1 /* 2 * edac_mc kernel module 3 * (C) 2005, 2006 Linux Networx (http://lnxi.com) 4 * This file may be distributed under the terms of the 5 * GNU General Public License. 6 * 7 * Written by Thayne Harbaugh 8 * Based on work by Dan Hollis <goemon at anime dot net> and others. 9 * http://www.anime.net/~goemon/linux-ecc/ 10 * 11 * Modified by Dave Peterson and Doug Thompson 12 * 13 */ 14 15 #include <linux/module.h> 16 #include <linux/proc_fs.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/smp.h> 20 #include <linux/init.h> 21 #include <linux/sysctl.h> 22 #include <linux/highmem.h> 23 #include <linux/timer.h> 24 #include <linux/slab.h> 25 #include <linux/jiffies.h> 26 #include <linux/spinlock.h> 27 #include <linux/list.h> 28 #include <linux/ctype.h> 29 #include <linux/edac.h> 30 #include <linux/bitops.h> 31 #include <linux/uaccess.h> 32 #include <asm/page.h> 33 #include "edac_mc.h" 34 #include "edac_module.h" 35 #include <ras/ras_event.h> 36 37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB 38 #include <asm/edac.h> 39 #else 40 #define edac_atomic_scrub(va, size) do { } while (0) 41 #endif 42 43 int edac_op_state = EDAC_OPSTATE_INVAL; 44 EXPORT_SYMBOL_GPL(edac_op_state); 45 46 static int edac_report = EDAC_REPORTING_ENABLED; 47 48 /* lock to memory controller's control array */ 49 static DEFINE_MUTEX(mem_ctls_mutex); 50 static LIST_HEAD(mc_devices); 51 52 /* 53 * Used to lock EDAC MC to just one module, avoiding two drivers e. g. 54 * apei/ghes and i7core_edac to be used at the same time. 55 */ 56 static const char *edac_mc_owner; 57 58 static struct bus_type mc_bus[EDAC_MAX_MCS]; 59 60 int edac_get_report_status(void) 61 { 62 return edac_report; 63 } 64 EXPORT_SYMBOL_GPL(edac_get_report_status); 65 66 void edac_set_report_status(int new) 67 { 68 if (new == EDAC_REPORTING_ENABLED || 69 new == EDAC_REPORTING_DISABLED || 70 new == EDAC_REPORTING_FORCE) 71 edac_report = new; 72 } 73 EXPORT_SYMBOL_GPL(edac_set_report_status); 74 75 static int edac_report_set(const char *str, const struct kernel_param *kp) 76 { 77 if (!str) 78 return -EINVAL; 79 80 if (!strncmp(str, "on", 2)) 81 edac_report = EDAC_REPORTING_ENABLED; 82 else if (!strncmp(str, "off", 3)) 83 edac_report = EDAC_REPORTING_DISABLED; 84 else if (!strncmp(str, "force", 5)) 85 edac_report = EDAC_REPORTING_FORCE; 86 87 return 0; 88 } 89 90 static int edac_report_get(char *buffer, const struct kernel_param *kp) 91 { 92 int ret = 0; 93 94 switch (edac_report) { 95 case EDAC_REPORTING_ENABLED: 96 ret = sprintf(buffer, "on"); 97 break; 98 case EDAC_REPORTING_DISABLED: 99 ret = sprintf(buffer, "off"); 100 break; 101 case EDAC_REPORTING_FORCE: 102 ret = sprintf(buffer, "force"); 103 break; 104 default: 105 ret = -EINVAL; 106 break; 107 } 108 109 return ret; 110 } 111 112 static const struct kernel_param_ops edac_report_ops = { 113 .set = edac_report_set, 114 .get = edac_report_get, 115 }; 116 117 module_param_cb(edac_report, &edac_report_ops, &edac_report, 0644); 118 119 unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf, 120 unsigned len) 121 { 122 struct mem_ctl_info *mci = dimm->mci; 123 int i, n, count = 0; 124 char *p = buf; 125 126 for (i = 0; i < mci->n_layers; i++) { 127 n = snprintf(p, len, "%s %d ", 128 edac_layer_name[mci->layers[i].type], 129 dimm->location[i]); 130 p += n; 131 len -= n; 132 count += n; 133 if (!len) 134 break; 135 } 136 137 return count; 138 } 139 140 #ifdef CONFIG_EDAC_DEBUG 141 142 static void edac_mc_dump_channel(struct rank_info *chan) 143 { 144 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx); 145 edac_dbg(4, " channel = %p\n", chan); 146 edac_dbg(4, " channel->csrow = %p\n", chan->csrow); 147 edac_dbg(4, " channel->dimm = %p\n", chan->dimm); 148 } 149 150 static void edac_mc_dump_dimm(struct dimm_info *dimm, int number) 151 { 152 char location[80]; 153 154 edac_dimm_info_location(dimm, location, sizeof(location)); 155 156 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n", 157 dimm->mci->csbased ? "rank" : "dimm", 158 number, location, dimm->csrow, dimm->cschannel); 159 edac_dbg(4, " dimm = %p\n", dimm); 160 edac_dbg(4, " dimm->label = '%s'\n", dimm->label); 161 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); 162 edac_dbg(4, " dimm->grain = %d\n", dimm->grain); 163 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); 164 } 165 166 static void edac_mc_dump_csrow(struct