1 /* 2 * edac_mc kernel module 3 * (C) 2005, 2006 Linux Networx (http://lnxi.com) 4 * This file may be distributed under the terms of the 5 * GNU General Public License. 6 * 7 * Written by Thayne Harbaugh 8 * Based on work by Dan Hollis <goemon at anime dot net> and others. 9 * http://www.anime.net/~goemon/linux-ecc/ 10 * 11 * Modified by Dave Peterson and Doug Thompson 12 * 13 */ 14 15 #include <linux/module.h> 16 #include <linux/proc_fs.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/smp.h> 20 #include <linux/init.h> 21 #include <linux/sysctl.h> 22 #include <linux/highmem.h> 23 #include <linux/timer.h> 24 #include <linux/slab.h> 25 #include <linux/jiffies.h> 26 #include <linux/spinlock.h> 27 #include <linux/list.h> 28 #include <linux/sysdev.h> 29 #include <linux/ctype.h> 30 #include <linux/edac.h> 31 #include <asm/uaccess.h> 32 #include <asm/page.h> 33 #include <asm/edac.h> 34 #include "edac_core.h" 35 #include "edac_module.h" 36 37 /* lock to memory controller's control array */ 38 static DEFINE_MUTEX(mem_ctls_mutex); 39 static LIST_HEAD(mc_devices); 40 41 #ifdef CONFIG_EDAC_DEBUG 42 43 static void edac_mc_dump_channel(struct channel_info *chan) 44 { 45 debugf4("\tchannel = %p\n", chan); 46 debugf4("\tchannel->chan_idx = %d\n", chan->chan_idx); 47 debugf4("\tchannel->ce_count = %d\n", chan->ce_count); 48 debugf4("\tchannel->label = '%s'\n", chan->label); 49 debugf4("\tchannel->csrow = %p\n\n", chan->csrow); 50 } 51 52 static void edac_mc_dump_csrow(struct csrow_info *csrow) 53 { 54 debugf4("\tcsrow = %p\n", csrow); 55 debugf4("\tcsrow->csrow_idx = %d\n", csrow->csrow_idx); 56 debugf4("\tcsrow->first_page = 0x%lx\n", csrow->first_page); 57 debugf4("\tcsrow->last_page = 0x%lx\n", csrow->last_page); 58 debugf4("\tcsrow->page_mask = 0x%lx\n", csrow->page_mask); 59 debugf4("\tcsrow->nr_pages = 0x%x\n", csrow->nr_pages); 60 debugf4("\tcsrow->nr_channels = %d\n", csrow->nr_channels); 61 debugf4("\tcsrow->channels = %p\n", csrow->channels); 62 debugf4("\tcsrow->mci = %p\n\n", csrow->mci); 63 } 64 65 static void edac_mc_dump_mci(struct mem_ctl_info *mci) 66 { 67 debugf3("\tmci = %p\n", mci); 68 debugf3("\tmci->mtype_cap = %lx\n", mci->mtype_cap); 69 debugf3("\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap); 70 debugf3("\tmci->edac_cap = %lx\n", mci->edac_cap); 71 debugf4("\tmci->edac_check = %p\n", mci->edac_check); 72 debugf3("\tmci->nr_csrows = %d, csrows = %p\n", 73 mci->nr_csrows, mci->csrows); 74 debugf3("\tdev = %p\n", mci->dev); 75 debugf3("\tmod_name:ctl_name = %s:%s\n", mci->mod_name, mci->ctl_name); 76 debugf3("\tpvt_info = %p\n\n", mci->pvt_info); 77 } 78 79 #endif /* CONFIG_EDAC_DEBUG */ 80 81 /* 82 * keep those in sync with the enum mem_type 83 */ 84 const char *edac_mem_types[] = { 85 "Empty csrow", 86 "Reserved csrow type", 87 "Unknown csrow type", 88 "Fast page mode RAM", 89 "Extended data out RAM", 90 "Burst Extended data out RAM", 91 "Single data rate SDRAM", 92 "Registered single data rate SDRAM", 93 "Double data rate SDRAM", 94 "Registered Double data rate SDRAM", 95 "Rambus DRAM", 96 "Unbuffered DDR2 RAM", 97 "Fully buffered DDR2", 98 "Registered DDR2 RAM", 99 "Rambus XDR", 100 "Unbuffered DDR3 RAM", 101 "Registered DDR3 RAM", 102 }; 103 EXPORT_SYMBOL_GPL(edac_mem_types); 104 105 /* 'ptr' points to a possibly unaligned item X such that sizeof(X) is 'size'. 