1 /* 2 * edac_mc kernel module 3 * (C) 2005, 2006 Linux Networx (http://lnxi.com) 4 * This file may be distributed under the terms of the 5 * GNU General Public License. 6 * 7 * Written by Thayne Harbaugh 8 * Based on work by Dan Hollis <goemon at anime dot net> and others. 9 * http://www.anime.net/~goemon/linux-ecc/ 10 * 11 * Modified by Dave Peterson and Doug Thompson 12 * 13 */ 14 15 #include <linux/module.h> 16 #include <linux/proc_fs.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/smp.h> 20 #include <linux/init.h> 21 #include <linux/sysctl.h> 22 #include <linux/highmem.h> 23 #include <linux/timer.h> 24 #include <linux/slab.h> 25 #include <linux/jiffies.h> 26 #include <linux/spinlock.h> 27 #include <linux/list.h> 28 #include <linux/ctype.h> 29 #include <linux/edac.h> 30 #include <linux/bitops.h> 31 #include <linux/uaccess.h> 32 #include <asm/page.h> 33 #include "edac_mc.h" 34 #include "edac_module.h" 35 #include <ras/ras_event.h> 36 37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB 38 #include <asm/edac.h> 39 #else 40 #define edac_atomic_scrub(va, size) do { } while (0) 41 #endif 42 43 int edac_op_state = EDAC_OPSTATE_INVAL; 44 EXPORT_SYMBOL_GPL(edac_op_state); 45 46 static int edac_report = EDAC_REPORTING_ENABLED; 47 48 /* lock to memory controller's control array */ 49 static DEFINE_MUTEX(mem_ctls_mutex); 50 static LIST_HEAD(mc_devices); 51 52 /* 53 * Used to lock EDAC MC to just one module, avoiding two drivers e. g. 54 * apei/ghes and i7core_edac to be used at the same time. 55 */ 56 static const char *edac_mc_owner; 57 58 static struct bus_type mc_bus[EDAC_MAX_MCS]; 59 60 int edac_get_report_status(void) 61 { 62 return edac_report; 63 } 64 EXPORT_SYMBOL_GPL(edac_get_report_status); 65 66 void edac_set_report_status(int new) 67 { 68 if (new == EDAC_REPORTING_ENABLED || 69 new == EDAC_REPORTING_DISABLED || 70 new == EDAC_REPORTING_FORCE) 71 edac_report = new; 72 } 73 EXPORT_SYMBOL_GPL(edac_set_report_status); 74 75 static int edac_report_set(const char *str, const struct kernel_param *kp) 76 { 77 if (!str) 78 return -EINVAL; 79 80 if (!strncmp(str, "on", 2)) 81 edac_report = EDAC_REPORTING_ENABLED; 82 else if (!strncmp(str, "off", 3)) 83 edac_report = EDAC_REPORTING_DISABLED; 84 else if (!strncmp(str, "force", 5)) 85 edac_report = EDAC_REPORTING_FORCE; 86 87 return 0; 88 } 89 90 static int edac_report_get(char *buffer, const struct kernel_param *kp) 91 { 92 int ret = 0; 93 94 switch (edac_report) { 95 case EDAC_REPORTING_ENABLED: 96 ret = sprintf(buffer, "on"); 97 break; 98 case EDAC_REPORTING_DISABLED: 99 ret = sprintf(buffer, "off"); 100 break; 101 case EDAC_REPORTING_FORCE: 102 ret = sprintf(buffer, "force"); 103 break; 104 default: 105 ret = -EINVAL; 106 break; 107 } 108 109 return ret; 110 } 111 112 static const struct kernel_param_ops edac_report_ops = { 113 .set = edac_report_set, 114 .get = edac_report_get, 115 }; 116 117 module_param_cb(edac_report, &edac_report_ops, &edac_report, 0644); 118 119 unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf, 120 unsigned len) 121 { 122 struct mem_ctl_info *mci = dimm->mci; 123 int i, n, count = 0; 124 char *p = buf; 125 126 for (i = 0; i < mci->n_layers; i++) { 127 n = snprintf(p, len, "%s %d ", 128 edac_layer_name[mci->layers[i].type], 129 dimm->location[i]); 130 p += n; 131 len -= n; 132 count += n; 133 if (!len) 134 break; 135 } 136 137 return count; 138 } 139 140 #ifdef CONFIG_EDAC_DEBUG 141 142 static void edac_mc_dump_channel(struct rank_info *chan) 143 { 144 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx); 145 edac_dbg(4, " channel = %p\n", chan); 146 edac_dbg(4, " channel->csrow = %p\n", chan->csrow); 147 edac_dbg(4, " channel->dimm = %p\n", chan->dimm); 148 } 149 150 static void edac_mc_dump_dimm(struct dimm_info *dimm, int number) 151 { 152 char location[80]; 153 154 edac_dimm_info_location(dimm, location, sizeof(location)); 155 156 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n", 157 dimm->mci->csbased ? "rank" : "dimm", 158 number, location, dimm->csrow, dimm->cschannel); 159 edac_dbg(4, " dimm = %p\n", dimm); 160 edac_dbg(4, " dimm->label = '%s'\n", dimm->label); 161 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); 162 edac_dbg(4, " dimm->grain = %d\n", dimm->grain); 163 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); 164 } 165 166 static void edac_mc_dump_csrow(struct csrow_info *csrow) 167 { 168 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx); 169 edac_dbg(4, " csrow = %p\n", csrow); 170 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page); 171 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page); 172 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask); 173 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels); 174 edac_dbg(4, " csrow->channels = %p\n", csrow->channels); 175 edac_dbg(4, " csrow->mci = %p\n", csrow->mci); 176 } 177 178 static void edac_mc_dump_mci(struct mem_ctl_info *mci) 179 { 180 edac_dbg(3, "\tmci = %p\n", mci); 181 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap); 182 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap); 183 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap); 184 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check); 185 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n", 186 mci->nr_csrows, mci->csrows); 187 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n", 188 mci->tot_dimms, mci->dimms); 189 edac_dbg(3, "\tdev = %p\n", mci->pdev); 190 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n", 191 mci->mod_name, mci->ctl_name); 192 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info); 193 } 194 195 #endif /* CONFIG_EDAC_DEBUG */ 196 197 const char * const edac_mem_types[] = { 198 [MEM_EMPTY] = "Empty csrow", 199 [MEM_RESERVED] = "Reserved csrow type", 200 [MEM_UNKNOWN] = "Unknown csrow type", 201 [MEM_FPM] = "Fast page mode RAM", 202 [MEM_EDO] = "Extended data out RAM", 203 [MEM_BEDO] = "Burst Extended data out RAM", 204 [MEM_SDR] = "Single data rate SDRAM", 205 [MEM_RDR] = "Registered single data rate SDRAM", 206 [MEM_DDR] = "Double data rate SDRAM", 207 [MEM_RDDR] = "Registered Double data rate SDRAM", 208 [MEM_RMBS] = "Rambus DRAM", 209 [MEM_DDR2] = "Unbuffered DDR2 RAM", 210 [MEM_FB_DDR2] = "Fully buffered DDR2", 211 [MEM_RDDR2] = "Registered DDR2 RAM", 212 [MEM_XDR] = "Rambus XDR", 213 [MEM_DDR3] = "Unbuffered DDR3 RAM", 214 [MEM_RDDR3] = "Registered DDR3 RAM", 215 [MEM_LRDDR3] = "Load-Reduced DDR3 RAM", 216 [MEM_DDR4] = "Unbuffered DDR4 RAM", 217 [MEM_RDDR4] = "Registered DDR4 RAM", 218 }; 219 EXPORT_SYMBOL_GPL(edac_mem_types); 220 221 /** 222 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation 223 * @p: pointer to a pointer with the memory offset to be used. At 224 * return, this will be incremented to point to the next offset 225 * @size: Size of the data structure to be reserved 226 * @n_elems: Number of elements that should be reserved 227 * 228 * If 'size' is a constant, the compiler will optimize this whole function 229 * down to either a no-op or the addition of a constant to the value of '*p'. 230 * 231 * The 'p' pointer is absolutely needed to keep the proper advancing 232 * further in memory to the proper offsets when allocating the struct along 233 * with its embedded structs, as edac_device_alloc_ctl_info() does it 234 * above, for example. 235 * 236 * At return, the pointer 'p' will be incremented to be used on a next call 237 * to this function. 238 */ 239 void *edac_align_ptr(void **p, unsigned size, int n_elems) 240 { 241 unsigned align, r; 242 void *ptr = *p; 243 244 *p += size * n_elems; 245 246 /* 247 * 'p' can possibly be an unaligned item X such that sizeof(X) is 248 * 'size'. Adjust 'p' so that its alignment is at least as 249 * stringent as what the compiler would provide for X and return 250 * the aligned result. 251 * Here we assume that the alignment of a "long long" is the most 252 * stringent alignment that the compiler will ever provide by default. 253 * As far as I know, this is a reasonable assumption. 254 */ 255 if (size > sizeof(long)) 256 align = sizeof(long long); 257 else if (size > sizeof(int)) 258 align = sizeof(long); 259 else if (size > sizeof(short)) 260 align = sizeof(int); 261 else if (size > sizeof(char)) 262 align = sizeof(short); 263 else 264 return (char *)ptr; 265 266 r = (unsigned long)p % align; 267 268 if (r == 0) 269 return (char *)ptr; 270 271 *p += align - r; 272 273 return (void *)(((unsigned long)ptr) + align - r); 274 } 275 276 static void _edac_mc_free(struct mem_ctl_info *mci) 277 { 278 int i, chn, row; 279 struct csrow_info *csr; 280 const unsigned int tot_dimms = mci->tot_dimms; 281 const unsigned int tot_channels = mci->num_cschannel; 282 const unsigned int tot_csrows = mci->nr_csrows; 