1 /* 2 * edac_mc kernel module 3 * (C) 2005, 2006 Linux Networx (http://lnxi.com) 4 * This file may be distributed under the terms of the 5 * GNU General Public License. 6 * 7 * Written by Thayne Harbaugh 8 * Based on work by Dan Hollis <goemon at anime dot net> and others. 9 * http://www.anime.net/~goemon/linux-ecc/ 10 * 11 * Modified by Dave Peterson and Doug Thompson 12 * 13 */ 14 15 #include <linux/module.h> 16 #include <linux/proc_fs.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/smp.h> 20 #include <linux/init.h> 21 #include <linux/sysctl.h> 22 #include <linux/highmem.h> 23 #include <linux/timer.h> 24 #include <linux/slab.h> 25 #include <linux/jiffies.h> 26 #include <linux/spinlock.h> 27 #include <linux/list.h> 28 #include <linux/ctype.h> 29 #include <linux/edac.h> 30 #include <linux/bitops.h> 31 #include <linux/uaccess.h> 32 #include <asm/page.h> 33 #include "edac_mc.h" 34 #include "edac_module.h" 35 #include <ras/ras_event.h> 36 37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB 38 #include <asm/edac.h> 39 #else 40 #define edac_atomic_scrub(va, size) do { } while (0) 41 #endif 42 43 int edac_op_state = EDAC_OPSTATE_INVAL; 44 EXPORT_SYMBOL_GPL(edac_op_state); 45 46 static int edac_report = EDAC_REPORTING_ENABLED; 47 48 /* lock to memory controller's control array */ 49 static DEFINE_MUTEX(mem_ctls_mutex); 50 static LIST_HEAD(mc_devices); 51 52 /* 53 * Used to lock EDAC MC to just one module, avoiding two drivers e. g. 54 * apei/ghes and i7core_edac to be used at the same time. 55 */ 56 static const char *edac_mc_owner; 57 58 int edac_get_report_status(void) 59 { 60 return edac_report; 61 } 62 EXPORT_SYMBOL_GPL(edac_get_report_status); 63 64 void edac_set_report_status(int new) 65 { 66 if (new == EDAC_REPORTING_ENABLED || 67 new == EDAC_REPORTING_DISABLED || 68 new == EDAC_REPORTING_FORCE) 69 edac_report = new; 70 } 71 EXPORT_SYMBOL_GPL(edac_set_report_status); 72 73 static int edac_report_set(const char *str, const struct kernel_param *kp) 74 { 75 if (!str) 76 return -EINVAL; 77 78 if (!strncmp(str, "on", 2)) 79 edac_report = EDAC_REPORTING_ENABLED; 80 else if (!strncmp(str, "off", 3)) 81 edac_report = EDAC_REPORTING_DISABLED; 82 else if (!strncmp(str, "force", 5)) 83 edac_report = EDAC_REPORTING_FORCE; 84 85 return 0; 86 } 87 88 static int edac_report_get(char *buffer, const struct kernel_param *kp) 89 { 90 int ret = 0; 91 92 switch (edac_report) { 93 case EDAC_REPORTING_ENABLED: 94 ret = sprintf(buffer, "on"); 95 break; 96 case EDAC_REPORTING_DISABLED: 97 ret = sprintf(buffer, "off"); 98 break; 99 case EDAC_REPORTING_FORCE: 100 ret = sprintf(buffer, "force"); 101 break; 102 default: 103 ret = -EINVAL; 104 break; 105 } 106 107 return ret; 108 } 109 110 static const struct kernel_param_ops edac_report_ops = { 111 .set = edac_report_set, 112 .get = edac_report_get, 113 }; 114 115 module_param_cb(edac_report, &edac_report_ops, &edac_report, 0644); 116 117 unsigned int edac_dimm_info_location(struct dimm_info *dimm, char *buf, 118 unsigned int len) 119 { 120 struct mem_ctl_info *mci = dimm->mci; 121 int i, n, count = 0; 122 char *p = buf; 123 124 for (i = 0; i < mci->n_layers; i++) { 125 n = snprintf(p, len, "%s %d ", 126 edac_layer_name[mci->layers[i].type], 127 dimm->location[i]); 128 p += n; 129 len -= n; 130 count += n; 131 if (!len) 132 break; 133 } 134 135 return count; 136 } 137 138 #ifdef CONFIG_EDAC_DEBUG 139 140 static void edac_mc_dump_channel(struct rank_info *chan) 141 { 142 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx); 143 edac_dbg(4, " channel = %p\n", chan); 144 edac_dbg(4, " channel->csrow = %p\n", chan->csrow); 145 edac_dbg(4, " channel->dimm = %p\n", chan->dimm); 146 } 147 148 static void edac_mc_dump_dimm(struct dimm_info *dimm) 149 { 150 char location[80]; 151 152 if (!dimm->nr_pages) 153 return; 154 155 edac_dimm_info_location(dimm, location, sizeof(location)); 156 157 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n", 158 dimm->mci->csbased ? "rank" : "dimm", 159 dimm->idx, location, dimm->csrow, dimm->cschannel); 160 edac_dbg(4, " dimm = %p\n", dimm); 161 edac_dbg(4, " dimm->label = '%s'\n", dimm->label); 162 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); 163 edac_dbg(4, " dimm->grain = %d\n", dimm->grain); 164 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); 165 } 