106 * Adjust 'ptr' so that its alignment is at least as stringent as what the 107 * compiler would provide for X and return the aligned result. 108 * 109 * If 'size' is a constant, the compiler will optimize this whole function 110 * down to either a no-op or the addition of a constant to the value of 'ptr'. 111 */ 112 void *edac_align_ptr(void *ptr, unsigned size) 113 { 114 unsigned align, r; 115 116 /* Here we assume that the alignment of a "long long" is the most 117 * stringent alignment that the compiler will ever provide by default. 118 * As far as I know, this is a reasonable assumption. 119 */ 120 if (size > sizeof(long)) 121 align = sizeof(long long); 122 else if (size > sizeof(int)) 123 align = sizeof(long); 124 else if (size > sizeof(short)) 125 align = sizeof(int); 126 else if (size > sizeof(char)) 127 align = sizeof(short); 128 else 129 return (char *)ptr; 130 131 r = size % align; 132 133 if (r == 0) 134 return (char *)ptr; 135 136 return (void *)(((unsigned long)ptr) + align - r); 137 } 138 139 /** 140 * edac_mc_alloc: Allocate a struct mem_ctl_info structure 141 * @size_pvt: size of private storage needed 142 * @nr_csrows: Number of CWROWS needed for this MC 143 * @nr_chans: Number of channels for the MC 144 * 145 * Everything is kmalloc'ed as one big chunk - more efficient. 146 * Only can be used if all structures have the same lifetime - otherwise 147 * you have to allocate and initialize your own structures. 148 * 149 * Use edac_mc_free() to free mc structures allocated by this function. 150 * 151 * Returns: 152 * NULL allocation failed 153 * struct mem_ctl_info pointer 154 */ 155 struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows, 156 unsigned nr_chans, int edac_index) 157 { 158 struct mem_ctl_info *mci; 159 struct csrow_info *csi, *csrow; 160 struct channel_info *chi, *chp, *chan; 161 void *pvt; 162 unsigned size; 163 int row, chn; 164 int err; 165 166 /* Figure out the offsets of the various items from the start of an mc 167 * structure. We want the alignment of each item to be at least as 168 * stringent as what the compiler would provide if we could simply 169 * hardcode everything into a single struct. 170 */ 171 mci = (struct mem_ctl_info *)0; 172 csi = edac_align_ptr(&mci[1], sizeof(*csi)); 173 chi = edac_align_ptr(&csi[nr_csrows], sizeof(*chi)); 174 pvt = edac_align_ptr(&chi[nr_chans * nr_csrows], sz_pvt); 175 size = ((unsigned long)pvt) + sz_pvt; 176 177 mci = kzalloc(size, GFP_KERNEL); 178 if (mci == NULL) 179 return NULL; 180 181 /* Adjust pointers so they point within the memory we just allocated 182 * rather than an imaginary chunk of memory located at address 0. 183 */ 184 csi = (struct csrow_info *)(((char *)mci) + ((unsigned long)csi)); 185 chi = (struct channel_info *)(((char *)mci) + ((unsigned long)chi)); 186 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL; 187 188 /* setup index and various internal pointers */ 189 mci->mc_idx = edac_index; 190 mci->csrows = csi; 191 mci->pvt_info = pvt; 192 mci->nr_csrows = nr_csrows; 193 194 for (row = 0; row < nr_csrows; row++) { 195 csrow = &csi[row]; 196 csrow->csrow_idx = row; 197 csrow->mci = mci; 198 csrow->nr_channels = nr_chans; 199 chp = &chi[row * nr_chans]; 200 csrow->channels = chp; 201 202 for (chn = 0; chn < nr_chans; chn++) { 203 chan = &chp[chn]; 204 chan->chan_idx = chn; 205 chan->csrow = csrow; 206 } 207 } 208 209 mci->op_state = OP_ALLOC; 210 INIT_LIST_HEAD(&mci->grp_kobj_list); 211 212 /* 213 * Initialize the 'root' kobj for the edac_mc controller 214 */ 215 err = edac_mc_register_sysfs_main_kobj(mci); 216 if (err) { 217 kfree(mci); 218 return NULL; 219 } 220 221 /* at this point, the root kobj is valid, and in order to 222 * 'free' the object, then the function: 223 * edac_mc_unregister_sysfs_main_kobj() must be called 224 * which will perform kobj unregistration and the actual free 225 * will occur during the kobject callback operation 226 */ 227 return mci; 228 } 229 EXPORT_SYMBOL_GPL(edac_mc_alloc); 230 231 /** 232 * edac_mc_free 233 * 'Free' a previously allocated 'mci' structure 234 * @mci: pointer to a struct mem_ctl_info structure 235 */ 236 void edac_mc_free(struct mem_ctl_info *mci) 237 { 238 debugf1("%s()\n", __func__); 239 240 edac_mc_unregister_sysfs_main_kobj(mci); 241 242 /* free the mci instance memory here */ 243 kfree(mci); 244 } 245 EXPORT_SYMBOL_GPL(edac_mc_free); 246 247 248 /** 249 * find_mci_by_dev 250 * 251 * scan list of controllers looking for the one that manages 252 * the 'dev' device 253 * @dev: pointer to a struct device related with the MCI 254 */ 255 struct mem_ctl_info *find_mci_by_dev(struct device *dev) 256 { 257 struct mem_ctl_info *mci; 258 struct list_head *item; 259 260 debugf3("%s()\n", __func__); 261 262 list_for_each(item, &mc_devices) { 263 mci = list_entry(item, struct mem_ctl_info, link); 264 265 if (mci->dev == dev) 266 return mci; 267 } 268 269 return NULL; 270 } 271 EXPORT_SYMBOL_GPL(find_mci_by_dev); 272 273 /* 274 * handler for EDAC to check if NMI type handler has asserted interrupt 275 */ 276 static int edac_mc_assert_error_check_and_clear(void) 277 { 278 int old_state; 279 280 if (edac_op_state == EDAC_OPSTATE_POLL) 281 return 1; 282 283 old_state = edac_err_assert; 284 edac_err_assert = 0; 285 286 return old_state; 287 } 288 289 /* 290 * edac_mc_workq_function 291 * performs the operation scheduled by a workq request 292 */ 293 static void edac_mc_workq_function(struct work_struct *work_req) 294 { 295 struct delayed_work *d_work = to_delayed_work(work_req); 296 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work); 297 298 mutex_lock(&mem_ctls_mutex); 299 300 /* if this control struct has movd to offline state, we are done */ 301 if (mci->op_state == OP_OFFLINE) { 302 mutex_unlock(&mem_ctls_mutex); 303 return; 304 } 305 306 /* Only poll controllers that are running polled and have a check */ 307 if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL)) 308 mci->edac_check(mci); 309 310 mutex_unlock(&mem_ctls_mutex); 311 312 /* Reschedule */ 313 queue_delayed_work(edac_workqueue, &mci->work, 314 msecs_to_jiffies(edac_mc_get_poll_msec())); 315 } 316 317 /* 318 * edac_mc_workq_setup 319 * initialize a workq item for this mci 320 * passing in the new delay period in msec 321 * 322 * locking model: 323 * 324 * called with the mem_ctls_mutex held 325 */ 326 static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec) 327 { 328 debugf0("%s()\n", __func__); 329 330 /* if this instance is not in the POLL state, then simply return */ 331 if (mci->op_state != OP_RUNNING_POLL) 332 return; 333 334 