283 284 if (mci->dimms) { 285 for (i = 0; i < tot_dimms; i++) 286 kfree(mci->dimms[i]); 287 kfree(mci->dimms); 288 } 289 if (mci->csrows) { 290 for (row = 0; row < tot_csrows; row++) { 291 csr = mci->csrows[row]; 292 if (csr) { 293 if (csr->channels) { 294 for (chn = 0; chn < tot_channels; chn++) 295 kfree(csr->channels[chn]); 296 kfree(csr->channels); 297 } 298 kfree(csr); 299 } 300 } 301 kfree(mci->csrows); 302 } 303 kfree(mci); 304 } 305 306 struct mem_ctl_info *edac_mc_alloc(unsigned mc_num, 307 unsigned n_layers, 308 struct edac_mc_layer *layers, 309 unsigned sz_pvt) 310 { 311 struct mem_ctl_info *mci; 312 struct edac_mc_layer *layer; 313 struct csrow_info *csr; 314 struct rank_info *chan; 315 struct dimm_info *dimm; 316 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS]; 317 unsigned pos[EDAC_MAX_LAYERS]; 318 unsigned size, tot_dimms = 1, count = 1; 319 unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0; 320 void *pvt, *p, *ptr = NULL; 321 int i, j, row, chn, n, len, off; 322 bool per_rank = false; 323 324 BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0); 325 /* 326 * Calculate the total amount of dimms and csrows/cschannels while 327 * in the old API emulation mode 328 */ 329 for (i = 0; i < n_layers; i++) { 330 tot_dimms *= layers[i].size; 331 if (layers[i].is_virt_csrow) 332 tot_csrows *= layers[i].size; 333 else 334 tot_channels *= layers[i].size; 335 336 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT) 337 per_rank = true; 338 } 339 340 /* Figure out the offsets of the various items from the start of an mc 341 * structure. We want the alignment of each item to be at least as 342 * stringent as what the compiler would provide if we could simply 343 * hardcode everything into a single struct. 344 */ 345 mci = edac_align_ptr(&ptr, sizeof(*mci), 1); 346 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers); 347 for (i = 0; i < n_layers; i++) { 348 count *= layers[i].size; 349 edac_dbg(4, "errcount layer %d size %d\n", i, count); 350 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count); 351 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count); 352 tot_errcount += 2 * count; 353 } 354 355 edac_dbg(4, "allocating %d error counters\n", tot_errcount); 356 pvt = edac_align_ptr(&ptr, sz_pvt, 1); 357 size = ((unsigned long)pvt) + sz_pvt; 358 359 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n", 360 size, 361 tot_dimms, 362 per_rank ? "ranks" : "dimms", 363 tot_csrows * tot_channels); 364 365 mci = kzalloc(size, GFP_KERNEL); 366 if (mci == NULL) 367 return NULL; 368 369 /* Adjust pointers so they point within the memory we just allocated 370 * rather than an imaginary chunk of memory located at address 0. 371 */ 372 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer)); 373 for (i = 0; i < n_layers; i++) { 374 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i])); 375 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i])); 376 } 377 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL; 378 379 /* setup index and various internal pointers */ 380 mci->mc_idx = mc_num; 381 mci->tot_dimms = tot_dimms; 382 mci->pvt_info = pvt; 383 mci->n_layers = n_layers; 384 mci->layers = layer; 385 memcpy(mci->layers, layers, sizeof(*layer) * n_layers); 386 mci->nr_csrows = tot_csrows; 387 mci->num_cschannel = tot_channels; 388 mci->csbased = per_rank; 389 390 /* 391 * Alocate and fill the csrow/channels structs 392 */ 393 mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL); 394 if (!mci->csrows) 395 goto error; 396 for (row = 0; row < tot_csrows; row++) { 397 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL); 398 if (!csr) 399 goto error; 400 mci->csrows[row] = csr; 401 csr->csrow_idx = row; 402 csr->mci = mci; 403 csr->nr_channels = tot_channels; 404 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels), 405 GFP_KERNEL); 406 if (!csr->channels) 407 goto error; 408 409 for (chn = 0; chn < tot_channels; chn++) { 410 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL); 411 if (!chan) 412 goto error; 413 csr->channels[chn] = chan; 414 chan->chan_idx = chn; 415 chan->csrow = csr; 416 } 417 } 418 419 /* 420 * Allocate and fill the dimm structs 421 */ 422 mci->dimms = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL); 423 if (!mci->dimms) 424 goto error; 425 426 memset(&pos, 0, sizeof(pos)); 427 row = 0; 428 chn = 0; 429 for (i = 0; i < tot_dimms; i++) { 430 chan = mci->csrows[row]->channels[chn]; 431 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]); 432 if (off < 0 || off >= tot_dimms) { 433 edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n"); 434 goto error; 435 } 436 437 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL); 438 if (!dimm) 439 goto error; 440 mci->dimms[off] = dimm; 441 dimm->mci = mci; 442 443 /* 444 * Copy DIMM location and initialize it. 445 */ 446 len = sizeof(dimm->label); 447 p = dimm->label; 448 n = snprintf(p, len, "mc#%u", mc_num); 449 p += n; 450 len -= n; 451 for (j = 0; j < n_layers; j++) { 452 n = snprintf(p, len, "%s#%u", 453 edac_layer_name[layers[j].type], 454 pos[j]); 455 p += n; 456 len -= n; 457 dimm->location[j] = pos[j]; 458 459 if (len <= 0) 460 break; 461 } 462 463 /* Link it to the csrows old API data */ 464 chan->dimm = dimm; 465 dimm->csrow = row; 466 dimm->cschannel = chn; 467 468 /* Increment csrow location */ 469 if (layers[0].is_virt_csrow) { 470 chn++; 471 if (chn == tot_channels) { 472 chn = 0; 473 row++; 474 } 475 } else { 476 row++; 477 if (row == tot_csrows) { 478 row = 0; 479 chn++; 480 } 481 } 482 483 /* Increment dimm location */ 484 for (j = n_layers - 1; j >= 0; j--) { 485 pos[j]++; 486 if (pos[j] < layers[j].size) 487 break; 488 pos[j] = 0; 489 } 490 } 491 492 mci->op_state = OP_ALLOC; 493 494 return mci; 495 496 error: 497 _edac_mc_free(mci); 498 499 return NULL; 500 } 501 EXPORT_SYMBOL_GPL(edac_mc_alloc); 502 503 void edac_mc_free(struct mem_ctl_info *mci) 504 { 505 edac_dbg(1, "\n"); 506 507 /* If we're not yet registered with sysfs free only what was allocated 508 * in edac_mc_alloc(). 509 */ 510 if (!device_is_registered(&mci->dev)) { 511 _edac_mc_free(mci); 512 return; 513 } 514 515 /* the mci instance is freed here, when the sysfs object is dropped */ 516 edac_unregister_sysfs(mci); 517 } 518 EXPORT_SYMBOL_GPL(edac_mc_free); 519 520 bool edac_has_mcs(void) 521 { 522 bool ret; 523 524 mutex_lock(&mem_ctls_mutex); 525 526 ret = list_empty(&mc_devices); 527 528 mutex_unlock(&mem_ctls_mutex); 529 530 return !ret; 531 } 532 EXPORT_SYMBOL_GPL(edac_has_mcs); 533 534 /* Caller must hold mem_ctls_mutex */ 535 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev) 536 { 537 struct mem_ctl_info *mci; 538 struct list_head *item; 539 540 edac_dbg(3, "\n"); 541 542 list_for_each(item, &mc_devices) { 543 mci = list_entry(item, struct mem_ctl_info, link); 544 545 if (mci->pdev == dev) 546 return mci; 547 } 548 549 return NULL; 550 } 551 552 /** 553 * find_mci_by_dev 554 * 555 * scan list of controllers looking for the one that manages 556 * the 'dev' device 557 * @dev: pointer to a struct device related with the MCI 558 */ 559 struct mem_ctl_info *find_mci_by_dev(struct device *dev) 560 { 561 struct mem_ctl_info *ret; 562 563 mutex_lock(&mem_ctls_mutex); 564 ret = __find_mci_by_dev(dev); 565 mutex_unlock(&mem_ctls_mutex); 566 567 return ret; 568 } 569 EXPORT_SYMBOL_GPL(find_mci_by_dev); 570 571 /* 572 * edac_mc_workq_function 573 * performs the operation scheduled by a workq request 574 */ 575 static void edac_mc_workq_function(struct work_struct *work_req) 576 { 577 struct delayed_work *d_work = to_delayed_work(work_req); 578 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work); 579 580 mutex_lock(&mem_ctls_mutex); 581 582 if (mci->op_state != OP_RUNNING_POLL) { 583 mutex_unlock(&mem_ctls_mutex); 584 return; 585 } 586 587 if (edac_op_state == EDAC_OPSTATE_POLL) 588 mci->edac_check(mci); 589 590 mutex_unlock(&mem_ctls_mutex); 591 592 /* Queue ourselves again. */ 593 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec())); 594 } 595 596 /* 597 * edac_mc_reset_delay_period(unsigned long value) 598 * 599 * user space has updated our poll period value, need to 600 * reset our workq delays 601 */ 602 void edac_mc_reset_delay_period(unsigned long value) 603 { 604 struct mem_ctl_info *mci; 605 struct list_head *item; 606 607 mutex_lock(&mem_ctls_mutex); 608 609 list_for_each(item, &mc_devices) { 610 mci = list_entry(item, struct mem_ctl_info, link); 611 612 if (mci->op_state == OP_RUNNING_POLL) 613 edac_mod_work(&mci->work, value); 614 } 615 mutex_unlock(&mem_ctls_mutex); 616 } 617 618 619 620 /* Return 0 on success, 1 on failure. 