166 167 static void edac_mc_dump_csrow(struct csrow_info *csrow) 168 { 169 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx); 170 edac_dbg(4, " csrow = %p\n", csrow); 171 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page); 172 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page); 173 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask); 174 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels); 175 edac_dbg(4, " csrow->channels = %p\n", csrow->channels); 176 edac_dbg(4, " csrow->mci = %p\n", csrow->mci); 177 } 178 179 static void edac_mc_dump_mci(struct mem_ctl_info *mci) 180 { 181 edac_dbg(3, "\tmci = %p\n", mci); 182 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap); 183 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap); 184 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap); 185 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check); 186 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n", 187 mci->nr_csrows, mci->csrows); 188 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n", 189 mci->tot_dimms, mci->dimms); 190 edac_dbg(3, "\tdev = %p\n", mci->pdev); 191 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n", 192 mci->mod_name, mci->ctl_name); 193 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info); 194 } 195 196 #endif /* CONFIG_EDAC_DEBUG */ 197 198 const char * const edac_mem_types[] = { 199 [MEM_EMPTY] = "Empty", 200 [MEM_RESERVED] = "Reserved", 201 [MEM_UNKNOWN] = "Unknown", 202 [MEM_FPM] = "FPM", 203 [MEM_EDO] = "EDO", 204 [MEM_BEDO] = "BEDO", 205 [MEM_SDR] = "Unbuffered-SDR", 206 [MEM_RDR] = "Registered-SDR", 207 [MEM_DDR] = "Unbuffered-DDR", 208 [MEM_RDDR] = "Registered-DDR", 209 [MEM_RMBS] = "RMBS", 210 [MEM_DDR2] = "Unbuffered-DDR2", 211 [MEM_FB_DDR2] = "FullyBuffered-DDR2", 212 [MEM_RDDR2] = "Registered-DDR2", 213 [MEM_XDR] = "XDR", 214 [MEM_DDR3] = "Unbuffered-DDR3", 215 [MEM_RDDR3] = "Registered-DDR3", 216 [MEM_LRDDR3] = "Load-Reduced-DDR3-RAM", 217 [MEM_DDR4] = "Unbuffered-DDR4", 218 [MEM_RDDR4] = "Registered-DDR4", 219 [MEM_LRDDR4] = "Load-Reduced-DDR4-RAM", 220 [MEM_NVDIMM] = "Non-volatile-RAM", 221 }; 222 EXPORT_SYMBOL_GPL(edac_mem_types); 223 224 /** 225 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation 226 * @p: pointer to a pointer with the memory offset to be used. At 227 * return, this will be incremented to point to the next offset 228 * @size: Size of the data structure to be reserved 229 * @n_elems: Number of elements that should be reserved 230 * 231 * If 'size' is a constant, the compiler will optimize this whole function 232 * down to either a no-op or the addition of a constant to the value of '*p'. 233 * 234 * The 'p' pointer is absolutely needed to keep the proper advancing 235 * further in memory to the proper offsets when allocating the struct along 236 * with its embedded structs, as edac_device_alloc_ctl_info() does it 237 * above, for example. 238 * 239 * At return, the pointer 'p' will be incremented to be used on a next call 240 * to this function. 241 */ 242 void *edac_align_ptr(void **p, unsigned int size, int n_elems) 243 { 244 unsigned int align, r; 245 void *ptr = *p; 246 247 *p += size * n_elems; 248 249 /* 250 * 'p' can possibly be an unaligned item X such that sizeof(X) is 251 * 'size'. Adjust 'p' so that its alignment is at least as 252 * stringent as what the compiler would provide for X and return 253 * the aligned result. 254 * Here we assume that the alignment of a "long long" is the most 255 * stringent alignment that the compiler will ever provide by default. 256 * As far as I know, this is a reasonable assumption. 257 */ 258 if (size > sizeof(long)) 259 align = sizeof(long long); 260 else if (size > sizeof(int)) 261 align = sizeof(long); 262 else if (size > sizeof(short)) 263 align = sizeof(int); 264 else if (size > sizeof(char)) 265 align = sizeof(short); 266 else 267 return (char *)ptr; 268 269 r = (unsigned long)p % align; 270 271 if (r == 0) 272 return (char *)ptr; 273 274 *p += align - r; 275 276 return (void *)(((unsigned long)ptr) + align - r); 277 } 278 279 static void _edac_mc_free(struct mem_ctl_info *mci) 280 { 281 struct csrow_info *csr; 282 int i, chn, row; 283 284 if (mci->dimms) { 285 for (i = 0; i < mci->tot_dimms; i++) 286 kfree(mci->dimms[i]); 287 kfree(mci->dimms); 288 } 289 290 if (mci->csrows) { 291 for (row = 0; row < mci->nr_csrows; row++) { 292 csr = mci->csrows[row]; 293 if (!csr) 294 continue; 295 296 if (csr->channels) { 297 for (chn = 0; chn < mci->num_cschannel; chn++) 298 kfree(csr->channels[chn]); 299 kfree(csr->channels); 300 } 301 kfree(csr); 302 } 303 kfree(mci->csrows); 304 } 305 kfree(mci); 306 } 307 308 struct mem_ctl_info *edac_mc_alloc(unsigned int mc_num, 309 unsigned int n_layers, 310 struct edac_mc_layer *layers, 311 unsigned int sz_pvt) 312 { 313 struct mem_ctl_info *mci; 314 struct edac_mc_layer *layer; 315 struct csrow_info *csr; 316 struct rank_info *chan; 317 struct dimm_info *dimm; 318 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS]; 319 unsigned int pos[EDAC_MAX_LAYERS]; 320 unsigned int idx, size, tot_dimms = 1, count = 1; 321 unsigned int tot_csrows = 1, tot_channels = 1, tot_errcount = 0; 322 void *pvt, *p, *ptr = NULL; 323 int i, j, row, chn, n, len; 324 bool per_rank = false; 325 326 if (WARN_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0)) 327 return NULL; 328 329 /* 330 * Calculate the total amount of dimms and csrows/cschannels while 331 * in the old API emulation mode 332 */ 333 for (idx = 0; idx < n_layers; idx++) { 334 tot_dimms *= layers[idx].size; 335 336 if (layers[idx].is_virt_csrow) 337 tot_csrows *= layers[idx].size; 338 else 339 tot_channels *= layers[idx].size; 340 341 if (layers[idx].type == EDAC_MC_LAYER_CHIP_SELECT) 342 per_rank = true; 343 } 344 345 /* Figure out the offsets of the various items from the start of an mc 346 * structure. We want the alignment of each item to be at least as 347 * stringent as what the compiler would provide if we could simply 348 * hardcode everything into a single struct. 349 */ 350 mci = edac_align_ptr(&ptr, sizeof(*mci), 1); 351 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers); 352 for (i = 0; i < n_layers; i++) { 353 count *= layers[i].size; 354 edac_dbg(4, "errcount layer %d size %d\n", i, count); 355 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count); 356 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count); 357 tot_errcount += 2 * count; 358 } 359 360 edac_dbg(4, "allocating %d error counters\n", tot_errcount); 361 pvt = edac_align_ptr(&ptr, sz_pvt, 1); 362 size = ((unsigned long)pvt) + sz_pvt; 363 364 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n", 365 size, 366 tot_dimms, 367 per_rank ? "ranks" : "dimms", 368 tot_csrows * tot_channels); 369 370 mci = kzalloc(size, GFP_KERNEL); 371 if (mci == NULL) 372 return NULL; 373 374 /* Adjust pointers so they point within the memory we just allocated 375 * rather than an imaginary chunk of memory located at address 0. 376 */ 377 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer)); 378 for (i = 0; i < n_layers; i++) { 379 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i])); 380 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i])); 381 } 382 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL; 383 384 /* setup index and various internal pointers */ 385 mci->mc_idx = mc_num; 386 mci->tot_dimms = tot_dimms; 387 mci->pvt_info = pvt; 388 mci->n_layers = n_layers; 389 mci->layers = layer; 390 memcpy(mci->layers, layers, sizeof(*layer) * n_layers); 391 mci->nr_csrows = tot_csrows; 392 mci->num_cschannel = tot_channels; 393 mci->csbased = per_rank; 394 395 /* 396 * Alocate and fill the csrow/channels structs 397 */ 398 mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL); 399 if (!mci->csrows) 400 goto error; 401 for (row = 0; row < tot_csrows; row++) { 402 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL); 403 if (!csr) 404 goto error; 405 mci->csrows[row] = csr; 406 csr->csrow_idx = row; 407 csr->mci = mci; 408 csr->nr_channels = tot_channels; 409 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels), 410 GFP_KERNEL); 411 if (!csr->channels) 412 goto error; 413 414 for (chn = 0; chn < tot_channels; chn++) { 415 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL); 416 if (!chan) 417 goto error; 418 csr->channels[chn] = chan; 419 chan->chan_idx = chn; 420 chan->csrow = csr; 421 } 422 } 423 424 /* 425 * Allocate and fill the dimm structs 426 */ 427 mci->dimms = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL); 428 if (!mci->dimms) 429 goto error; 430 431 memset(&pos, 0, sizeof(pos)); 432 row = 0; 433 chn = 0; 434 for (idx = 0; idx < tot_dimms; idx++) { 435 chan = mci->csrows[row]->channels[chn]; 436 437 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL); 438 if (!dimm) 439 goto error; 440 mci->dimms[idx] = dimm; 441 dimm->mci = mci; 442 dimm->idx = idx; 443 444 /* 445 * Copy DIMM location and initialize it. 446 */ 447 len = sizeof(dimm->label); 448 p = dimm->label; 449 n = snprintf(p, len, "mc#%u", mc_num); 450 p += n; 451 len -= n; 452 for (j = 0; j < n_layers; j++) { 453 n = snprintf(p, len, "%s#%u", 454 edac_layer_name[layers[j].type], 455 pos[j]); 456 p += n; 457 len -= n; 458 dimm->location[j] = pos[j]; 459 460 if (len <= 0) 461 break; 462 } 463 464 /* Link it to the csrows old API data */ 465 chan->dimm = dimm; 466 dimm->csrow = row; 467 dimm->cschannel = chn; 468 469 /* Increment csrow location */ 470 if (layers[0].is_virt_csrow) { 471 chn++; 472 if (chn == tot_channels) { 473 chn = 0; 474 row++; 475 } 476 } else { 477 row++; 478 if (row == tot_csrows) { 479 row = 0; 480 chn++; 481 } 482 } 483 484 /* Increment dimm location */ 485 for (j = n_layers - 1; j >= 0; j--) { 486 pos[j]++; 487 if (pos[j] < layers[j].size) 488 break; 489 pos[j] = 0; 490 } 491 } 492 493 mci->op_state = OP_ALLOC; 494 495 return mci; 496 497 error: 498 _edac_mc_free(mci); 499 500 return NULL; 501 } 502 EXPORT_SYMBOL_GPL(edac_mc_alloc); 503 504 void edac_mc_free(struct mem_ctl_info *mci) 505 { 506 edac_dbg(1, "\n"); 507 508 /* If we're not yet registered with sysfs free only what was allocated 509 * in edac_mc_alloc(). 510 */ 511 if (!device_is_registered(&mci->dev)) { 512 _edac_mc_free(mci); 513 return; 514 } 515 516 /* the mci instance is freed here, when the sysfs object is dropped */ 517 edac_unregister_sysfs(mci); 518 } 519 EXPORT_SYMBOL_GPL(edac_mc_free); 520 521 bool edac_has_mcs(void) 522 { 523 bool ret; 524 525 mutex_lock(&mem_ctls_mutex); 526 527 ret = list_empty(&mc_devices); 528 529 mutex_unlock(&mem_ctls_mutex); 530 531 return !ret; 532 } 533 EXPORT_SYMBOL_GPL(edac_has_mcs); 534 535 /* Caller must hold mem_ctls_mutex */ 536 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev) 537 { 538 struct mem_ctl_info *mci; 539 struct list_head *item; 540 541 edac_dbg(3, "\n"); 542 543 list_for_each(item, &mc_devices) { 544 mci = list_entry(item, struct mem_ctl_info, link); 545 546 if (mci->pdev == dev) 547 return mci; 548 } 549 550 return NULL; 551 } 552 553 /** 554 * find_mci_by_dev 555 * 556 * scan list of controllers looking for the one that manages 557 * the 'dev' device 558 * @dev: pointer to a struct device related with the MCI 559 */ 560 struct mem_ctl_info *find_mci_by_dev(struct device *dev) 561 { 562 struct mem_ctl_info *ret; 563 564 mutex_lock(&mem_ctls_mutex); 565 ret = __find_mci_by_dev(dev); 566 mutex_unlock(&mem_ctls_mutex); 567 568 return ret; 569 } 570 EXPORT_SYMBOL_GPL(find_mci_by_dev); 571 572 /* 573 * edac_mc_workq_function 574 * performs the operation scheduled by a workq request 575 */ 576 static void edac_mc_workq_function(struct work_struct *work_req) 577 { 578 struct delayed_work *d_work = to_delayed_work(work_req); 579 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work); 580 581 mutex_lock(&mem_ctls_mutex); 582 583 if (mci->op_state != OP_RUNNING_POLL) { 584 mutex_unlock(&mem_ctls_mutex); 585 return; 586 } 587 588 if (edac_op_state == EDAC_OPSTATE_POLL) 589 mci->edac_check(mci); 590 591 mutex_unlock(&mem_ctls_mutex); 592 593 /* Queue ourselves again. */ 594 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec())); 595 } 596 597 /* 598 * edac_mc_reset_delay_period(unsigned long value) 599 * 600 * user space has updated our poll period value, need to 601 * reset our workq delays 602 */ 603 void edac_mc_reset_delay_period(unsigned long value) 604 { 605 struct mem_ctl_info *mci; 606 struct list_head *item; 607 608 mutex_lock(&mem_ctls_mutex); 609 610 list_for_each(item, &mc_devices) { 611 mci = list_entry(item, struct mem_ctl_info, link); 612 613 if (mci->op_state == OP_RUNNING_POLL) 614 edac_mod_work(&mci->work, value); 615 } 616 mutex_unlock(&mem_ctls_mutex); 617 } 618 619 620 621 /* Return 0 on success, 1 on failure. 