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function); 335 queue_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec)); 336 } 337 338 /* 339 * edac_mc_workq_teardown 340 * stop the workq processing on this mci 341 * 342 * locking model: 343 * 344 * called WITHOUT lock held 345 */ 346 static void edac_mc_workq_teardown(struct mem_ctl_info *mci) 347 { 348 int status; 349 350 if (mci->op_state != OP_RUNNING_POLL) 351 return; 352 353 status = cancel_delayed_work(&mci->work); 354 if (status == 0) { 355 debugf0("%s() not canceled, flush the queue\n", 356 __func__); 357 358 /* workq instance might be running, wait for it */ 359 flush_workqueue(edac_workqueue); 360 } 361 } 362 363 /* 364 * edac_mc_reset_delay_period(unsigned long value) 365 * 366 * user space has updated our poll period value, need to 367 * reset our workq delays 368 */ 369 void edac_mc_reset_delay_period(int value) 370 { 371 struct mem_ctl_info *mci; 372 struct list_head *item; 373 374 mutex_lock(&mem_ctls_mutex); 375 376 /* scan the list and turn off all workq timers, doing so under lock 377 */ 378 list_for_each(item, &mc_devices) { 379 mci = list_entry(item, struct mem_ctl_info, link); 380 381 if (mci->op_state == OP_RUNNING_POLL) 382 cancel_delayed_work(&mci->work); 383 } 384 385 mutex_unlock(&mem_ctls_mutex); 386 387 388 /* re-walk the list, and reset the poll delay */ 389 mutex_lock(&mem_ctls_mutex); 390 391 list_for_each(item, &mc_devices) { 392 mci = list_entry(item, struct mem_ctl_info, link); 393 394 edac_mc_workq_setup(mci, (unsigned long) value); 395 } 396 397 mutex_unlock(&mem_ctls_mutex); 398 } 399 400 401 402 /* Return 0 on success, 1 on failure. 403 * Before calling this function, caller must 404 * assign a unique value to mci->mc_idx. 405 * 406 * locking model: 407 * 408 * called with the mem_ctls_mutex lock held 409 */ 410 static int add_mc_to_global_list(struct mem_ctl_info *mci) 411 { 412 struct list_head *item, *insert_before; 413 struct mem_ctl_info *p; 414 415 insert_before = &mc_devices; 416 417 p = find_mci_by_dev(mci->dev); 418 if (unlikely(p != NULL)) 419 goto fail0; 420 421 list_for_each(item, &mc_devices) { 422 p = list_entry(item, struct mem_ctl_info, link); 423 424 if (p->mc_idx >= mci->mc_idx) { 425 if (unlikely(p->mc_idx == mci->mc_idx)) 426 goto fail1; 427 428 insert_before = item; 429 break; 430 } 431 } 432 433 list_add_tail_rcu(&mci->link, insert_before); 434 atomic_inc(&edac_handlers); 435 return 0; 436 437 fail0: 438 edac_printk(KERN_WARNING, EDAC_MC, 439 "%s (%s) %s %s already assigned %d\n", dev_name(p->dev), 440 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx); 441 return 1; 442 443 fail1: 444 edac_printk(KERN_WARNING, EDAC_MC, 445 "bug in low-level driver: attempt to assign\n" 446 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__); 447 return 1; 448 } 449 450 static void complete_mc_list_del(struct rcu_head *head) 451 { 452 struct mem_ctl_info *mci; 453 454 mci = container_of(head, struct mem_ctl_info, rcu); 455 INIT_LIST_HEAD(&mci->link); 456 } 457 458 static void del_mc_from_global_list(struct mem_ctl_info *mci) 459 { 460 atomic_dec(&edac_handlers); 461 list_del_rcu(&mci->link); 462 call_rcu(&mci->rcu, complete_mc_list_del); 463 rcu_barrier(); 464 } 465 466 /** 467 * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'. 