csrow_info *csrow) 167 { 168 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx); 169 edac_dbg(4, " csrow = %p\n", csrow); 170 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page); 171 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page); 172 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask); 173 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels); 174 edac_dbg(4, " csrow->channels = %p\n", csrow->channels); 175 edac_dbg(4, " csrow->mci = %p\n", csrow->mci); 176 } 177 178 static void edac_mc_dump_mci(struct mem_ctl_info *mci) 179 { 180 edac_dbg(3, "\tmci = %p\n", mci); 181 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap); 182 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap); 183 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap); 184 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check); 185 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n", 186 mci->nr_csrows, mci->csrows); 187 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n", 188 mci->tot_dimms, mci->dimms); 189 edac_dbg(3, "\tdev = %p\n", mci->pdev); 190 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n", 191 mci->mod_name, mci->ctl_name); 192 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info); 193 } 194 195 #endif /* CONFIG_EDAC_DEBUG */ 196 197 const char * const edac_mem_types[] = { 198 [MEM_EMPTY] = "Empty", 199 [MEM_RESERVED] = "Reserved", 200 [MEM_UNKNOWN] = "Unknown", 201 [MEM_FPM] = "FPM", 202 [MEM_EDO] = "EDO", 203 [MEM_BEDO] = "BEDO", 204 [MEM_SDR] = "Unbuffered-SDR", 205 [MEM_RDR] = "Registered-SDR", 206 [MEM_DDR] = "Unbuffered-DDR", 207 [MEM_RDDR] = "Registered-DDR", 208 [MEM_RMBS] = "RMBS", 209 [MEM_DDR2] = "Unbuffered-DDR2", 210 [MEM_FB_DDR2] = "FullyBuffered-DDR2", 211 [MEM_RDDR2] = "Registered-DDR2", 212 [MEM_XDR] = "XDR", 213 [MEM_DDR3] = "Unbuffered-DDR3", 214 [MEM_RDDR3] = "Registered-DDR3", 215 [MEM_LRDDR3] = "Load-Reduced-DDR3-RAM", 216 [MEM_DDR4] = "Unbuffered-DDR4", 217 [MEM_RDDR4] = "Registered-DDR4", 218 [MEM_LRDDR4] = "Load-Reduced-DDR4-RAM", 219 [MEM_NVDIMM] = "Non-volatile-RAM", 220 }; 221 EXPORT_SYMBOL_GPL(edac_mem_types); 222 223 /** 224 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation 225 * @p: pointer to a pointer with the memory offset to be used. At 226 * return, this will be incremented to point to the next offset 227 * @size: Size of the data structure to be reserved 228 * @n_elems: Number of elements that should be reserved 229 * 230 * If 'size' is a constant, the compiler will optimize this whole function 231 * down to either a no-op or the addition of a constant to the value of '*p'. 232 * 233 * The 'p' pointer is absolutely needed to keep the proper advancing 234 * further in memory to the proper offsets when allocating the struct along 235 * with its embedded structs, as edac_device_alloc_ctl_info() does it 236 * above, for example. 237 * 238 * At return, the pointer 'p' will be incremented to be used on a next call 239 * to this function. 240 */ 241 void *edac_align_ptr(void **p, unsigned size, int n_elems) 242 { 243 unsigned align, r; 244 void *ptr = *p; 245 246 *p += size * n_elems; 247 248 /* 249 * 'p' can possibly be an unaligned item X such that sizeof(X) is 250 * 'size'. Adjust 'p' so that its alignment is at least as 251 * stringent as what the compiler would provide for X and return 252 * the aligned result. 253 * Here we assume that the alignment of a "long long" is the most 254 * stringent alignment that the compiler will ever provide by default. 255 * As far as I know, this is a reasonable assumption. 256 */ 257 if (size > sizeof(long)) 258 align = sizeof(long long); 259 else if (size > sizeof(int)) 260 align = sizeof(long); 261 else if (size > sizeof(short)) 262 align = sizeof(int); 263 else if (size > sizeof(char)) 264 align = sizeof(short); 265 else 266 return (char *)ptr; 267 268 r = (unsigned long)p % align; 269 270 if (r == 0) 271 return (char *)ptr; 272 273 *p += align - r; 274 275 return (void *)(((unsigned long)ptr) + align - r); 276 } 277 278 static void _edac_mc_free(struct mem_ctl_info *mci) 279 { 280 int i, chn, row; 281 struct csrow_info *csr; 282 const unsigned int tot_dimms = mci->tot_dimms; 283 const unsigned int tot_channels = mci->num_cschannel; 284 const unsigned int tot_csrows = mci->nr_csrows; 285 286 if (mci->dimms) { 287 for (i = 0; i < tot_dimms; i++) 288 