622 * Before calling this function, caller must 623 * assign a unique value to mci->mc_idx. 624 * 625 * locking model: 626 * 627 * called with the mem_ctls_mutex lock held 628 */ 629 static int add_mc_to_global_list(struct mem_ctl_info *mci) 630 { 631 struct list_head *item, *insert_before; 632 struct mem_ctl_info *p; 633 634 insert_before = &mc_devices; 635 636 p = __find_mci_by_dev(mci->pdev); 637 if (unlikely(p != NULL)) 638 goto fail0; 639 640 list_for_each(item, &mc_devices) { 641 p = list_entry(item, struct mem_ctl_info, link); 642 643 if (p->mc_idx >= mci->mc_idx) { 644 if (unlikely(p->mc_idx == mci->mc_idx)) 645 goto fail1; 646 647 insert_before = item; 648 break; 649 } 650 } 651 652 list_add_tail_rcu(&mci->link, insert_before); 653 return 0; 654 655 fail0: 656 edac_printk(KERN_WARNING, EDAC_MC, 657 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev), 658 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx); 659 return 1; 660 661 fail1: 662 edac_printk(KERN_WARNING, EDAC_MC, 663 "bug in low-level driver: attempt to assign\n" 664 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__); 665 return 1; 666 } 667 668 static int del_mc_from_global_list(struct mem_ctl_info *mci) 669 { 670 list_del_rcu(&mci->link); 671 672 /* these are for safe removal of devices from global list while 673 * NMI handlers may be traversing list 674 */ 675 synchronize_rcu(); 676 INIT_LIST_HEAD(&mci->link); 677 678 return list_empty(&mc_devices); 679 } 680 681 struct mem_ctl_info *edac_mc_find(int idx) 682 { 683 struct mem_ctl_info *mci; 684 struct list_head *item; 685 686 mutex_lock(&mem_ctls_mutex); 687 688 list_for_each(item, &mc_devices) { 689 mci = list_entry(item, struct mem_ctl_info, link); 690 if (mci->mc_idx == idx) 691 goto unlock; 692 } 693 694 mci = NULL; 695 unlock: 696 mutex_unlock(&mem_ctls_mutex); 697 return mci; 698 } 699 EXPORT_SYMBOL(edac_mc_find); 700 701 const char *edac_get_owner(void) 702 { 703 return edac_mc_owner; 704 } 705 EXPORT_SYMBOL_GPL(edac_get_owner); 706 707 /* FIXME - should a warning be printed if no error detection? correction? */ 708 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci, 709 const struct attribute_group **groups) 710 { 711 int ret = -EINVAL; 712 edac_dbg(0, "\n"); 713 714 #ifdef CONFIG_EDAC_DEBUG 715 if (edac_debug_level >= 3) 716 edac_mc_dump_mci(mci); 717 718 if (edac_debug_level >= 4) { 719 struct dimm_info *dimm; 720 int i; 721 722 for (i = 0; i < mci->nr_csrows; i++) { 723 struct csrow_info *csrow = mci->csrows[i]; 724 u32 nr_pages = 0; 725 int j; 726 727 for (j = 0; j < csrow->nr_channels; j++) 728 nr_pages += csrow->channels[j]->dimm->nr_pages; 729 if (!nr_pages) 730 continue; 731 edac_mc_dump_csrow(csrow); 732 for (j = 0; j < csrow->nr_channels; j++) 733 if (csrow->channels[j]->dimm->nr_pages) 734 edac_mc_dump_channel(csrow->channels[j]); 735 } 736 737 mci_for_each_dimm(mci, dimm) 738 edac_mc_dump_dimm(dimm); 739 } 740 #endif 741 mutex_lock(&mem_ctls_mutex); 742 743 if (edac_mc_owner && edac_mc_owner != mci->mod_name) { 744 ret = -EPERM; 745 goto fail0; 746 } 747 748 if (add_mc_to_global_list(mci)) 749 goto fail0; 750 751 /* set load time so that error rate can be tracked */ 752 mci->start_time = jiffies; 753 754 mci->bus = edac_get_sysfs_subsys(); 755 756 if (edac_create_sysfs_mci_device(mci, groups)) { 757 edac_mc_printk(mci, KERN_WARNING, 758 "failed to create sysfs device\n"); 759 goto fail1; 760 } 761 762 if (mci->edac_check) { 763 mci->op_state = OP_RUNNING_POLL; 764 765 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function); 766 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec())); 767 768 } else { 769 mci->op_state = OP_RUNNING_INTERRUPT; 770 } 771 772 /* Report action taken */ 773 edac_mc_printk(mci, KERN_INFO, 774 "Giving out device to module %s controller %s: DEV %s (%s)\n", 775 mci->mod_name, mci->ctl_name, mci->dev_name, 776 edac_op_state_to_string(mci->op_state)); 777 778 edac_mc_owner = mci->mod_name; 779 780 mutex_unlock(&mem_ctls_mutex); 781 return 0; 782 783 fail1: 784 del_mc_from_global_list(mci); 785 786 fail0: 787 mutex_unlock(&mem_ctls_mutex); 788 return ret; 789 } 790 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups); 791 792 struct mem_ctl_info *edac_mc_del_mc(struct device *dev) 793 { 794 struct mem_ctl_info *mci; 795 796 edac_dbg(0, "\n"); 797 798 mutex_lock(&mem_ctls_mutex); 799 800 /* find the requested mci struct in the global list */ 801 mci = __find_mci_by_dev(dev); 802 if (mci == NULL) { 803 mutex_unlock(&mem_ctls_mutex); 804 return