1 /* 2 * edac_mc kernel module 3 * (C) 2005, 2006 Linux Networx (http://lnxi.com) 4 * This file may be distributed under the terms of the 5 * GNU General Public License. 6 * 7 * Written by Thayne Harbaugh 8 * Based on work by Dan Hollis <goemon at anime dot net> and others. 9 * http://www.anime.net/~goemon/linux-ecc/ 10 * 11 * Modified by Dave Peterson and Doug Thompson 12 * 13 */ 14 15 #include <linux/module.h> 16 #include <linux/proc_fs.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/smp.h> 20 #include <linux/init.h> 21 #include <linux/sysctl.h> 22 #include <linux/highmem.h> 23 #include <linux/timer.h> 24 #include <linux/slab.h> 25 #include <linux/jiffies.h> 26 #include <linux/spinlock.h> 27 #include <linux/list.h> 28 #include <linux/ctype.h> 29 #include <linux/edac.h> 30 #include <linux/bitops.h> 31 #include <asm/uaccess.h> 32 #include <asm/page.h> 33 #include <asm/edac.h> 34 #include "edac_core.h" 35 #include "edac_module.h" 36 #include <ras/ras_event.h> 37 38 /* lock to memory controller's control array */ 39 static DEFINE_MUTEX(mem_ctls_mutex); 40 static LIST_HEAD(mc_devices); 41 42 /* 43 * Used to lock EDAC MC to just one module, avoiding two drivers e. g. 44 * apei/ghes and i7core_edac to be used at the same time. 45 */ 46 static void const *edac_mc_owner; 47 48 static struct bus_type mc_bus[EDAC_MAX_MCS]; 49 50 unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf, 51 unsigned len) 52 { 53 struct mem_ctl_info *mci = dimm->mci; 54 int i, n, count = 0; 55 char *p = buf; 56 57 for (i = 0; i < mci->n_layers; i++) { 58 n = snprintf(p, len, "%s %d ", 59 edac_layer_name[mci->layers[i].type], 60 dimm->location[i]); 61 p += n; 62 len -= n; 63 count += n; 64 if (!len) 65 break; 66 } 67 68 return count; 69 } 70 71 #ifdef CONFIG_EDAC_DEBUG 72 73 static void edac_mc_dump_channel(struct rank_info *chan) 74 { 75 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx); 76 edac_dbg(4, " channel = %p\n", chan); 77 edac_dbg(4, " channel->csrow = %p\n", chan->csrow); 78 edac_dbg(4, " channel->dimm = %p\n", chan->dimm); 79 } 80 81 static void edac_mc_dump_dimm(struct dimm_info *dimm, int number) 82 { 83 char location[80]; 84 85 edac_dimm_info_location(dimm, location, sizeof(location)); 86 87 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n", 88 dimm->mci->csbased ? "rank" : "dimm", 89 number, location, dimm->csrow, dimm->cschannel); 90 edac_dbg(4, " dimm = %p\n", dimm); 91 edac_dbg(4, " dimm->label = '%s'\n", dimm->label); 92 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); 93 edac_dbg(4, " dimm->grain = %d\n", dimm->grain); 94 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); 95 } 96 97 static void edac_mc_dump_csrow(struct csrow_info *csrow) 98 { 99 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx); 100 edac_dbg(4, " csrow = %p\n", csrow); 101 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page); 102 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page); 103 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask); 104 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels); 105 edac_dbg(4, " csrow->channels = %p\n", csrow->channels); 106 edac_dbg(4, " csrow->mci = %p\n", csrow->mci); 107 } 108 109 static void edac_mc_dump_mci(struct mem_ctl_info *mci) 110 { 111 edac_dbg(3, "\tmci = %p\n", mci); 112 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap); 113 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap); 114 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap); 115 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check); 116 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n", 117 mci->nr_csrows, mci->csrows); 118 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n", 119 mci->tot_dimms, mci->dimms); 120 edac_dbg(3, "\tdev = %p\n", mci->pdev); 