 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n", 907 mci->mc_idx, 908 csrow->first_page, page, csrow->last_page, 909 csrow->page_mask); 910 911 if ((page >= csrow->first_page) && 912 (page <= csrow->last_page) && 913 ((page & csrow->page_mask) == 914 (csrow->first_page & csrow->page_mask))) { 915 row = i; 916 break; 917 } 918 } 919 920 if (row == -1) 921 edac_mc_printk(mci, KERN_ERR, 922 "could not look up page error address %lx\n", 923 (unsigned long)page); 924 925 return row; 926 } 927 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page); 928 929 const char *edac_layer_name[] = { 930 [EDAC_MC_LAYER_BRANCH] = "branch", 931 [EDAC_MC_LAYER_CHANNEL] = "channel", 932 [EDAC_MC_LAYER_SLOT] = "slot", 933 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow", 934 [EDAC_MC_LAYER_ALL_MEM] = "memory", 935 }; 936 EXPORT_SYMBOL_GPL(edac_layer_name); 937 938 static void edac_inc_ce_error(struct mem_ctl_info *mci, 939 bool enable_per_layer_report, 940 const int pos[EDAC_MAX_LAYERS], 941 const u16 count) 942 { 943 int i, index = 0; 944 945 mci->ce_mc += count; 946 947 if (!enable_per_layer_report) { 948 mci->ce_noinfo_count += count; 949 return; 950 } 951 952 for (i = 0; i < mci->n_layers; i++) { 953 if (pos[i] < 0) 954 break; 955 index += pos[i]; 956 mci->ce_per_layer[i][index] += count; 957 958 if (i < mci->n_layers - 1) 959 index *= mci->layers[i + 1].size; 960 } 961 } 962 963 static void edac_inc_ue_error(struct mem_ctl_info *mci, 964 bool enable_per_layer_report, 965 const int pos[EDAC_MAX_LAYERS], 966 const u16 count) 967 { 968 int i, index = 0; 969 970 mci->ue_mc += count; 971 972 if (!enable_per_layer_report) { 973 mci->ce_noinfo_count += count; 974 return; 975 } 976 977 for (i = 0; i < mci->n_layers; i++) { 978 if (pos[i] < 0) 979 break; 980 index += pos[i]; 981 mci->ue_per_layer[i][index] += count; 982 983 if (i < mci->n_layers - 1) 984 index *= mci->layers[i + 1].size; 985 } 986 } 987 988 static void edac_ce_error(struct mem_ctl_info *mci, 989 const u16 error_count, 990 const int pos[EDAC_MAX_LAYERS], 991 const char *msg, 992 const char *location, 993 const char *label, 994 const char *detail, 995 const char *other_detail, 996 const bool enable_per_layer_report, 997 const unsigned long page_frame_number, 998 const unsigned long offset_in_page, 999 long grain) 1000 { 1001 unsigned long remapped_page; 1002 char *msg_aux = ""; 1003 1004 if (*msg) 1005 msg_aux = " "; 1006 1007 if (edac_mc_get_log_ce()) { 1008 if (other_detail && *other_detail) 1009 edac_mc_printk(mci, KERN_WARNING, 1010 "%d CE %s%son %s (%s %s - %s)\n", 1011 error_count, msg, msg_aux, label, 1012 location, detail, other_detail); 1013 else 1014 edac_mc_printk(mci, KERN_WARNING, 1015 "%d CE %s%son %s (%s %s)\n", 1016 error_count, msg, msg_aux, label, 1017 location, detail); 1018 } 1019 edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count); 1020 1021 if (mci->scrub_mode & SCRUB_SW_SRC) { 1022 /* 1023 * Some memory controllers (called MCs below) can remap 1024 * memory so that it is still available at a different 1025 * address when PCI devices map into memory. 1026 * MC's that can't do this, lose the memory where PCI 1027 * devices are mapped. This mapping is MC-dependent 1028 * and so we call back into the MC driver for it to 1029 * map the MC page to a physical (CPU) page which can 1030 * then be mapped to a virtual page - which can then 1031 * be scrubbed. 1032 */ 1033 remapped_page = mci->ctl_page_to_phys ? 1034 mci->ctl_page_to_phys(mci, page_frame_number) : 1035 page_frame_number; 1036 1037 edac_mc_scrub_block(remapped_page, 1038 offset_in_page, grain); 1039 } 1040 } 1041 1042 static void edac_ue_error(struct mem_ctl_info *mci, 1043 const u16 error_count, 1044 const int pos[EDAC_MAX_LAYERS], 1045 const char *msg, 1046 const char *location, 1047 const char *label, 1048 const char *detail, 1049 const char *other_detail, 1050 const bool enable_per_layer_report) 1051 { 1052 char *msg_aux = ""; 1053 1054 if (*msg) 1055 msg_aux = " "; 1056 1057 if (edac_mc_get_log_ue()) { 1058 if (other_detail && *other_detail) 1059 edac_mc_printk(mci, KERN_WARNING, 