kfree(mci->dimms[i]); 289 kfree(mci->dimms); 290 } 291 if (mci->csrows) { 292 for (row = 0; row < tot_csrows; row++) { 293 csr = mci->csrows[row]; 294 if (csr) { 295 if (csr->channels) { 296 for (chn = 0; chn < tot_channels; chn++) 297 kfree(csr->channels[chn]); 298 kfree(csr->channels); 299 } 300 kfree(csr); 301 } 302 } 303 kfree(mci->csrows); 304 } 305 kfree(mci); 306 } 307 308 struct mem_ctl_info *edac_mc_alloc(unsigned mc_num, 309 unsigned n_layers, 310 struct edac_mc_layer *layers, 311 unsigned sz_pvt) 312 { 313 struct mem_ctl_info *mci; 314 struct edac_mc_layer *layer; 315 struct csrow_info *csr; 316 struct rank_info *chan; 317 struct dimm_info *dimm; 318 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS]; 319 unsigned pos[EDAC_MAX_LAYERS]; 320 unsigned size, tot_dimms = 1, count = 1; 321 unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0; 322 void *pvt, *p, *ptr = NULL; 323 int i, j, row, chn, n, len, off; 324 bool per_rank = false; 325 326 BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0); 327 /* 328 * Calculate the total amount of dimms and csrows/cschannels while 329 * in the old API emulation mode 330 */ 331 for (i = 0; i < n_layers; i++) { 332 tot_dimms *= layers[i].size; 333 if (layers[i].is_virt_csrow) 334 tot_csrows *= layers[i].size; 335 else 336 tot_channels *= layers[i].size; 337 338 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT) 339 per_rank = true; 340 } 341 342 /* Figure out the offsets of the various items from the start of an mc 343 * structure. We want the alignment of each item to be at least as 344 * stringent as what the compiler would provide if we could simply 345 * hardcode everything into a single struct. 346 */ 347 mci = edac_align_ptr(&ptr, sizeof(*mci), 1); 348 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers); 349 for (i = 0; i < n_layers; i++) { 350 count *= layers[i].size; 351 edac_dbg(4, "errcount layer %d size %d\n", i, count); 352 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count); 353 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count); 354 tot_errcount += 2 * count; 355 } 356 357 edac_dbg(4, "allocating %d error counters\n", tot_errcount); 358 pvt = edac_align_ptr(&ptr, sz_pvt, 1); 359 size = ((unsigned long)pvt) + sz_pvt; 360 361 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n", 362 size, 363 tot_dimms, 364 per_rank ? "ranks" : "dimms", 365 tot_csrows * tot_channels); 366 367 mci = kzalloc(size, GFP_KERNEL); 368 if (mci == NULL) 369 return NULL; 370 371 /* Adjust pointers so they point within the memory we just allocated 372 * rather than an imaginary chunk of memory located at address 0. 373 */ 374 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer)); 375 for (i = 0; i < n_layers; i++) { 376 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i])); 377 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i])); 378 } 379 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL; 380 381 /* setup index and various internal pointers */ 382 mci->mc_idx = mc_num; 383 mci->tot_dimms = tot_dimms; 384 mci->pvt_info = pvt; 385 mci->n_layers = n_layers; 386 mci->layers = layer; 387 memcpy(mci->layers, layers, sizeof(*layer) * n_layers); 388 mci->nr_csrows = tot_csrows; 389 mci->num_cschannel = tot_channels; 390 mci->csbased = per_rank; 391 392 /* 393 * Alocate and fill the csrow/channels structs 394 */ 395 mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL); 396 if (!mci->csrows) 397 goto error; 398 for (row = 0; row < tot_csrows; row++) { 399 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL); 400 if (!csr) 401 goto error; 402 mci->csrows[row] = csr; 403 csr->csrow_idx = row; 404 csr->mci = mci; 405 csr->nr_channels = tot_channels; 406 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels), 407 GFP_KERNEL); 408 if (!csr->channels) 409 goto error; 410 411 for (chn = 0; chn < tot_channels; chn++) { 412 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL); 413 if (!chan) 414 goto error; 415 csr->channels[chn] = chan; 416 chan->chan_idx = chn; 417 chan->csrow = csr; 418 } 419 } 420 421 /* 422 * Allocate and fill the dimm structs 423 */ 424 mci->dimms = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL); 425 if (!mci->dimms) 426 goto error; 427 428 memset(&pos, 0, sizeof(pos)); 429 row = 0; 430 chn = 0; 431 for (i = 0; i < tot_dimms; i++) { 432 chan = mci->csrows[row]->channels[chn]; 