121 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n", 122 mci->mod_name, mci->ctl_name); 123 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info); 124 } 125 126 #endif /* CONFIG_EDAC_DEBUG */ 127 128 const char * const edac_mem_types[] = { 129 [MEM_EMPTY] = "Empty csrow", 130 [MEM_RESERVED] = "Reserved csrow type", 131 [MEM_UNKNOWN] = "Unknown csrow type", 132 [MEM_FPM] = "Fast page mode RAM", 133 [MEM_EDO] = "Extended data out RAM", 134 [MEM_BEDO] = "Burst Extended data out RAM", 135 [MEM_SDR] = "Single data rate SDRAM", 136 [MEM_RDR] = "Registered single data rate SDRAM", 137 [MEM_DDR] = "Double data rate SDRAM", 138 [MEM_RDDR] = "Registered Double data rate SDRAM", 139 [MEM_RMBS] = "Rambus DRAM", 140 [MEM_DDR2] = "Unbuffered DDR2 RAM", 141 [MEM_FB_DDR2] = "Fully buffered DDR2", 142 [MEM_RDDR2] = "Registered DDR2 RAM", 143 [MEM_XDR] = "Rambus XDR", 144 [MEM_DDR3] = "Unbuffered DDR3 RAM", 145 [MEM_RDDR3] = "Registered DDR3 RAM", 146 [MEM_LRDDR3] = "Load-Reduced DDR3 RAM", 147 [MEM_DDR4] = "Unbuffered DDR4 RAM", 148 [MEM_RDDR4] = "Registered DDR4 RAM", 149 }; 150 EXPORT_SYMBOL_GPL(edac_mem_types); 151 152 /** 153 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation 154 * @p: pointer to a pointer with the memory offset to be used. At 155 * return, this will be incremented to point to the next offset 156 * @size: Size of the data structure to be reserved 157 * @n_elems: Number of elements that should be reserved 158 * 159 * If 'size' is a constant, the compiler will optimize this whole function 160 * down to either a no-op or the addition of a constant to the value of '*p'. 161 * 162 * The 'p' pointer is absolutely needed to keep the proper advancing 163 * further in memory to the proper offsets when allocating the struct along 164 * with its embedded structs, as edac_device_alloc_ctl_info() does it 165 * above, for example. 166 * 167 * At return, the pointer 'p' will be incremented to be used on a next call 168 * to this function. 169 */ 170 void *edac_align_ptr(void **p, unsigned size, int n_elems) 171 { 172 unsigned align, r; 173 void *ptr = *p; 174 175 *p += size * n_elems; 176 177 /* 178 * 'p' can possibly be an unaligned item X such that sizeof(X) is 179 * 'size'. Adjust 'p' so that its alignment is at least as 180 * stringent as what the compiler would provide for X and return 181 * the aligned result. 182 * Here we assume that the alignment of a "long long" is the most 183 * stringent alignment that the compiler will ever provide by default. 184 * As far as I know, this is a reasonable assumption. 185 */ 186 if (size > sizeof(long)) 187 align = sizeof(long long); 188 else if (size > sizeof(int)) 189 align = sizeof(long); 190 else if (size > sizeof(short)) 191 align = sizeof(int); 192 else if (size > sizeof(char)) 193 align = sizeof(short); 194 else 195 return (char *)ptr; 196 197 r = (unsigned long)p % align; 198 199 if (r == 0) 200 return (char *)ptr; 201 202 *p += align - r; 203 204 return (void *)(((unsigned long)ptr) + align - r); 205 } 206 207 static void _edac_mc_free(struct mem_ctl_info *mci) 208 { 209 int i, chn, row; 210 struct csrow_info *csr; 211 const unsigned int tot_dimms = mci->tot_dimms; 212 const unsigned int tot_channels = mci->num_cschannel; 213 const unsigned int tot_csrows = mci->nr_csrows; 214 215 if (mci->dimms) { 216 for (i = 0; i < tot_dimms; i++) 217 kfree(mci->dimms[i]); 218 kfree(mci->dimms); 219 } 220 if (mci->csrows) { 221 for (row = 0; row < tot_csrows; row++) { 222 csr = mci->csrows[row]; 223 if (csr) { 224 if (csr->channels) { 225 for (chn = 0; chn < tot_channels; chn++) 226 kfree(csr->channels[chn]); 227 kfree(csr->channels); 228 } 229 kfree(csr); 230 } 231 } 232 kfree(mci->csrows); 233 } 234 kfree(mci); 235 } 236 237 /** 238 * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure 239 * @mc_num: Memory controller number 240 * @n_layers: Number of MC hierarchy layers 241 * layers: Describes each layer as seen by the Memory Controller 242 * @size_pvt: size of private storage needed 243 * 244 * 245 * Everything is kmalloc'ed as one big chunk - more efficient. 