468 * 469 * If found, return a pointer to the structure. 470 * Else return NULL. 471 * 472 * Caller must hold mem_ctls_mutex. 473 */ 474 struct mem_ctl_info *edac_mc_find(int idx) 475 { 476 struct list_head *item; 477 struct mem_ctl_info *mci; 478 479 list_for_each(item, &mc_devices) { 480 mci = list_entry(item, struct mem_ctl_info, link); 481 482 if (mci->mc_idx >= idx) { 483 if (mci->mc_idx == idx) 484 return mci; 485 486 break; 487 } 488 } 489 490 return NULL; 491 } 492 EXPORT_SYMBOL(edac_mc_find); 493 494 /** 495 * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and 496 * create sysfs entries associated with mci structure 497 * @mci: pointer to the mci structure to be added to the list 498 * @mc_idx: A unique numeric identifier to be assigned to the 'mci' structure. 499 * 500 * Return: 501 * 0 Success 502 * !0 Failure 503 */ 504 505 /* FIXME - should a warning be printed if no error detection? correction? */ 506 int edac_mc_add_mc(struct mem_ctl_info *mci) 507 { 508 debugf0("%s()\n", __func__); 509 510 #ifdef CONFIG_EDAC_DEBUG 511 if (edac_debug_level >= 3) 512 edac_mc_dump_mci(mci); 513 514 if (edac_debug_level >= 4) { 515 int i; 516 517 for (i = 0; i < mci->nr_csrows; i++) { 518 int j; 519 520 edac_mc_dump_csrow(&mci->csrows[i]); 521 for (j = 0; j < mci->csrows[i].nr_channels; j++) 522 edac_mc_dump_channel(&mci->csrows[i]. 523 channels[j]); 524 } 525 } 526 #endif 527 mutex_lock(&mem_ctls_mutex); 528 529 if (add_mc_to_global_list(mci)) 530 goto fail0; 531 532 /* set load time so that error rate can be tracked */ 533 mci->start_time = jiffies; 534 535 if (edac_create_sysfs_mci_device(mci)) { 536 edac_mc_printk(mci, KERN_WARNING, 537 "failed to create sysfs device\n"); 538 goto fail1; 539 } 540 541 /* If there IS a check routine, then we are running POLLED */ 542 if (mci->edac_check != NULL) { 543 /* This instance is NOW RUNNING */ 544 mci->op_state = OP_RUNNING_POLL; 545 546 edac_mc_workq_setup(mci, edac_mc_get_poll_msec()); 547 } else { 548 mci->op_state = OP_RUNNING_INTERRUPT; 549 } 550 551 /* Report action taken */ 552 edac_mc_printk(mci, KERN_INFO, "Giving out device to '%s' '%s':" 553 " DEV %s\n", mci->mod_name, mci->ctl_name, edac_dev_name(mci)); 554 555 mutex_unlock(&mem_ctls_mutex); 556 return 0; 557 558 fail1: 559 del_mc_from_global_list(mci); 560 561 fail0: 562 mutex_unlock(&mem_ctls_mutex); 563 return 1; 564 } 565 EXPORT_SYMBOL_GPL(edac_mc_add_mc); 566 567 /** 568 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and 569 * remove mci structure from global list 570 * @pdev: Pointer to 'struct device' representing mci structure to remove. 571 * 572 * Return pointer to removed mci structure, or NULL if device not found. 573 */ 574 struct mem_ctl_info *edac_mc_del_mc(struct device *dev) 575 { 576 struct mem_ctl_info *mci; 577 578 debugf0("%s()\n", __func__); 579 580 mutex_lock(&mem_ctls_mutex); 581 582 /* find the requested mci struct in the global list */ 583 mci = find_mci_by_dev(dev); 584 if (mci == NULL) { 585 mutex_unlock(&mem_ctls_mutex); 586 return NULL; 587 } 588 589 del_mc_from_global_list(mci); 590 mutex_unlock(&mem_ctls_mutex); 591 592 /* flush workq processes */ 593 edac_mc_workq_teardown(mci); 594 595 /* marking MCI offline */ 596 mci->op_state = OP_OFFLINE; 597 598 /* remove from sysfs */ 599 edac_remove_sysfs_mci_device(mci); 