433 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]); 434 if (off < 0 || off >= tot_dimms) { 435 edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n"); 436 goto error; 437 } 438 439 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL); 440 if (!dimm) 441 goto error; 442 mci->dimms[off] = dimm; 443 dimm->mci = mci; 444 445 /* 446 * Copy DIMM location and initialize it. 447 */ 448 len = sizeof(dimm->label); 449 p = dimm->label; 450 n = snprintf(p, len, "mc#%u", mc_num); 451 p += n; 452 len -= n; 453 for (j = 0; j < n_layers; j++) { 454 n = snprintf(p, len, "%s#%u", 455 edac_layer_name[layers[j].type], 456 pos[j]); 457 p += n; 458 len -= n; 459 dimm->location[j] = pos[j]; 460 461 if (len <= 0) 462 break; 463 } 464 465 /* Link it to the csrows old API data */ 466 chan->dimm = dimm; 467 dimm->csrow = row; 468 dimm->cschannel = chn; 469 470 /* Increment csrow location */ 471 if (layers[0].is_virt_csrow) { 472 chn++; 473 if (chn == tot_channels) { 474 chn = 0; 475 row++; 476 } 477 } else { 478 row++; 479 if (row == tot_csrows) { 480 row = 0; 481 chn++; 482 } 483 } 484 485 /* Increment dimm location */ 486 for (j = n_layers - 1; j >= 0; j--) { 487 pos[j]++; 488 if (pos[j] < layers[j].size) 489 break; 490 pos[j] = 0; 491 } 492 } 493 494 mci->op_state = OP_ALLOC; 495 496 return mci; 497 498 error: 499 _edac_mc_free(mci); 500 501 return NULL; 502 } 503 EXPORT_SYMBOL_GPL(edac_mc_alloc); 504 505 void edac_mc_free(struct mem_ctl_info *mci) 506 { 507 edac_dbg(1, "\n"); 508 509 /* If we're not yet registered with sysfs free only what was allocated 510 * in edac_mc_alloc(). 511 */ 512 if (!device_is_registered(&mci->dev)) { 513 _edac_mc_free(mci); 514 return; 515 } 516 517 /* the mci instance is freed here, when the sysfs object is dropped */ 518 edac_unregister_sysfs(mci); 519 } 520 EXPORT_SYMBOL_GPL(edac_mc_free); 521 522 bool edac_has_mcs(void) 523 { 524 bool ret; 525 526 mutex_lock(&mem_ctls_mutex); 527 528 ret = list_empty(&mc_devices); 529 530 mutex_unlock(&mem_ctls_mutex); 531 532 return !ret; 533 } 534 EXPORT_SYMBOL_GPL(edac_has_mcs); 535 536 /* Caller must hold mem_ctls_mutex */ 537 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev) 538 { 539 struct mem_ctl_info *mci; 540 struct list_head *item; 541 542 edac_dbg(3, "\n"); 543 544 list_for_each(item, &mc_devices) { 545 mci = list_entry(item, struct mem_ctl_info, link); 546 547 if (mci->pdev == dev) 548 return mci; 549 } 550 551 return NULL; 552 } 553 554 /** 555 * find_mci_by_dev 556 * 557 * scan list of controllers looking for the one that manages 558 * the 'dev' device 559 * @dev: pointer to a struct device related with the MCI 560 */ 561 struct mem_ctl_info *find_mci_by_dev(struct device *dev) 562 { 563 struct mem_ctl_info *ret; 564 565 mutex_lock(&mem_ctls_mutex); 566 ret = __find_mci_by_dev(dev); 567 mutex_unlock(&mem_ctls_mutex); 568 569 return ret; 570 } 571 EXPORT_SYMBOL_GPL(find_mci_by_dev); 572 573 /* 574 * edac_mc_workq_function 575 * performs the operation scheduled by a workq request 576 */ 577 static void edac_mc_workq_function(struct work_struct *work_req) 578 { 579 struct delayed_work *d_work = to_delayed_work(work_req); 580 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work); 581 582 mutex_lock(&mem_ctls_mutex); 583 584 if (mci->op_state != OP_RUNNING_POLL) { 585 mutex_unlock(&mem_ctls_mutex); 586 return; 587 } 588 589 if (edac_op_state == EDAC_OPSTATE_POLL) 590 mci->edac_check(mci); 591 592 mutex_unlock(&mem_ctls_mutex); 593 594 /* Queue ourselves again. */ 595 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec())); 596 } 597 598 /* 599 * edac_mc_reset_delay_period(unsigned long value) 600 * 601 * user space has updated our poll period value, need to 602 * reset our workq delays 603 */ 604 void edac_mc_reset_delay_period(unsigned long value) 605 { 606 struct mem_ctl_info *mci; 607 struct list_head *item; 608 609 mutex_lock(&mem_ctls_mutex); 610 611 list_for_each(item, &mc_devices) { 612 mci = list_entry(item, struct mem_ctl_info, link); 613 614 if (mci->op_state == OP_RUNNING_POLL) 615 edac_mod_work(&mci->work, value); 616 } 617 mutex_unlock(&mem_ctls_mutex); 618 } 619 620 621 622 /* Return 0 on success, 1 on failure. 