1060 "%d UE %s%son %s (%s %s - %s)\n", 1061 error_count, msg, msg_aux, label, 1062 location, detail, other_detail); 1063 else 1064 edac_mc_printk(mci, KERN_WARNING, 1065 "%d UE %s%son %s (%s %s)\n", 1066 error_count, msg, msg_aux, label, 1067 location, detail); 1068 } 1069 1070 if (edac_mc_get_panic_on_ue()) { 1071 if (other_detail && *other_detail) 1072 panic("UE %s%son %s (%s%s - %s)\n", 1073 msg, msg_aux, label, location, detail, other_detail); 1074 else 1075 panic("UE %s%son %s (%s%s)\n", 1076 msg, msg_aux, label, location, detail); 1077 } 1078 1079 edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count); 1080 } 1081 1082 /** 1083 * edac_raw_mc_handle_error - reports a memory event to userspace without doing 1084 * anything to discover the error location 1085 * 1086 * @type: severity of the error (CE/UE/Fatal) 1087 * @mci: a struct mem_ctl_info pointer 1088 * @e: error description 1089 * 1090 * This raw function is used internally by edac_mc_handle_error(). It should 1091 * only be called directly when the hardware error come directly from BIOS, 1092 * like in the case of APEI GHES driver. 1093 */ 1094 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type, 1095 struct mem_ctl_info *mci, 1096 struct edac_raw_error_desc *e) 1097 { 1098 char detail[80]; 1099 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer }; 1100 1101 /* Memory type dependent details about the error */ 1102 if (type == HW_EVENT_ERR_CORRECTED) { 1103 snprintf(detail, sizeof(detail), 1104 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx", 1105 e->page_frame_number, e->offset_in_page, 1106 e->grain, e->syndrome); 1107 edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label, 1108 detail, e->other_detail, e->enable_per_layer_report, 1109 e->page_frame_number, e->offset_in_page, e->grain); 1110 } else { 1111 snprintf(detail, sizeof(detail), 1112 "page:0x%lx offset:0x%lx grain:%ld", 1113 e->page_frame_number, e->offset_in_page, e->grain); 1114 1115 edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label, 1116 detail, e->other_detail, e->enable_per_layer_report); 1117 } 1118 1119 1120 } 1121 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error); 1122 1123 /** 1124 * edac_mc_handle_error - reports a memory event to userspace 1125 * 1126 * @type: severity of the error (CE/UE/Fatal) 1127 * @mci: a struct mem_ctl_info pointer 1128 * @error_count: Number of errors of the same type 1129 * @page_frame_number: mem page where the error occurred 1130 * @offset_in_page: offset of the error inside the page 1131 * @syndrome: ECC syndrome 1132 * @top_layer: Memory layer[0] position 1133 * @mid_layer: Memory layer[1] position 1134 * @low_layer: Memory layer[2] position 1135 * @msg: Message meaningful to the end users that 1136 * explains the event 1137 * @other_detail: Technical details about the event that 1138 * may help hardware manufacturers and 1139 * EDAC developers to analyse the event 1140 */ 1141 void edac_mc_handle_error(const enum hw_event_mc_err_type type, 1142 struct mem_ctl_info *mci, 1143 const u16 error_count, 1144 const unsigned long page_frame_number, 1145 const unsigned long offset_in_page, 1146 const unsigned long syndrome, 1147 const int top_layer, 1148 const int mid_layer, 1149 const int low_layer, 1150 const char *msg, 1151 const char *other_detail) 1152 { 1153 char *p; 1154 int row = -1, chan = -1; 1155 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer }; 1156 int i, n_labels = 0; 1157 u8 grain_bits; 1158 struct edac_raw_error_desc *e = &mci->error_desc; 1159 1160 edac_dbg(3, "MC%d\n", mci->mc_idx); 1161 1162 /* Fills the error report buffer */ 1163 memset(e, 0, sizeof (*e)); 1164 e->error_count = error_count; 1165 e->top_layer = top_layer; 1166 e->mid_layer = mid_layer; 1167 e->low_layer = low_layer; 1168 e->page_frame_number = page_frame_number; 1169 e->offset_in_page = offset_in_page; 1170 e->syndrome = syndrome; 1171 e->msg = msg; 1172 e->other_detail = other_detail; 1173 1174 /* 1175 * Check if the event report is consistent and if the memory 1176 * location is known. If it is known, enable_per_layer_report will be 1177 * true, the DIMM(s) label info will be filled and the per-layer 1178 * error counters will be incremented. 