621 * Before calling this function, caller must 622 * assign a unique value to mci->mc_idx. 623 * 624 * locking model: 625 * 626 * called with the mem_ctls_mutex lock held 627 */ 628 static int add_mc_to_global_list(struct mem_ctl_info *mci) 629 { 630 struct list_head *item, *insert_before; 631 struct mem_ctl_info *p; 632 633 insert_before = &mc_devices; 634 635 p = __find_mci_by_dev(mci->pdev); 636 if (unlikely(p != NULL)) 637 goto fail0; 638 639 list_for_each(item, &mc_devices) { 640 p = list_entry(item, struct mem_ctl_info, link); 641 642 if (p->mc_idx >= mci->mc_idx) { 643 if (unlikely(p->mc_idx == mci->mc_idx)) 644 goto fail1; 645 646 insert_before = item; 647 break; 648 } 649 } 650 651 list_add_tail_rcu(&mci->link, insert_before); 652 return 0; 653 654 fail0: 655 edac_printk(KERN_WARNING, EDAC_MC, 656 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev), 657 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx); 658 return 1; 659 660 fail1: 661 edac_printk(KERN_WARNING, EDAC_MC, 662 "bug in low-level driver: attempt to assign\n" 663 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__); 664 return 1; 665 } 666 667 static int del_mc_from_global_list(struct mem_ctl_info *mci) 668 { 669 list_del_rcu(&mci->link); 670 671 /* these are for safe removal of devices from global list while 672 * NMI handlers may be traversing list 673 */ 674 synchronize_rcu(); 675 INIT_LIST_HEAD(&mci->link); 676 677 return list_empty(&mc_devices); 678 } 679 680 struct mem_ctl_info *edac_mc_find(int idx) 681 { 682 struct mem_ctl_info *mci = NULL; 683 struct list_head *item; 684 685 mutex_lock(&mem_ctls_mutex); 686 687 list_for_each(item, &mc_devices) { 688 mci = list_entry(item, struct mem_ctl_info, link); 689 690 if (mci->mc_idx >= idx) { 691 if (mci->mc_idx == idx) { 692 goto unlock; 693 } 694 break; 695 } 696 } 697 698 unlock: 699 mutex_unlock(&mem_ctls_mutex); 700 return mci; 701 } 702 EXPORT_SYMBOL(edac_mc_find); 703 704 const char *edac_get_owner(void) 705 { 706 return edac_mc_owner; 707 } 708 EXPORT_SYMBOL_GPL(edac_get_owner); 709 710 /* FIXME - should a warning be printed if no error detection? correction? */ 711 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci, 712 const struct attribute_group **groups) 713 { 714 int ret = -EINVAL; 715 edac_dbg(0, "\n"); 716 717 if (mci->mc_idx >= EDAC_MAX_MCS) { 718 pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx); 719 return -ENODEV; 720 } 721 722 #ifdef CONFIG_EDAC_DEBUG 723 if (edac_debug_level >= 3) 724 edac_mc_dump_mci(mci); 725 726 if (edac_debug_level >= 4) { 727 int i; 728 729 for (i = 0; i < mci->nr_csrows; i++) { 730 struct csrow_info *csrow = mci->csrows[i]; 731 u32 nr_pages = 0; 732 int j; 733 734 for (j = 0; j < csrow->nr_channels; j++) 735 nr_pages += csrow->channels[j]->dimm->nr_pages; 736 if (!nr_pages) 737 continue; 738 edac_mc_dump_csrow(csrow); 739 for (j = 0; j < csrow->nr_channels; j++) 740 if (csrow->channels[j]->dimm->nr_pages) 741 edac_mc_dump_channel(csrow->channels[j]); 742 } 743 for (i = 0; i < mci->tot_dimms; i++) 744 if (mci->dimms[i]->nr_pages) 745 edac_mc_dump_dimm(mci->dimms[i], i); 746 } 747 #endif 748 mutex_lock(&mem_ctls_mutex); 749 750 if (edac_mc_owner && edac_mc_owner != mci->mod_name) { 751 ret = -EPERM; 752 goto fail0; 753 } 754 755 if (add_mc_to_global_list(mci)) 756 goto fail0; 757 758 /* set load time so that error rate can be tracked */ 759 mci->start_time = jiffies; 760 761 mci->bus = &mc_bus[mci->mc_idx]; 762 763 if (edac_create_sysfs_mci_device(mci, groups)) { 764 edac_mc_printk(mci, KERN_WARNING, 765 "failed to create sysfs device\n"); 766 goto fail1; 767 } 768 769 if (mci->edac_check) { 770 mci->op_state = OP_RUNNING_POLL; 771 772 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function); 773 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec())); 774 775 } else { 776 mci->op_state = OP_RUNNING_INTERRUPT; 777 } 778 779 /* Report action taken */ 780 edac_mc_printk(mci, KERN_INFO, 781 "Giving out device to module %s controller %s: DEV %s (%s)\n", 782 mci->mod_name, mci->ctl_name, mci->dev_name, 783 edac_op_state_to_string(mci->op_state)); 784 785 edac_mc_owner = mci->mod_name; 786 787 mutex_unlock(&mem_ctls_mutex); 788 return 0; 789 790 fail1: 791 del_mc_from_global_list(mci); 792 793 fail0: 794 mutex_unlock(&mem_ctls_mutex); 795 return ret; 796 } 797 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups); 798 799 struct mem_ctl_info *edac_mc_del_mc(struct device *dev) 800 { 801 struct mem_ctl_info *mci; 802 803 edac_dbg(0, "\n"); 804 805 mutex_lock(&mem_ctls_mutex); 806 807 /* find the requested mci struct in the global list */ 808 mci = __find_mci_by_dev(dev); 809 if (mci == NULL) { 810 mutex_unlock(&mem_ctls_mutex); 811 return NULL; 812 } 813 814 /* mark MCI offline: */ 815 mci->op_state = OP_OFFLINE; 816 817 if (del_mc_from_global_list(mci)) 818 edac_mc_owner = NULL; 819 820 mutex_unlock(&mem_ctls_mutex); 821 822 if (mci->edac_check) 823 edac_stop_work(&mci->work); 824 825 /* remove from sysfs */ 826 edac_remove_sysfs_mci_device(mci); 827 828 edac_printk(KERN_INFO, EDAC_MC, 829 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx, 830 mci->mod_name, mci->ctl_name, edac_dev_name(mci)); 831 832 return mci; 833 } 834 EXPORT_SYMBOL_GPL(edac_mc_del_mc); 835 836 static void edac_mc_scrub_block(unsigned long page, unsigned long offset, 837 u32 size) 838 { 839 struct page *pg; 840 void *virt_addr; 841 unsigned long flags = 0; 842 843 edac_dbg(3, "\n"); 844 845 /* ECC error page was not in our memory. Ignore it. */ 846 if (!pfn_valid(page)) 847 return; 848 849 /* Find the actual page structure then map it and fix */ 850 pg = pfn_to_page(page); 851 852 if (PageHighMem(pg)) 853 local_irq_save(flags); 854 855 virt_addr = kmap_atomic(pg); 856 857 /* Perform architecture specific atomic scrub operation */ 858 edac_atomic_scrub(virt_addr + offset, size); 859 860 /* Unmap and complete */ 861 kunmap_atomic(virt_addr); 862 863 if (PageHighMem(pg)) 864 local_irq_restore(flags); 865 } 866 867 /* FIXME - should return -1 */ 868 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page) 869 { 870 struct csrow_info **csrows = mci->csrows; 871 int row, i, j, n; 872 873 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page); 874 row = -1; 875 876 for (i = 0; i < mci->nr_csrows; i++) { 877 struct csrow_info *csrow = csrows[i]; 878 n = 0; 879 for (j = 0; j < csrow->nr_channels; j++) { 880 struct dimm_info *dimm = csrow->channels[j]->dimm; 881 n += dimm->nr_pages; 882 } 883 if (n == 0) 884 continue; 885 886 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n", 887 mci->mc_idx, 888 csrow->first_page, page, csrow->last_page, 889 csrow->page_mask); 890 891 if ((page >= csrow->first_page) && 892 (page <= csrow->last_page) && 893 ((page & csrow->page_mask) == 894 (csrow->first_page & csrow->page_mask))) { 895 row = i; 896 break; 897 } 898 } 899 900 if (row == -1) 901 edac_mc_printk(mci, KERN_ERR, 902 "could not look up page error address %lx\n", 903 (unsigned long)page); 904 905 return row; 906 } 907 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page); 908 909 const char *edac_layer_name[] = { 910 [EDAC_MC_LAYER_BRANCH] = "branch", 911 [EDAC_MC_LAYER_CHANNEL] = "channel", 912 [EDAC_MC_LAYER_SLOT] = "slot", 913 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow", 914 [EDAC_MC_LAYER_ALL_MEM] = "memory", 915 }; 916 EXPORT_SYMBOL_GPL(edac_layer_name); 917 918 static void edac_inc_ce_error(struct mem_ctl_info *mci, 919 bool enable_per_layer_report, 920 const int pos[EDAC_MAX_LAYERS], 921 const u16 count) 922 { 923 int i, index = 0; 924 925 mci->ce_mc += count; 926 927 if (!enable_per_layer_report) { 928 mci->ce_noinfo_count += count; 929 return; 930 } 931 932 for (i = 0; i < mci->n_layers; i++) { 933 if (pos[i] < 0) 934 break; 935 index += pos[i]; 936 mci->ce_per_layer[i][index] += count; 937 938 if (i < mci->n_layers - 1) 939 index *= mci->layers[i + 1].size; 940 } 941 } 942 943 static void edac_inc_ue_error(struct mem_ctl_info *mci, 944 bool enable_per_layer_report, 945 const int pos[EDAC_MAX_LAYERS], 946 const u16 count) 947 { 948 int i, index = 0; 949 950 mci->ue_mc += count; 951 952 if (!enable_per_layer_report) { 953 mci->ue_noinfo_count += count; 954 return; 955 } 956 957 for (i = 0; i < mci->n_layers; i++) { 958 if (pos[i] < 0) 959 break; 960 index += pos[i]; 961 mci->ue_per_layer[i][index] += count; 962 963 if (i < mci->n_layers - 1) 964 index *= mci->layers[i + 1].size; 965 } 966 } 967 968 static void edac_ce_error(struct mem_ctl_info *mci, 969 const u16 error_count, 970 const int pos[EDAC_MAX_LAYERS], 971 const char *msg, 972 const char *location, 973 const char *label, 974 const char *detail, 975 const char *other_detail, 976 const bool enable_per_layer_report, 977 const unsigned long page_frame_number, 978 const unsigned long offset_in_page, 979 long grain) 980 { 981 unsigned long