623 * Before calling this function, caller must 624 * assign a unique value to mci->mc_idx. 625 * 626 * locking model: 627 * 628 * called with the mem_ctls_mutex lock held 629 */ 630 static int add_mc_to_global_list(struct mem_ctl_info *mci) 631 { 632 struct list_head *item, *insert_before; 633 struct mem_ctl_info *p; 634 635 insert_before = &mc_devices; 636 637 p = __find_mci_by_dev(mci->pdev); 638 if (unlikely(p != NULL)) 639 goto fail0; 640 641 list_for_each(item, &mc_devices) { 642 p = list_entry(item, struct mem_ctl_info, link); 643 644 if (p->mc_idx >= mci->mc_idx) { 645 if (unlikely(p->mc_idx == mci->mc_idx)) 646 goto fail1; 647 648 insert_before = item; 649 break; 650 } 651 } 652 653 list_add_tail_rcu(&mci->link, insert_before); 654 return 0; 655 656 fail0: 657 edac_printk(KERN_WARNING, EDAC_MC, 658 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev), 659 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx); 660 return 1; 661 662 fail1: 663 edac_printk(KERN_WARNING, EDAC_MC, 664 "bug in low-level driver: attempt to assign\n" 665 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__); 666 return 1; 667 } 668 669 static int del_mc_from_global_list(struct mem_ctl_info *mci) 670 { 671 list_del_rcu(&mci->link); 672 673 /* these are for safe removal of devices from global list while 674 * NMI handlers may be traversing list 675 */ 676 synchronize_rcu(); 677 INIT_LIST_HEAD(&mci->link); 678 679 return list_empty(&mc_devices); 680 } 681 682 struct mem_ctl_info *edac_mc_find(int idx) 683 { 684 struct mem_ctl_info *mci = NULL; 685 struct list_head *item; 686 687 mutex_lock(&mem_ctls_mutex); 688 689 list_for_each(item, &mc_devices) { 690 mci = list_entry(item, struct mem_ctl_info, link); 691 692 if (mci->mc_idx >= idx) { 693 if (mci->mc_idx == idx) { 694 goto unlock; 695 } 696 break; 697 } 698 } 699 700 unlock: 701 mutex_unlock(&mem_ctls_mutex); 702 return mci; 703 } 704 EXPORT_SYMBOL(edac_mc_find); 705 706 const char *edac_get_owner(void) 707 { 708 return edac_mc_owner; 709 } 710 EXPORT_SYMBOL_GPL(edac_get_owner); 711 712 /* FIXME - should a warning be printed if no error detection? correction? */ 713 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci, 714 const struct attribute_group **groups) 715 { 716 int ret = -EINVAL; 717 edac_dbg(0, "\n"); 718 719 if (mci->mc_idx >= EDAC_MAX_MCS) { 720 pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx); 721 return -ENODEV; 722 } 723 724 #ifdef CONFIG_EDAC_DEBUG 725 if (edac_debug_level >= 3) 726 edac_mc_dump_mci(mci); 727 728 if (edac_debug_level >= 4) { 729 int i; 730 731 for (i = 0; i < mci->nr_csrows; i++) { 732 struct csrow_info *csrow = mci->csrows[i]; 733 u32 nr_pages = 0; 734 int j; 735 736 for (j = 0; j < csrow->nr_channels; j++) 737 nr_pages += csrow->channels[j]->dimm->nr_pages; 738 if (!nr_pages) 739 continue; 740 edac_mc_dump_csrow(csrow); 741 for (j = 0; j < csrow->nr_channels; j++) 742 if (csrow->channels[j]->dimm->nr_pages) 743 edac_mc_dump_channel(csrow->channels[j]); 744 } 745 for (i = 0; i < mci->tot_dimms; i++) 746 if (mci->dimms[i]->nr_pages) 747 edac_mc_dump_dimm(mci->dimms[i], i); 748 } 749 #endif 750 mutex_lock(&mem_ctls_mutex); 751 752 if (edac_mc_owner && edac_mc_owner != mci->mod_name) { 753 ret = -EPERM; 754 goto fail0; 755 } 756 757 if (add_mc_to_global_list(mci)) 758 goto fail0; 759 760 /* set load time so that error rate can be tracked */ 761 mci->start_time = jiffies; 762 763 mci->bus = &mc_bus[mci->mc_idx]; 764 765 if (edac_create_sysfs_mci_device(mci, groups)) { 766 edac_mc_printk(mci, KERN_WARNING, 767 "failed to create sysfs device\n"); 768 goto fail1; 769 } 770 771 if (mci->edac_check) { 772 mci->op_state = OP_RUNNING_POLL; 773 774 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function); 775 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec())); 776 777 } else { 778 mci->op_state = OP_RUNNING_INTERRUPT; 779 } 780 781 /* Report action taken */ 782 edac_mc_printk(mci, KERN_INFO, 783 "Giving out device to module %s controller %s: DEV %s (%s)\n", 784 mci->mod_name, mci->ctl_name, mci->dev_name, 785 edac_op_state_to_string(mci->op_state)); 786 787 edac_mc_owner = mci->mod_name; 788 789 mutex_unlock(&mem_ctls_mutex); 790 return 0; 791 792 fail1: 793 del_mc_from_global_list(mci); 794 795 fail0: 796 mutex_unlock(&mem_ctls_mutex); 797 return ret; 798 } 799 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups); 800 801 struct mem_ctl_info *edac_mc_del_mc(struct device *dev) 802 { 803 struct mem_ctl_info *mci; 804 805 edac_dbg(0, "\n"); 