246 * Only can be used if all structures have the same lifetime - otherwise 247 * you have to allocate and initialize your own structures. 248 * 249 * Use edac_mc_free() to free mc structures allocated by this function. 250 * 251 * NOTE: drivers handle multi-rank memories in different ways: in some 252 * drivers, one multi-rank memory stick is mapped as one entry, while, in 253 * others, a single multi-rank memory stick would be mapped into several 254 * entries. Currently, this function will allocate multiple struct dimm_info 255 * on such scenarios, as grouping the multiple ranks require drivers change. 256 * 257 * Returns: 258 * On failure: NULL 259 * On success: struct mem_ctl_info pointer 260 */ 261 struct mem_ctl_info *edac_mc_alloc(unsigned mc_num, 262 unsigned n_layers, 263 struct edac_mc_layer *layers, 264 unsigned sz_pvt) 265 { 266 struct mem_ctl_info *mci; 267 struct edac_mc_layer *layer; 268 struct csrow_info *csr; 269 struct rank_info *chan; 270 struct dimm_info *dimm; 271 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS]; 272 unsigned pos[EDAC_MAX_LAYERS]; 273 unsigned size, tot_dimms = 1, count = 1; 274 unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0; 275 void *pvt, *p, *ptr = NULL; 276 int i, j, row, chn, n, len, off; 277 bool per_rank = false; 278 279 BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0); 280 /* 281 * Calculate the total amount of dimms and csrows/cschannels while 282 * in the old API emulation mode 283 */ 284 for (i = 0; i < n_layers; i++) { 285 tot_dimms *= layers[i].size; 286 if (layers[i].is_virt_csrow) 287 tot_csrows *= layers[i].size; 288 else 289 tot_channels *= layers[i].size; 290 291 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT) 292 per_rank = true; 293 } 294 295 /* Figure out the offsets of the various items from the start of an mc 296 * structure. We want the alignment of each item to be at least as 297 * stringent as what the compiler would provide if we could simply 298 * hardcode everything into a single struct. 299 */ 300 mci = edac_align_ptr(&ptr, sizeof(*mci), 1); 301 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers); 302 for (i = 0; i < n_layers; i++) { 303 count *= layers[i].size; 304 edac_dbg(4, "errcount layer %d size %d\n", i, count); 305 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count); 306 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count); 307 tot_errcount += 2 * count; 308 } 309 310 edac_dbg(4, "allocating %d error counters\n", tot_errcount); 311 pvt = edac_align_ptr(&ptr, sz_pvt, 1); 312 size = ((unsigned long)pvt) + sz_pvt; 313 314 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n", 315 size, 316 tot_dimms, 317 per_rank ? "ranks" : "dimms", 318 tot_csrows * tot_channels); 319 320 mci = kzalloc(size, GFP_KERNEL); 321 if (mci == NULL) 322 return NULL; 323 324 /* Adjust pointers so they point within the memory we just allocated 325 * rather than an imaginary chunk of memory located at address 0. 