remapped_page; 982 char *msg_aux = ""; 983 984 if (*msg) 985 msg_aux = " "; 986 987 if (edac_mc_get_log_ce()) { 988 if (other_detail && *other_detail) 989 edac_mc_printk(mci, KERN_WARNING, 990 "%d CE %s%son %s (%s %s - %s)\n", 991 error_count, msg, msg_aux, label, 992 location, detail, other_detail); 993 else 994 edac_mc_printk(mci, KERN_WARNING, 995 "%d CE %s%son %s (%s %s)\n", 996 error_count, msg, msg_aux, label, 997 location, detail); 998 } 999 edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count); 1000 1001 if (mci->scrub_mode == SCRUB_SW_SRC) { 1002 /* 1003 * Some memory controllers (called MCs below) can remap 1004 * memory so that it is still available at a different 1005 * address when PCI devices map into memory. 1006 * MC's that can't do this, lose the memory where PCI 1007 * devices are mapped. This mapping is MC-dependent 1008 * and so we call back into the MC driver for it to 1009 * map the MC page to a physical (CPU) page which can 1010 * then be mapped to a virtual page - which can then 1011 * be scrubbed. 1012 */ 1013 remapped_page = mci->ctl_page_to_phys ? 1014 mci->ctl_page_to_phys(mci, page_frame_number) : 1015 page_frame_number; 1016 1017 edac_mc_scrub_block(remapped_page, 1018 offset_in_page, grain); 1019 } 1020 } 1021 1022 static void edac_ue_error(struct mem_ctl_info *mci, 1023 const u16 error_count, 1024 const int pos[EDAC_MAX_LAYERS], 1025 const char *msg, 1026 const char *location, 1027 const char *label, 1028 const char *detail, 1029 const char *other_detail, 1030 const bool enable_per_layer_report) 1031 { 1032 char *msg_aux = ""; 1033 1034 if (*msg) 1035 msg_aux = " "; 1036 1037 if (edac_mc_get_log_ue()) { 1038 if (other_detail && *other_detail) 1039 edac_mc_printk(mci, KERN_WARNING, 1040 "%d UE %s%son %s (%s %s - %s)\n", 1041 error_count, msg, msg_aux, label, 1042 location, detail, other_detail); 1043 else 1044 edac_mc_printk(mci, KERN_WARNING, 1045 "%d UE %s%son %s (%s %s)\n", 1046 error_count, msg, msg_aux, label, 1047 location, detail); 1048 } 1049 1050 if (edac_mc_get_panic_on_ue()) { 1051 if (other_detail && *other_detail) 1052 panic("UE %s%son %s (%s%s - %s)\n", 1053 msg, msg_aux, label, location, detail, other_detail); 1054 else 1055 panic("UE %s%son %s (%s%s)\n", 1056 msg, msg_aux, label, location, detail); 1057 } 1058 1059 edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count); 1060 } 1061 1062 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type, 1063 struct mem_ctl_info *mci, 1064 struct edac_raw_error_desc *e) 1065 { 1066 char detail[80]; 1067 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer }; 1068 1069 /* Memory type dependent details about the error */ 1070 if (type == HW_EVENT_ERR_CORRECTED) { 1071 snprintf(detail, sizeof(detail), 1072 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx", 1073 e->page_frame_number, e->offset_in_page, 1074 e->grain, e->syndrome); 1075 edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label, 1076 detail, e->other_detail, e->enable_per_layer_report, 1077 e->page_frame_number, e->offset_in_page, e->grain); 1078 } else { 1079 snprintf(detail, sizeof(detail), 1080 "page:0x%lx offset:0x%lx grain:%ld", 1081 e->page_frame_number, e->offset_in_page, e->grain); 1082 1083 edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label, 1084 detail, e->other_detail, e->enable_per_layer_report); 1085 } 1086 1087 1088 } 1089 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error); 1090 1091 void edac_mc_handle_error(const enum hw_event_mc_err_type type, 1092 struct mem_ctl_info *mci, 1093 const u16 error_count, 1094 const unsigned long page_frame_number, 1095 const unsigned long offset_in_page, 1096 const unsigned long syndrome, 1097 const int top_layer, 1098 const int mid_layer, 1099 const int low_layer, 1100 const char *msg, 1101 const char *other_detail) 1102 { 1103 char *p; 1104 int row = -1, chan = -1; 1105 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer }; 1106 int i, n_labels = 0; 1107 u8 grain_bits; 1108 struct edac_raw_error_desc *e = &mci->error_desc; 1109 1110 edac_dbg(3, "MC%d\n", mci->mc_idx); 1111 1112 /* Fills the error report buffer */ 1113 memset(e, 0, sizeof (*e)); 1114 e->error_count = error_count; 1115 e->top_layer = top_layer; 1116 e->mid_layer = mid_layer; 1117 e->low_layer = low_layer; 1118 e->page_frame_number = page_frame_number; 1119 e->offset_in_page = offset_in_page; 1120 e->syndrome = syndrome; 1121 e->msg = msg; 1122 e->other_detail = other_detail; 1123 1124 /* 1125 * Check if the event report is consistent and if the memory 1126 * location is known. If it is known, enable_per_layer_report will be 1127 * true, the DIMM(s) label info will be filled and the per-layer 1128 * error counters will be incremented. 