1179 */ 1180 for (i = 0; i < mci->n_layers; i++) { 1181 if (pos[i] >= (int)mci->layers[i].size) { 1182 1183 edac_mc_printk(mci, KERN_ERR, 1184 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n", 1185 edac_layer_name[mci->layers[i].type], 1186 pos[i], mci->layers[i].size); 1187 /* 1188 * Instead of just returning it, let's use what's 1189 * known about the error. The increment routines and 1190 * the DIMM filter logic will do the right thing by 1191 * pointing the likely damaged DIMMs. 1192 */ 1193 pos[i] = -1; 1194 } 1195 if (pos[i] >= 0) 1196 e->enable_per_layer_report = true; 1197 } 1198 1199 /* 1200 * Get the dimm label/grain that applies to the match criteria. 1201 * As the error algorithm may not be able to point to just one memory 1202 * stick, the logic here will get all possible labels that could 1203 * pottentially be affected by the error. 1204 * On FB-DIMM memory controllers, for uncorrected errors, it is common 1205 * to have only the MC channel and the MC dimm (also called "branch") 1206 * but the channel is not known, as the memory is arranged in pairs, 1207 * where each memory belongs to a separate channel within the same 1208 * branch. 1209 */ 1210 p = e->label; 1211 *p = '\0'; 1212 1213 for (i = 0; i < mci->tot_dimms; i++) { 1214 struct dimm_info *dimm = mci->dimms[i]; 1215 1216 if (top_layer >= 0 && top_layer != dimm->location[0]) 1217 continue; 1218 if (mid_layer >= 0 && mid_layer != dimm->location[1]) 1219 continue; 1220 if (low_layer >= 0 && low_layer != dimm->location[2]) 1221 continue; 1222 1223 /* get the max grain, over the error match range */ 1224 if (dimm->grain > e->grain) 1225 e->grain = dimm->grain; 1226 1227 /* 1228 * If the error is memory-controller wide, there's no need to 1229 * seek for the affected DIMMs because the whole 1230 * channel/memory controller/... may be affected. 1231 * Also, don't show errors for empty DIMM slots. 1232 */ 1233 if (e->enable_per_layer_report && dimm->nr_pages) { 1234 if (n_labels >= EDAC_MAX_LABELS) { 1235 e->enable_per_layer_report = false; 1236 break; 1237 } 1238 n_labels++; 1239 if (p != e->label) { 1240 strcpy(p, OTHER_LABEL); 1241 p += strlen(OTHER_LABEL); 1242 } 1243 strcpy(p, dimm->label); 1244 p += strlen(p); 1245 *p = '\0'; 1246 1247 /* 1248 * get csrow/channel of the DIMM, in order to allow 1249 * incrementing the compat API counters 1250 */ 1251 edac_dbg(4, "%s csrows map: (%d,%d)\n", 1252 mci->csbased ? "rank" : "dimm", 1253 dimm->csrow, dimm->cschannel); 1254 if (row == -1) 1255 row = dimm->csrow; 1256 else if (row >= 0 && row != dimm->csrow) 1257 row = -2; 1258 1259 if (chan == -1) 1260 chan = dimm->cschannel; 1261 else if (chan >= 0 && chan != dimm->cschannel) 1262 chan = -2; 1263 } 1264 } 1265 1266 if (!e->enable_per_layer_report) { 1267 strcpy(e->label, "any memory"); 1268 } else { 1269 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan); 1270 if (p == e->label) 1271 strcpy(e->label, "unknown memory"); 1272 if (type == HW_EVENT_ERR_CORRECTED) { 1273 if (row >= 0) { 1274 mci->csrows[row]->ce_count += error_count; 1275 if (chan >= 0) 1276 mci->csrows[row]->channels[chan]->ce_count += error_count; 1277 } 1278 } else 1279 if (row >= 0) 1280 mci->csrows[row]->ue_count += error_count; 1281 } 1282 1283 /* Fill the RAM location data */ 1284 p = e->location; 1285 1286 for (i = 0; i < mci->n_layers; i++) { 1287 if (pos[i] < 0) 1288 continue; 1289 1290 p += sprintf(p, "%s:%d ", 1291 edac_layer_name[mci->layers[i].type], 1292 pos[i]); 1293 } 1294 if (p > e->location) 1295 *(p - 1) = '\0'; 1296 1297 /* Report the error via the trace interface */ 1298 grain_bits = fls_long(e->grain) + 1; 1299 trace_mc_event(type, e->msg, e->label, e->error_count, 1300 mci->mc_idx, e->top_layer, e->mid_layer, e->low_layer, 1301 PAGES_TO_MiB(e->page_frame_number) | e->offset_in_page, 1302 grain_bits, e->syndrome, e->other_detail); 1303 1304 edac_raw_mc_handle_error(type, mci, e); 1305 } 1306 EXPORT_SYMBOL_GPL(edac_mc_handle_error); 1307