NULL; 805 } 806 807 /* mark MCI offline: */ 808 mci->op_state = OP_OFFLINE; 809 810 if (del_mc_from_global_list(mci)) 811 edac_mc_owner = NULL; 812 813 mutex_unlock(&mem_ctls_mutex); 814 815 if (mci->edac_check) 816 edac_stop_work(&mci->work); 817 818 /* remove from sysfs */ 819 edac_remove_sysfs_mci_device(mci); 820 821 edac_printk(KERN_INFO, EDAC_MC, 822 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx, 823 mci->mod_name, mci->ctl_name, edac_dev_name(mci)); 824 825 return mci; 826 } 827 EXPORT_SYMBOL_GPL(edac_mc_del_mc); 828 829 static void edac_mc_scrub_block(unsigned long page, unsigned long offset, 830 u32 size) 831 { 832 struct page *pg; 833 void *virt_addr; 834 unsigned long flags = 0; 835 836 edac_dbg(3, "\n"); 837 838 /* ECC error page was not in our memory. Ignore it. */ 839 if (!pfn_valid(page)) 840 return; 841 842 /* Find the actual page structure then map it and fix */ 843 pg = pfn_to_page(page); 844 845 if (PageHighMem(pg)) 846 local_irq_save(flags); 847 848 virt_addr = kmap_atomic(pg); 849 850 /* Perform architecture specific atomic scrub operation */ 851 edac_atomic_scrub(virt_addr + offset, size); 852 853 /* Unmap and complete */ 854 kunmap_atomic(virt_addr); 855 856 if (PageHighMem(pg)) 857 local_irq_restore(flags); 858 } 859 860 /* FIXME - should return -1 */ 861 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page) 862 { 863 struct csrow_info **csrows = mci->csrows; 864 int row, i, j, n; 865 866 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page); 867 row = -1; 868 869 for (i = 0; i < mci->nr_csrows; i++) { 870 struct csrow_info *csrow = csrows[i]; 871 n = 0; 872 for (j = 0; j < csrow->nr_channels; j++) { 873 struct dimm_info *dimm = csrow->channels[j]->dimm; 874 n += dimm->nr_pages; 875 } 876 if (n == 0) 877 continue; 878 879 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n", 880 mci->mc_idx, 881 csrow->first_page, page, csrow->last_page, 882 csrow->page_mask); 883 884 if ((page >= csrow->first_page) && 885 (page <= csrow->last_page) && 886 ((page & csrow->page_mask) == 887 (csrow->first_page & csrow->page_mask))) { 888 row = i; 889 break; 890 } 891 } 892 893 if (row == -1) 894 edac_mc_printk(mci, KERN_ERR, 895 "could not look up page error address %lx\n", 896 (unsigned long)page); 897 898 return row; 899 } 900 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page); 901 902 const char *edac_layer_name[] = { 903 [EDAC_MC_LAYER_BRANCH] = "branch", 904 [EDAC_MC_LAYER_CHANNEL] = "channel", 905 [EDAC_MC_LAYER_SLOT] = "slot", 906 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow", 907 [EDAC_MC_LAYER_ALL_MEM] = "memory", 908 }; 909 EXPORT_SYMBOL_GPL(edac_layer_name); 910 911 static void edac_inc_ce_error(struct mem_ctl_info *mci, 912 bool enable_per_layer_report, 913 const int pos[EDAC_MAX_LAYERS], 914 const u16 count) 915 { 916 int i, index = 0; 917 918 mci->ce_mc += count; 919 920 if (!enable_per_layer_report) { 921 mci->ce_noinfo_count += count; 922 return; 923 } 924 925 for (i = 0; i < mci->n_layers; i++) { 926 if (pos[i] < 0) 927 break; 928 index += pos[i]; 929 mci->ce_per_layer[i][index] += count; 930 931 if (i < mci->n_layers - 1) 932 index *= mci->layers[i + 1].size; 933 } 934 } 935 936 static void edac_inc_ue_error(struct mem_ctl_info *mci, 937 bool enable_per_layer_report, 938 const int pos[EDAC_MAX_LAYERS], 939 const u16 count) 940 { 941 int i, index = 0; 942 943 mci->ue_mc += count; 944 945 if (!enable_per_layer_report) { 946 mci->ue_noinfo_count += count; 947 return; 948 } 949 950 for (i = 0; i < mci->n_layers; i++) { 951 if (pos[i] < 0) 952 break; 953 index += pos[i]; 954 mci->ue_per_layer[i][index] += count; 955 956 if (i < mci->n_layers - 1) 957 index *= mci->layers[i + 1].size; 958 } 959 } 960 961 static void edac_ce_error(struct mem_ctl_info *mci, 962 const u16 error_count, 963 const int pos[EDAC_MAX_LAYERS], 964 const char *msg, 965 const char *location, 966 const char *label, 967 const char *detail, 968 const char *other_detail, 969 const bool enable_per_layer_report, 970 const unsigned long page_frame_number, 971 const unsigned long offset_in_page, 972 long grain) 973 { 974 unsigned long remapped_page; 975 char *msg_aux = ""; 976 977 if (*msg) 978 msg_aux = " "; 979 980 if (edac_mc_get_log_ce()) { 981 if (other_detail && *other_detail) 982 edac_mc_printk(mci, KERN_WARNING, 983 "%d CE %s%son %s (%s %s - %s)\n", 984 error_count, msg, msg_aux, label, 985 location, detail, other_detail); 986 else 987 edac_mc_printk(mci, KERN_WARNING, 988 "%d CE %s%son %s (%s %s)\n", 989 error_count, msg, msg_aux, label, 990 location, detail); 991 } 992 edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count); 993 994 if (mci->scrub_mode == SCRUB_SW_SRC) { 995 /* 996 * Some memory controllers (called MCs below) can remap 997 * memory so that it is still available at a different 998 * address when PCI devices map into memory. 