600 601 edac_printk(KERN_INFO, EDAC_MC, 602 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx, 603 mci->mod_name, mci->ctl_name, edac_dev_name(mci)); 604 605 return mci; 606 } 607 EXPORT_SYMBOL_GPL(edac_mc_del_mc); 608 609 static void edac_mc_scrub_block(unsigned long page, unsigned long offset, 610 u32 size) 611 { 612 struct page *pg; 613 void *virt_addr; 614 unsigned long flags = 0; 615 616 debugf3("%s()\n", __func__); 617 618 /* ECC error page was not in our memory. Ignore it. */ 619 if (!pfn_valid(page)) 620 return; 621 622 /* Find the actual page structure then map it and fix */ 623 pg = pfn_to_page(page); 624 625 if (PageHighMem(pg)) 626 local_irq_save(flags); 627 628 virt_addr = kmap_atomic(pg, KM_BOUNCE_READ); 629 630 /* Perform architecture specific atomic scrub operation */ 631 atomic_scrub(virt_addr + offset, size); 632 633 /* Unmap and complete */ 634 kunmap_atomic(virt_addr, KM_BOUNCE_READ); 635 636 if (PageHighMem(pg)) 637 local_irq_restore(flags); 638 } 639 640 /* FIXME - should return -1 */ 641 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page) 642 { 643 struct csrow_info *csrows = mci->csrows; 644 int row, i; 645 646 debugf1("MC%d: %s(): 0x%lx\n", mci->mc_idx, __func__, page); 647 row = -1; 648 649 for (i = 0; i < mci->nr_csrows; i++) { 650 struct csrow_info *csrow = &csrows[i]; 651 652 if (csrow->nr_pages == 0) 653 continue; 654 655 debugf3("MC%d: %s(): first(0x%lx) page(0x%lx) last(0x%lx) " 656 "mask(0x%lx)\n", mci->mc_idx, __func__, 657 csrow->first_page, page, csrow->last_page, 658 csrow->page_mask); 659 660 if ((page >= csrow->first_page) && 661 (page <= csrow->last_page) && 662 ((page & csrow->page_mask) == 663 (csrow->first_page & csrow->page_mask))) { 664 row = i; 665 break; 666 } 667 } 668 669 if (row == -1) 670 edac_mc_printk(mci, KERN_ERR, 671 "could not look up page error address %lx\n", 672 (unsigned long)page); 673 674 return row; 675 } 676 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page); 677 678 /* FIXME - setable log (warning/emerg) levels */ 679 /* FIXME - integrate with evlog: http://evlog.sourceforge.net/ */ 680 void edac_mc_handle_ce(struct mem_ctl_info *mci, 681 unsigned long page_frame_number, 682 unsigned long offset_in_page, unsigned long syndrome, 683 int row, int channel, const char *msg) 684 { 685 unsigned long remapped_page; 686 687 debugf3("MC%d: %s()\n", mci->mc_idx, __func__); 688 689 /* FIXME - maybe make panic on INTERNAL ERROR an option */ 690 if (row >= mci->nr_csrows || row < 0) { 691 /* something is wrong */ 692 edac_mc_printk(mci, KERN_ERR, 693 "INTERNAL ERROR: row out of range " 694 "(%d >= %d)\n", row, mci->nr_csrows); 695 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR"); 696 return; 697 } 698 699 if (channel >= mci->csrows[row].nr_channels || channel < 0) { 700 /* something is wrong */ 701 edac_mc_printk(mci, KERN_ERR, 702 "INTERNAL ERROR: channel out of range " 703 "(%d >= %d)\n", channel, 704 mci->csrows[row].nr_channels); 705 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR"); 706 return; 707 } 708 709 if (edac_mc_get_log_ce()) 710 /* FIXME - put in DIMM location */ 711 edac_mc_printk(mci, KERN_WARNING, 712 "CE page 0x%lx, offset 0x%lx, grain %d, syndrome " 713 "0x%lx, row %d, channel %d, label \"%s\": %s\n", 714 page_frame_number, offset_in_page, 715 mci->csrows[row].grain, syndrome, row, channel, 716 mci->csrows[row].channels[channel].label, msg); 717 718 mci->ce_count++; 719 mci->csrows[row].ce_count++; 720 mci->csrows[row].channels[channel].ce_count++; 721 722 if (mci->scrub_mode & SCRUB_SW_SRC) { 723 /* 724 * Some MC's can remap memory so that it is still available 725 * at a different address when PCI devices map into memory. 