806 807 mutex_lock(&mem_ctls_mutex); 808 809 /* find the requested mci struct in the global list */ 810 mci = __find_mci_by_dev(dev); 811 if (mci == NULL) { 812 mutex_unlock(&mem_ctls_mutex); 813 return NULL; 814 } 815 816 /* mark MCI offline: */ 817 mci->op_state = OP_OFFLINE; 818 819 if (del_mc_from_global_list(mci)) 820 edac_mc_owner = NULL; 821 822 mutex_unlock(&mem_ctls_mutex); 823 824 if (mci->edac_check) 825 edac_stop_work(&mci->work); 826 827 /* remove from sysfs */ 828 edac_remove_sysfs_mci_device(mci); 829 830 edac_printk(KERN_INFO, EDAC_MC, 831 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx, 832 mci->mod_name, mci->ctl_name, edac_dev_name(mci)); 833 834 return mci; 835 } 836 EXPORT_SYMBOL_GPL(edac_mc_del_mc); 837 838 static void edac_mc_scrub_block(unsigned long page, unsigned long offset, 839 u32 size) 840 { 841 struct page *pg; 842 void *virt_addr; 843 unsigned long flags = 0; 844 845 edac_dbg(3, "\n"); 846 847 /* ECC error page was not in our memory. Ignore it. */ 848 if (!pfn_valid(page)) 849 return; 850 851 /* Find the actual page structure then map it and fix */ 852 pg = pfn_to_page(page); 853 854 if (PageHighMem(pg)) 855 local_irq_save(flags); 856 857 virt_addr = kmap_atomic(pg); 858 859 /* Perform architecture specific atomic scrub operation */ 860 edac_atomic_scrub(virt_addr + offset, size); 861 862 /* Unmap and complete */ 863 kunmap_atomic(virt_addr); 864 865 if (PageHighMem(pg)) 866 local_irq_restore(flags); 867 } 868 869 /* FIXME - should return -1 */ 870 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page) 871 { 872 struct csrow_info **csrows = mci->csrows; 873 int row, i, j, n; 874 875 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page); 876 row = -1; 877 878 for (i = 0; i < mci->nr_csrows; i++) { 879 struct csrow_info *csrow = csrows[i]; 880 n = 0; 881 for (j = 0; j < csrow->nr_channels; j++) { 882 struct dimm_info *dimm = csrow->channels[j]->dimm; 883 n += dimm->nr_pages; 884 } 885 if (n == 0) 886 continue; 887 888 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n", 889 mci->mc_idx, 890 csrow->first_page, page, csrow->last_page, 891 csrow->page_mask); 892 893 if ((page >= csrow->first_page) && 894 (page <= csrow->last_page) && 895 ((page & csrow->page_mask) == 896 (csrow->first_page & csrow->page_mask))) { 897 row = i; 898 break; 899 } 900 } 901 902 if (row == -1) 903 edac_mc_printk(mci, KERN_ERR, 904 "could not look up page error address %lx\n", 905 (unsigned long)page); 906 907 return row; 908 } 909 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page); 910 911 const char *edac_layer_name[] = { 912 [EDAC_MC_LAYER_BRANCH] = "branch", 913 [EDAC_MC_LAYER_CHANNEL] = "channel", 914 [EDAC_MC_LAYER_SLOT] = "slot", 915 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow", 916 [EDAC_MC_LAYER_ALL_MEM] = "memory", 917 }; 918 EXPORT_SYMBOL_GPL(edac_layer_name); 919 920 static void edac_inc_ce_error(struct mem_ctl_info *mci, 921 bool enable_per_layer_report, 922 const int pos[EDAC_MAX_LAYERS], 923 const u16 count) 924 { 925 int i, index = 0; 926 927 mci->ce_mc += count; 928 929 if (!enable_per_layer_report) { 930 mci->ce_noinfo_count += count; 931 return; 932 } 933 934 for (i = 0; i < mci->n_layers; i++) { 935 if (pos[i] < 0) 936 break; 937 index += pos[i]; 938 mci->ce_per_layer[i][index] += count; 939 940 if (i < mci->n_layers - 1) 941 index *= mci->layers[i + 1].size; 942 } 943 } 944 945 static void edac_inc_ue_error(struct mem_ctl_info *mci, 946 bool enable_per_layer_report, 947 const int pos[EDAC_MAX_LAYERS], 948 const u16 count) 949 { 950 int i, index = 0; 951 952 mci->ue_mc += count; 953 954 if (!enable_per_layer_report) { 955 mci->ue_noinfo_count += count; 956 return; 957 } 958 959 for (i = 0; i < mci->n_layers; i++) { 960 if (pos[i] < 0) 961 break; 962 index += pos[i]; 963 mci->ue_per_layer[i][index] += count; 964 965 if (i < mci->n_layers - 1) 966 index *= mci->layers[i + 1].size; 967 } 968 } 969 970 static void edac_ce_error(struct mem_ctl_info *mci, 971 const u16 error_count, 972 const int pos[EDAC_MAX_LAYERS], 973 const char *msg, 974 const char *location, 975 const char *label, 976 const char *detail, 977 const char *other_detail, 978 const bool enable_per_layer_report, 979 const unsigned long page_frame_number, 980 const unsigned long offset_in_page, 981 long grain) 982 { 983 unsigned long remapped_page; 984 char *msg_aux = ""; 985 986 if (*msg) 987 msg_aux = " "; 988 989 if (edac_mc_get_log_ce()) { 990 if (other_detail && *other_detail) 991 edac_mc_printk(mci, KERN_WARNING, 992 "%d CE %s%son %s (%s %s - %s)\n", 993 error_count, msg, msg_aux, label, 994 location, detail, other_detail); 995 else 996 edac_mc_printk(mci, KERN_WARNING, 997 "%d CE %s%son %s (%s %s)\n", 998 error_count, msg, msg_aux, label, 999 location, detail); 1000 } 1001 edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count); 1002 1003 if (mci->scrub_mode == SCRUB_SW_SRC) { 1004 /* 1005 * Some memory controllers (called MCs below) can remap 1006 * memory so that it is still available at a different 1007 * address when PCI devices map into memory. 1008 * MC's that can't do this, lose the memory where PCI 1009 * devices are mapped. This mapping is MC-dependent 1010 * and so we call back into the MC driver for it to 1011 * map the MC page to a physical (CPU) page which can 1012 * then be mapped to a virtual page - which can then 1013 * be scrubbed. 1014 */ 1015 remapped_page = mci->ctl_page_to_phys ? 1016 mci->ctl_page_to_phys(mci, page_frame_number) : 1017 page_frame_number; 1018 1019 edac_mc_scrub_block(remapped_page, 1020 offset_in_page, grain); 1021 } 1022 } 1023 1024 static void edac_ue_error(struct mem_ctl_info *mci, 1025 const u16 error_count, 1026 const int pos[EDAC_MAX_LAYERS], 1027 const char *msg, 1028 const char *location, 1029 const char *label, 1030 const char *detail, 1031 const char *other_detail, 1032 const bool enable_per_layer_report) 1033 { 1034 char *msg_aux = ""; 1035 1036 if (*msg) 1037 msg_aux = " "; 1038 1039 if (edac_mc_get_log_ue()) { 1040 if (other_detail && *other_detail) 1041 edac_mc_printk(mci, KERN_WARNING, 1042 "%d UE %s%son %s (%s %s - %s)\n", 1043 error_count, msg, msg_aux, label, 1044 location, detail, other_detail); 1045 else 1046 edac_mc_printk(mci, KERN_WARNING, 1047 "%d UE %s%son %s (%s %s)\n", 1048 error_count, msg, msg_aux, label, 1049 location, detail); 1050 } 1051 1052 if (edac_mc_get_panic_on_ue()) { 1053 if (other_detail && *other_detail) 1054 panic("UE %s%son %s (%s%s - %s)\n", 1055 msg, msg_aux, label, location, detail, other_detail); 1056 else 1057 panic("UE %s%son %s (%s%s)\n", 1058 msg, msg_aux, label, location, detail); 1059 } 1060 1061 edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count); 1062 } 1063 1064 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type, 1065 struct mem_ctl_info *mci, 1066 struct edac_raw_error_desc *e) 1067 { 1068 char detail[80]; 1069 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer }; 1070 1071 /* Memory type dependent details about the error */ 1072 if (type == HW_EVENT_ERR_CORRECTED) { 1073 snprintf(detail, sizeof(detail), 1074 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx", 1075 e->page_frame_number, e->offset_in_page, 1076 e->grain, e->syndrome); 1077 edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label, 1078 detail, e->other_detail, e->enable_per_layer_report, 1079 e->page_frame_number, e->offset_in_page, e->grain); 1080 } else { 1081 snprintf(detail, sizeof(detail), 1082 "page:0x%lx offset:0x%lx grain:%ld", 1083 e->page_frame_number, e->offset_in_page, e->grain); 1084 1085 edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label, 1086 detail, e->other_detail, e->enable_per_layer_report); 1087 } 1088 1089 1090 } 1091 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error); 1092 1093 void edac_mc_handle_error(const enum hw_event_mc_err_type type, 1094 struct mem_ctl_info *mci, 1095 const u16 error_count, 1096 const unsigned long page_frame_number, 1097 const unsigned long offset_in_page, 1098 const unsigned long syndrome, 1099 const int top_layer, 1100 const int mid_layer, 1101 const int low_layer, 1102 const char *msg, 1103 const char *other_detail) 1104 { 1105 char *p; 1106 int row = -1, chan = -1; 1107 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer }; 1108 int i, n_labels = 0; 1109 u8 grain_bits; 1110 struct edac_raw_error_desc *e = &mci->error_desc; 1111 1112 edac_dbg(3, "MC%d\n", mci->mc_idx); 1113 1114 /* Fills the error report buffer */ 1115 memset(e, 0, sizeof (*e)); 1116 e->error_count = error_count; 1117 e->top_layer = top_layer; 1118 e->mid_layer = mid_layer; 1119 e->low_layer = low_layer; 1120 e->page_frame_number = page_frame_number; 1121 e->offset_in_page = offset_in_page; 1122 e->syndrome = syndrome; 1123 e->msg = msg; 1124 e->other_detail = other_detail; 1125 1126 /* 1127 * Check if the event report is consistent and if the memory 1128 * location is known. If it is known, enable_per_layer_report will be 1129 * true, the DIMM(s) label info will be filled and the per-layer 1130 * error counters will be incremented. 