999 * MC's that can't do this, lose the memory where PCI 1000 * devices are mapped. This mapping is MC-dependent 1001 * and so we call back into the MC driver for it to 1002 * map the MC page to a physical (CPU) page which can 1003 * then be mapped to a virtual page - which can then 1004 * be scrubbed. 1005 */ 1006 remapped_page = mci->ctl_page_to_phys ? 1007 mci->ctl_page_to_phys(mci, page_frame_number) : 1008 page_frame_number; 1009 1010 edac_mc_scrub_block(remapped_page, 1011 offset_in_page, grain); 1012 } 1013 } 1014 1015 static void edac_ue_error(struct mem_ctl_info *mci, 1016 const u16 error_count, 1017 const int pos[EDAC_MAX_LAYERS], 1018 const char *msg, 1019 const char *location, 1020 const char *label, 1021 const char *detail, 1022 const char *other_detail, 1023 const bool enable_per_layer_report) 1024 { 1025 char *msg_aux = ""; 1026 1027 if (*msg) 1028 msg_aux = " "; 1029 1030 if (edac_mc_get_log_ue()) { 1031 if (other_detail && *other_detail) 1032 edac_mc_printk(mci, KERN_WARNING, 1033 "%d UE %s%son %s (%s %s - %s)\n", 1034 error_count, msg, msg_aux, label, 1035 location, detail, other_detail); 1036 else 1037 edac_mc_printk(mci, KERN_WARNING, 1038 "%d UE %s%son %s (%s %s)\n", 1039 error_count, msg, msg_aux, label, 1040 location, detail); 1041 } 1042 1043 if (edac_mc_get_panic_on_ue()) { 1044 if (other_detail && *other_detail) 1045 panic("UE %s%son %s (%s%s - %s)\n", 1046 msg, msg_aux, label, location, detail, other_detail); 1047 else 1048 panic("UE %s%son %s (%s%s)\n", 1049 msg, msg_aux, label, location, detail); 1050 } 1051 1052 edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count); 1053 } 1054 1055 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type, 1056 struct mem_ctl_info *mci, 1057 struct edac_raw_error_desc *e) 1058 { 1059 char detail[80]; 1060 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer }; 1061 u8 grain_bits; 1062 1063 /* Sanity-check driver-supplied grain value. */ 1064 if (WARN_ON_ONCE(!e->grain)) 1065 e->grain = 1; 1066 1067 grain_bits = fls_long(e->grain - 1); 1068 1069 /* Report the error via the trace interface */ 1070 if (IS_ENABLED(CONFIG_RAS)) 1071 trace_mc_event(type, e->msg, e->label, e->error_count, 1072 mci->mc_idx, e->top_layer, e->mid_layer, 1073 e->low_layer, 1074 (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page, 1075 grain_bits, e->syndrome, e->other_detail); 1076 1077 /* Memory type dependent details about the error */ 1078 if (type == HW_EVENT_ERR_CORRECTED) { 1079 snprintf(detail, sizeof(detail), 1080 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx", 1081 e->page_frame_number, e->offset_in_page, 1082 e->grain, e->syndrome); 1083 edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label, 1084 detail, e->other_detail, e->enable_per_layer_report, 1085 e->page_frame_number, e->offset_in_page, e->grain); 1086 } else { 1087 snprintf(detail, sizeof(detail), 1088 "page:0x%lx offset:0x%lx grain:%ld", 1089 e->page_frame_number, e->offset_in_page, e->grain); 1090 1091 edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label, 1092 detail, e->other_detail, e->enable_per_layer_report); 1093 } 1094 1095 1096 } 1097 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error); 1098 1099 void edac_mc_handle_error(const enum hw_event_mc_err_type type, 1100 struct mem_ctl_info *mci, 1101 const u16 error_count, 1102 const unsigned long page_frame_number, 1103 const unsigned long offset_in_page, 1104 const unsigned long syndrome, 1105 const int top_layer, 1106 const int mid_layer, 1107 const int low_layer, 1108 const char *msg, 1109 const char *other_detail) 1110 { 1111 struct dimm_info *dimm; 1112 char *p; 1113 int row = -1, chan = -1; 1114 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer }; 1115 int i, n_labels = 0; 1116 