726 * MC's that can't do this lose the memory where PCI devices 727 * are mapped. This mapping is MC dependant and so we call 728 * back into the MC driver for it to map the MC page to 729 * a physical (CPU) page which can then be mapped to a virtual 730 * page - which can then be scrubbed. 731 */ 732 remapped_page = mci->ctl_page_to_phys ? 733 mci->ctl_page_to_phys(mci, page_frame_number) : 734 page_frame_number; 735 736 edac_mc_scrub_block(remapped_page, offset_in_page, 737 mci->csrows[row].grain); 738 } 739 } 740 EXPORT_SYMBOL_GPL(edac_mc_handle_ce); 741 742 void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci, const char *msg) 743 { 744 if (edac_mc_get_log_ce()) 745 edac_mc_printk(mci, KERN_WARNING, 746 "CE - no information available: %s\n", msg); 747 748 mci->ce_noinfo_count++; 749 mci->ce_count++; 750 } 751 EXPORT_SYMBOL_GPL(edac_mc_handle_ce_no_info); 752 753 void edac_mc_handle_ue(struct mem_ctl_info *mci, 754 unsigned long page_frame_number, 755 unsigned long offset_in_page, int row, const char *msg) 756 { 757 int len = EDAC_MC_LABEL_LEN * 4; 758 char labels[len + 1]; 759 char *pos = labels; 760 int chan; 761 int chars; 762 763 debugf3("MC%d: %s()\n", mci->mc_idx, __func__); 764 765 /* FIXME - maybe make panic on INTERNAL ERROR an option */ 766 if (row >= mci->nr_csrows || row < 0) { 767 /* something is wrong */ 768 edac_mc_printk(mci, KERN_ERR, 769 "INTERNAL ERROR: row out of range " 770 "(%d >= %d)\n", row, mci->nr_csrows); 771 edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR"); 772 return; 773 } 774 775 chars = snprintf(pos, len + 1, "%s", 776 mci->csrows[row].channels[0].label); 777 len -= chars; 778 pos += chars; 779 780 for (chan = 1; (chan < mci->csrows[row].nr_channels) && (len > 0); 781 chan++) { 782 chars = snprintf(pos, len + 1, ":%s", 783 mci->csrows[row].channels[chan].label); 784 len -= chars; 785 pos += chars; 786 } 787 788 if (edac_mc_get_log_ue()) 789 edac_mc_printk(mci, KERN_EMERG, 790 "UE page 0x%lx, offset 0x%lx, grain %d, row %d, " 791 "labels \"%s\": %s\n", page_frame_number, 792 offset_in_page, mci->csrows[row].grain, row, 793 labels, msg); 794 795 if (edac_mc_get_panic_on_ue()) 796 panic("EDAC MC%d: UE page 0x%lx, offset 0x%lx, grain %d, " 797 "row %d, labels \"%s\": %s\n", mci->mc_idx, 798 page_frame_number, offset_in_page, 799 mci->csrows[row].grain, row, labels, msg); 800 801 mci->ue_count++; 802 mci->csrows[row].ue_count++; 803 } 804 EXPORT_SYMBOL_GPL(edac_mc_handle_ue); 805 806 void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci, const char *msg) 807 { 808 if (edac_mc_get_panic_on_ue()) 809 panic("EDAC MC%d: Uncorrected Error", mci->mc_idx); 810 811 if (edac_mc_get_log_ue()) 812 edac_mc_printk(mci, KERN_WARNING, 813 "UE - no information available: %s\n", msg); 814 mci->ue_noinfo_count++; 815 mci->ue_count++; 816 } 817 EXPORT_SYMBOL_GPL(edac_mc_handle_ue_no_info); 818 819 /************************************************************* 