1129 */ 1130 for (i = 0; i < mci->n_layers; i++) { 1131 if (pos[i] >= (int)mci->layers[i].size) { 1132 1133 edac_mc_printk(mci, KERN_ERR, 1134 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n", 1135 edac_layer_name[mci->layers[i].type], 1136 pos[i], mci->layers[i].size); 1137 /* 1138 * Instead of just returning it, let's use what's 1139 * known about the error. The increment routines and 1140 * the DIMM filter logic will do the right thing by 1141 * pointing the likely damaged DIMMs. 1142 */ 1143 pos[i] = -1; 1144 } 1145 if (pos[i] >= 0) 1146 e->enable_per_layer_report = true; 1147 } 1148 1149 /* 1150 * Get the dimm label/grain that applies to the match criteria. 1151 * As the error algorithm may not be able to point to just one memory 1152 * stick, the logic here will get all possible labels that could 1153 * pottentially be affected by the error. 1154 * On FB-DIMM memory controllers, for uncorrected errors, it is common 1155 * to have only the MC channel and the MC dimm (also called "branch") 1156 * but the channel is not known, as the memory is arranged in pairs, 1157 * where each memory belongs to a separate channel within the same 1158 * branch. 1159 */ 1160 p = e->label; 1161 *p = '\0'; 1162 1163 for (i = 0; i < mci->tot_dimms; i++) { 1164 struct dimm_info *dimm = mci->dimms[i]; 1165 1166 if (top_layer >= 0 && top_layer != dimm->location[0]) 1167 continue; 1168 if (mid_layer >= 0 && mid_layer != dimm->location[1]) 1169 continue; 1170 if (low_layer >= 0 && low_layer != dimm->location[2]) 1171 continue; 1172 1173 /* get the max grain, over the error match range */ 1174 if (dimm->grain > e->grain) 1175 e->grain = dimm->grain; 1176 1177 /* 1178 * If the error is memory-controller wide, there's no need to 1179 * seek for the affected DIMMs because the whole 1180 * channel/memory controller/... may be affected. 1181 * Also, don't show errors for empty DIMM slots. 1182 */ 1183 if (e->enable_per_layer_report && dimm->nr_pages) { 1184 if (n_labels >= EDAC_MAX_LABELS) { 1185 e->enable_per_layer_report = false; 1186 break; 1187 } 1188 n_labels++; 1189 if (p != e->label) { 1190 strcpy(p, OTHER_LABEL); 1191 p += strlen(OTHER_LABEL); 1192 } 1193 strcpy(p, dimm->label); 1194 p += strlen(p); 1195 *p = '\0'; 1196 1197 /* 1198 * get csrow/channel of the DIMM, in order to allow 1199 * incrementing the compat API counters 1200 */ 1201 edac_dbg(4, "%s csrows map: (%d,%d)\n", 1202 mci->csbased ? "rank" : "dimm", 1203 dimm->csrow, dimm->cschannel); 1204 if (row == -1) 1205 row = dimm->csrow; 1206 else if (row >= 0 && row != dimm->csrow) 1207 row = -2; 1208 1209 if (chan == -1) 1210 chan = dimm->cschannel; 1211 else if (chan >= 0 && chan != dimm->cschannel) 1212 chan = -2; 1213 } 1214 } 1215 1216 if (!e->enable_per_layer_report) { 1217 strcpy(e->label, "any memory"); 1218 } else { 1219 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan); 1220 if (p == e->label) 1221 strcpy(e->label, "unknown memory"); 1222 if (type == HW_EVENT_ERR_CORRECTED) { 1223 if (row >= 0) { 1224 mci->csrows[row]->ce_count += error_count; 1225 if (chan >= 0) 1226 mci->csrows[row]->channels[chan]->ce_count += error_count; 1227 } 1228 } else 1229 if (row >= 0) 1230 mci->csrows[row]->ue_count += error_count; 1231 } 1232 1233 /* Fill the RAM location data */ 1234 p = e->location; 1235 1236 for (i = 0; i < mci->n_layers; i++) { 1237 if (pos[i] < 0) 1238 continue; 1239 1240 p += sprintf(p, "%s:%d ", 1241 edac_layer_name[mci->layers[i].type], 1242 pos[i]); 1243 } 1244 if (p > e->location) 1245 *(p - 1) = '\0'; 1246 1247 /* Report the error via the trace interface */ 1248 grain_bits = fls_long(e->grain) + 1; 1249 1250 if (IS_ENABLED(CONFIG_RAS)) 1251 trace_mc_event(type, e->msg, e->label, e->error_count, 1252 mci->mc_idx, e->top_layer, e->mid_layer, 1253 e->low_layer, 1254 (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page, 1255 grain_bits, e->syndrome, e->other_detail); 1256 1257 edac_raw_mc_handle_error(type, mci, e); 1258 } 1259 EXPORT_SYMBOL_GPL(edac_mc_handle_error); 1260