struct edac_raw_error_desc *e = &mci->error_desc; 1117 1118 edac_dbg(3, "MC%d\n", mci->mc_idx); 1119 1120 /* Fills the error report buffer */ 1121 memset(e, 0, sizeof (*e)); 1122 e->error_count = error_count; 1123 e->top_layer = top_layer; 1124 e->mid_layer = mid_layer; 1125 e->low_layer = low_layer; 1126 e->page_frame_number = page_frame_number; 1127 e->offset_in_page = offset_in_page; 1128 e->syndrome = syndrome; 1129 e->msg = msg; 1130 e->other_detail = other_detail; 1131 1132 /* 1133 * Check if the event report is consistent and if the memory 1134 * location is known. If it is known, enable_per_layer_report will be 1135 * true, the DIMM(s) label info will be filled and the per-layer 1136 * error counters will be incremented. 1137 */ 1138 for (i = 0; i < mci->n_layers; i++) { 1139 if (pos[i] >= (int)mci->layers[i].size) { 1140 1141 edac_mc_printk(mci, KERN_ERR, 1142 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n", 1143 edac_layer_name[mci->layers[i].type], 1144 pos[i], mci->layers[i].size); 1145 /* 1146 * Instead of just returning it, let's use what's 1147 * known about the error. The increment routines and 1148 * the DIMM filter logic will do the right thing by 1149 * pointing the likely damaged DIMMs. 1150 */ 1151 pos[i] = -1; 1152 } 1153 if (pos[i] >= 0) 1154 e->enable_per_layer_report = true; 1155 } 1156 1157 /* 1158 * Get the dimm label/grain that applies to the match criteria. 1159 * As the error algorithm may not be able to point to just one memory 1160 * stick, the logic here will get all possible labels that could 1161 * pottentially be affected by the error. 1162 * On FB-DIMM memory controllers, for uncorrected errors, it is common 1163 * to have only the MC channel and the MC dimm (also called "branch") 1164 * but the channel is not known, as the memory is arranged in pairs, 1165 * where each memory belongs to a separate channel within the same 1166 * branch. 1167 */ 1168 p = e->label; 1169 *p = '\0'; 1170 1171 mci_for_each_dimm(mci, dimm) { 1172 if (top_layer >= 0 && top_layer != dimm->location[0]) 1173 continue; 1174 if (mid_layer >= 0 && mid_layer != dimm->location[1]) 1175 continue; 1176 if (low_layer >= 0 && low_layer != dimm->location[2]) 1177 continue; 1178 1179 /* get the max grain, over the error match range */ 1180 if (dimm->grain > e->grain) 1181 e->grain = dimm->grain; 1182 1183 /* 1184 * If the error is memory-controller wide, there's no need to 1185 * seek for the affected DIMMs because the whole 1186 * channel/memory controller/... may be affected. 1187 * Also, don't show errors for empty DIMM slots. 1188 */ 1189 if (!e->enable_per_layer_report || !dimm->nr_pages) 1190 continue; 1191 1192 if (n_labels >= EDAC_MAX_LABELS) { 1193 e->enable_per_layer_report = false; 1194 break; 1195 } 1196 n_labels++; 1197 if (p != e->label) { 1198 strcpy(p, OTHER_LABEL); 1199 p += strlen(OTHER_LABEL); 1200 } 1201 strcpy(p, dimm->label); 1202 p += strlen(p); 1203 1204 /* 1205 * get csrow/channel of the DIMM, in order to allow 1206 * incrementing the compat API counters 1207 */ 1208 edac_dbg(4, "%s csrows map: (%d,%d)\n", 1209 mci->csbased ? "rank" : "dimm", 1210 dimm->csrow, dimm->cschannel); 1211 if (row == -1) 1212 row = dimm->csrow; 1213 else if (row >= 0 && row != dimm->csrow) 1214 row = -2; 1215 1216 if (chan == -1) 1217 chan = dimm->cschannel; 1218 else if (chan >= 0 && chan != dimm->cschannel) 1219 chan = -2; 1220 } 1221 1222 if (!e->enable_per_layer_report) { 1223 strcpy(e->label, "any memory"); 1224 } else { 1225 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan); 1226 if (p == e->label) 1227 strcpy(e->label, "unknown memory"); 1228 if (type == HW_EVENT_ERR_CORRECTED) { 1229 if (row >= 0) { 1230 mci->csrows[row]->ce_count += error_count; 1231 if (chan >= 0) 1232 mci->csrows[row]->channels[chan]->ce_count += error_count; 1233 } 1234 } else 1235 if (row >= 0) 1236 mci->csrows[row]->ue_count += error_count; 1237 } 1238 1239 /* Fill the RAM location data */ 1240 p = e->location; 1241 1242 for (i = 0; i < mci->n_layers; i++) { 1243 if (pos[i] < 0) 1244 continue; 1245 1246 p += sprintf(p, "%s:%d ", 1247 edac_layer_name[mci->layers[i].type], 1248 pos[i]); 1249 } 1250 if (p > e->location) 1251 *(p - 1) = '\0'; 1252 1253 edac_raw_mc_handle_error(type, mci, e); 1254 } 1255 EXPORT_SYMBOL_GPL(edac_mc_handle_error); 1256