820 * On Fully Buffered DIMM modules, this help function is 821 * called to process UE events 822 */ 823 void edac_mc_handle_fbd_ue(struct mem_ctl_info *mci, 824 unsigned int csrow, 825 unsigned int channela, 826 unsigned int channelb, char *msg) 827 { 828 int len = EDAC_MC_LABEL_LEN * 4; 829 char labels[len + 1]; 830 char *pos = labels; 831 int chars; 832 833 if (csrow >= mci->nr_csrows) { 834 /* something is wrong */ 835 edac_mc_printk(mci, KERN_ERR, 836 "INTERNAL ERROR: row out of range (%d >= %d)\n", 837 csrow, mci->nr_csrows); 838 edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR"); 839 return; 840 } 841 842 if (channela >= mci->csrows[csrow].nr_channels) { 843 /* something is wrong */ 844 edac_mc_printk(mci, KERN_ERR, 845 "INTERNAL ERROR: channel-a out of range " 846 "(%d >= %d)\n", 847 channela, mci->csrows[csrow].nr_channels); 848 edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR"); 849 return; 850 } 851 852 if (channelb >= mci->csrows[csrow].nr_channels) { 853 /* something is wrong */ 854 edac_mc_printk(mci, KERN_ERR, 855 "INTERNAL ERROR: channel-b out of range " 856 "(%d >= %d)\n", 857 channelb, mci->csrows[csrow].nr_channels); 858 edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR"); 859 return; 860 } 861 862 mci->ue_count++; 863 mci->csrows[csrow].ue_count++; 864 865 /* Generate the DIMM labels from the specified channels */ 866 chars = snprintf(pos, len + 1, "%s", 867 mci->csrows[csrow].channels[channela].label); 868 len -= chars; 869 pos += chars; 870 chars = snprintf(pos, len + 1, "-%s", 871 mci->csrows[csrow].channels[channelb].label); 872 873 if (edac_mc_get_log_ue()) 874 edac_mc_printk(mci, KERN_EMERG, 875 "UE row %d, channel-a= %d channel-b= %d " 876 "labels \"%s\": %s\n", csrow, channela, channelb, 877 labels, msg); 878 879 if (edac_mc_get_panic_on_ue()) 880 panic("UE row %d, channel-a= %d channel-b= %d " 881 "labels \"%s\": %s\n", csrow, channela, 882 channelb, labels, msg); 883 } 884 EXPORT_SYMBOL(edac_mc_handle_fbd_ue); 885 886 /************************************************************* 887 * On Fully Buffered DIMM modules, this help function is 888 * called to process CE events 889 */ 890 void edac_mc_handle_fbd_ce(struct mem_ctl_info *mci, 891 unsigned int csrow, unsigned int channel, char *msg) 892 { 893 894 /* Ensure boundary values */ 895 if (csrow >= mci->nr_csrows) { 896 /* something is wrong */ 897 edac_mc_printk(mci, KERN_ERR, 898 "INTERNAL ERROR: row out of range (%d >= %d)\n", 899 csrow, mci->nr_csrows); 900 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR"); 901 return; 902 } 903 if (channel >= mci->csrows[csrow].nr_channels) { 904 /* something is wrong */ 905 edac_mc_printk(mci, KERN_ERR, 906 "INTERNAL ERROR: channel out of range (%d >= %d)\n", 907 channel, mci->csrows[csrow].nr_channels); 908 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR"); 909 return; 910 } 911 912 if (edac_mc_get_log_ce()) 913 /* FIXME - put in DIMM location */ 914 edac_mc_printk(mci, KERN_WARNING, 915 "CE row %d, channel %d, label \"%s\": %s\n", 916 csrow, channel, 917 mci->csrows[csrow].channels[channel].label, msg); 918 919 mci->ce_count++; 920 mci->csrows[csrow].ce_count++; 921 mci->csrows[csrow].channels[channel].ce_count++; 922 } 923 EXPORT_SYMBOL(edac_mc_handle_fbd_ce); 924