1131 */ 1132 for (i = 0; i < mci->n_layers; i++) { 1133 if (pos[i] >= (int)mci->layers[i].size) { 1134 1135 edac_mc_printk(mci, KERN_ERR, 1136 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n", 1137 edac_layer_name[mci->layers[i].type], 1138 pos[i], mci->layers[i].size); 1139 /* 1140 * Instead of just returning it, let's use what's 1141 * known about the error. The increment routines and 1142 * the DIMM filter logic will do the right thing by 1143 * pointing the likely damaged DIMMs. 1144 */ 1145 pos[i] = -1; 1146 } 1147 if (pos[i] >= 0) 1148 e->enable_per_layer_report = true; 1149 } 1150 1151 /* 1152 * Get the dimm label/grain that applies to the match criteria. 1153 * As the error algorithm may not be able to point to just one memory 1154 * stick, the logic here will get all possible labels that could 1155 * pottentially be affected by the error. 1156 * On FB-DIMM memory controllers, for uncorrected errors, it is common 1157 * to have only the MC channel and the MC dimm (also called "branch") 1158 * but the channel is not known, as the memory is arranged in pairs, 1159 * where each memory belongs to a separate channel within the same 1160 * branch. 1161 */ 1162 p = e->label; 1163 *p = '\0'; 1164 1165 for (i = 0; i < mci->tot_dimms; i++) { 1166 struct dimm_info *dimm = mci->dimms[i]; 1167 1168 if (top_layer >= 0 && top_layer != dimm->location[0]) 1169 continue; 1170 if (mid_layer >= 0 && mid_layer != dimm->location[1]) 1171 continue; 1172 if (low_layer >= 0 && low_layer != dimm->location[2]) 1173 continue; 1174 1175 /* get the max grain, over the error match range */ 1176 if (dimm->grain > e->grain) 1177 e->grain = dimm->grain; 1178 1179 /* 1180 * If the error is memory-controller wide, there's no need to 1181 * seek for the affected DIMMs because the whole 1182 * channel/memory controller/... may be affected. 1183 * Also, don't show errors for empty DIMM slots. 1184 */ 1185 if (e->enable_per_layer_report && dimm->nr_pages) { 1186 if (n_labels >= EDAC_MAX_LABELS) { 1187 e->enable_per_layer_report = false; 1188 break; 1189 } 1190 n_labels++; 1191 if (p != e->label) { 1192 strcpy(p, OTHER_LABEL); 1193 p += strlen(OTHER_LABEL); 1194 } 1195 strcpy(p, dimm->label); 1196 p += strlen(p); 1197 *p = '\0'; 1198 1199 /* 1200 * get csrow/channel of the DIMM, in order to allow 1201 * incrementing the compat API counters 1202 */ 1203 edac_dbg(4, "%s csrows map: (%d,%d)\n", 1204 mci->csbased ? "rank" : "dimm", 1205 dimm->csrow, dimm->cschannel); 1206 if (row == -1) 1207 row = dimm->csrow; 1208 else if (row >= 0 && row != dimm->csrow) 1209 row = -2; 1210 1211 if (chan == -1) 1212 chan = dimm->cschannel; 1213 else if (chan >= 0 && chan != dimm->cschannel) 1214 chan = -2; 1215 } 1216 } 1217 1218 if (!e->enable_per_layer_report) { 1219 strcpy(e->label, "any memory"); 1220 } else { 1221 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan); 1222 if (p == e->label) 1223 strcpy(e->label, "unknown memory"); 1224 if (type == HW_EVENT_ERR_CORRECTED) { 1225 if (row >= 0) { 1226 mci->csrows[row]->ce_count += error_count; 1227 if (chan >= 0) 1228 mci->csrows[row]->channels[chan]->ce_count += error_count; 1229 } 1230 } else 1231 if (row >= 0) 1232 mci->csrows[row]->ue_count += error_count; 1233 } 1234 1235 /* Fill the RAM location data */ 1236 p = e->location; 1237 1238 for (i = 0; i < mci->n_layers; i++) { 1239 if (pos[i] < 0) 1240 continue; 1241 1242 p += sprintf(p, "%s:%d ", 1243 edac_layer_name[mci->layers[i].type], 1244 pos[i]); 1245 } 1246 if (p > e->location) 1247 *(p - 1) = '\0'; 1248 1249 /* Report the error via the trace interface */ 1250 grain_bits = fls_long(e->grain) + 1; 1251 1252 if (IS_ENABLED(CONFIG_RAS)) 1253 trace_mc_event(type, e->msg, e->label, e->error_count, 1254 mci->mc_idx, e->top_layer, e->mid_layer, 1255 e->low_layer, 1256 (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page, 1257 grain_bits, e->syndrome, e->other_detail); 1258 1259 edac_raw_mc_handle_error(type, mci, e); 1260 } 1261 EXPORT_SYMBOL_GPL(edac_mc_handle_error); 1262