326 */ 327 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer)); 328 for (i = 0; i < n_layers; i++) { 329 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i])); 330 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i])); 331 } 332 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL; 333 334 /* setup index and various internal pointers */ 335 mci->mc_idx = mc_num; 336 mci->tot_dimms = tot_dimms; 337 mci->pvt_info = pvt; 338 mci->n_layers = n_layers; 339 mci->layers = layer; 340 memcpy(mci->layers, layers, sizeof(*layer) * n_layers); 341 mci->nr_csrows = tot_csrows; 342 mci->num_cschannel = tot_channels; 343 mci->csbased = per_rank; 344 345 /* 346 * Alocate and fill the csrow/channels structs 347 */ 348 mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL); 349 if (!mci->csrows) 350 goto error; 351 for (row = 0; row < tot_csrows; row++) { 352 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL); 353 if (!csr) 354 goto error; 355 mci->csrows[row] = csr; 356 csr->csrow_idx = row; 357 csr->mci = mci; 358 csr->nr_channels = tot_channels; 359 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels), 360 GFP_KERNEL); 361 if (!csr->channels) 362 goto error; 363 364 for (chn = 0; chn < tot_channels; chn++) { 365 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL); 366 if (!chan) 367 goto error; 368 csr->channels[chn] = chan; 369 chan->chan_idx = chn; 370 chan->csrow = csr; 371 } 372 } 373 374 /* 375 * Allocate and fill the dimm structs 376 */ 377 mci->dimms = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL); 378 if (!mci->dimms) 379 goto error; 380 381 memset(&pos, 0, sizeof(pos)); 382 row = 0; 383 chn = 0; 384 for (i = 0; i < tot_dimms; i++) { 385 chan = mci->csrows[row]->channels[chn]; 386 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]); 387 if (off < 0 || off >= tot_dimms) { 388 edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n"); 389 goto error; 390 } 391 392 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL); 393 if (!dimm) 394 goto error; 395 mci->dimms[off] = dimm; 396 dimm->mci = mci; 397 398 /* 399 * Copy DIMM location and initialize it. 400 */ 401 len = sizeof(dimm->label); 402 p = dimm->label; 403 n = snprintf(p, len, "mc#%u", mc_num); 404 p += n; 405 len -= n; 406 for (j = 0; j < n_layers; j++) { 407 n = snprintf(p, len, "%s#%u", 408 edac_layer_name[layers[j].type], 409 pos[j]); 410 p += n; 411 len -= n; 412 dimm->location[j] = pos[j]; 413 414 if (len <= 0) 415 break; 416 } 417 418 /* Link it to the csrows old API data */ 419 chan->dimm = dimm; 420 dimm->csrow = row; 421 dimm->cschannel = chn; 422 423 /* Increment csrow location */ 424 if (layers[0].is_virt_csrow) { 425 chn++; 426 if (chn == tot_channels) { 427 chn = 0; 428 row++; 429 } 430 } else { 431 row++; 432 if (row == tot_csrows) { 433 row = 0; 434 chn++; 435 } 436 } 437 438 /* Increment dimm location */ 439 for (j = n_layers - 1; j >= 0; j--) { 440 pos[j]++; 441 if (pos[j] < layers[j].size) 442 break; 443 pos[j] = 0; 444 } 445 } 446 447 mci->op_state = OP_ALLOC; 448 449 return mci; 450 451 error: 452 _edac_mc_free(mci); 453 454 return NULL; 455 } 456 EXPORT_SYMBOL_GPL(edac_mc_alloc); 457 458 /** 459 * edac_mc_free 460 * 'Free' a previously allocated 'mci' structure 461 * @mci: pointer to a struct mem_ctl_info structure 462 */ 463 void edac_mc_free(struct mem_ctl_info *mci) 464 { 465 edac_dbg(1, "\n"); 466 467 /* If we're not yet registered with sysfs free only what was allocated 468 * in edac_mc_alloc(). 469 */ 470 if (!device_is_registered(&mci->dev)) { 471 _edac_mc_free(mci); 472 return; 473 } 474 475 /* the mci instance is freed here, when the sysfs object is dropped */ 476 edac_unregister_sysfs(mci); 477 } 478 EXPORT_SYMBOL_GPL(edac_mc_free); 479 480 481 /** 482 * find_mci_by_dev 483 * 484 * scan list of controllers looking for the one that manages 485 * the 'dev' device 486 * @dev: pointer to a struct device related with the MCI 487 */ 488 struct mem_ctl_info *find_mci_by_dev(struct device *dev) 489 { 490 struct mem_ctl_info *mci; 491 struct list_head *item; 492 493 edac_dbg(3, "\n"); 494 495 list_for_each(item, &mc_devices) { 496 mci = list_entry(item, struct mem_ctl_info, link); 497 498 if (mci->pdev == dev) 499 return mci; 500 } 501 502 return NULL; 503 } 504 EXPORT_SYMBOL_GPL(find_mci_by_dev); 505 506 /* 507 * handler for EDAC to check if NMI type handler has asserted interrupt 508 */ 509 static int edac_mc_assert_error_check_and_clear(void) 510 { 511 int old_state; 512 513 if (edac_op_state == EDAC_OPSTATE_POLL) 514 return 1; 515 516 old_state = edac_err_assert; 517 edac_err_assert = 0; 518 519 return old_state; 520 } 521 522 /* 523 * edac_mc_workq_function 524 * performs the operation scheduled by a workq request 525 */ 526 static void edac_mc_workq_function(struct work_struct *work_req) 527 { 528 struct delayed_work *d_work = to_delayed_work(work_req); 529 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work); 530 531 mutex_lock(&mem_ctls_mutex); 532 533 /* if this control struct has movd to offline state, we are done */ 534 if (mci->op_state == OP_OFFLINE) { 535 mutex_unlock(&mem_ctls_mutex); 536 return; 537 } 538 539 /* Only poll controllers that are running polled and have a check */ 540 if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL)) 541 mci->edac_check(mci); 542 543 mutex_unlock(&mem_ctls_mutex); 544 545 /* Reschedule */ 546 queue_delayed_work(edac_workqueue, &mci->work, 547 msecs_to_jiffies(edac_mc_get_poll_msec())); 548 } 549 550 /* 551 * edac_mc_workq_setup 552 * initialize a workq item for this mci 553 * passing in the new delay period in msec 554 * 555 * locking model: 556 * 557 * called with the mem_ctls_mutex held 558 */ 559 static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec, 560 bool init) 561 { 562 edac_dbg(0, "\n"); 563 564 /* if this instance is not in the POLL state, then simply return */ 565 if (mci->op_state != OP_RUNNING_POLL) 566 return; 567 568 if (init) 569 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function); 570 571 mod_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec)); 572 } 573 574 /* 575 * edac_mc_workq_teardown 576 * stop the workq processing on this mci 577 * 578 * locking model: 579 * 580 * called WITHOUT lock held 581 */ 582 static void edac_mc_workq_teardown(struct mem_ctl_info *mci) 583 { 584 int status; 585 586 if (mci->op_state != OP_RUNNING_POLL) 587 return; 588 589 status = cancel_delayed_work(&mci->work); 590 if (status == 0) { 591 edac_dbg(0, "not canceled, flush the queue\n"); 592 593 /* workq instance might be running, wait for it */ 594 flush_workqueue(edac_workqueue); 595 } 596 } 597 598 /* 599 * edac_mc_reset_delay_period(unsigned long value) 600 * 601 * user space has updated our poll period value, need to 602 * reset our workq delays 603 */ 604 void edac_mc_reset_delay_period(unsigned long value) 605 { 606 struct mem_ctl_info *mci; 607 struct list_head *item; 608 609 mutex_lock(&mem_ctls_mutex); 610 611 list_for_each(item, &mc_devices) { 612 mci = list_entry(item, struct mem_ctl_info, link); 613 614 edac_mc_workq_setup(mci, value, false); 615 } 616 617 mutex_unlock(&mem_ctls_mutex); 618 } 619 620 621 622 /* Return 0 on success, 1 on failure. 623 * Before calling this function, caller must 624 * assign a unique value to mci->mc_idx. 625 * 626 * locking model: 627 * 628 * called with the mem_ctls_mutex lock held 629 */ 630 static int add_mc_to_global_list(struct mem_ctl_info *mci) 631 { 632 struct list_head *item, *insert_before; 633 struct mem_ctl_info *p; 634 635 insert_before = &mc_devices; 636 637 p = find_mci_by_dev(mci->pdev); 638 if (unlikely(p != NULL)) 639 goto fail0; 640 641 list_for_each(item, &mc_devices) { 642 p = list_entry(item, struct mem_ctl_info, link); 643 644 if (p->mc_idx >= mci->mc_idx) { 645 if (unlikely(p->mc_idx == mci->mc_idx)) 646 goto fail1; 647 648 insert_before = item; 649 break; 650 } 651 } 652 653 list_add_tail_rcu(&mci->link, insert_before); 654 atomic_inc(&edac_handlers); 655 return 0; 656 657 fail0: 658 edac_printk(KERN_WARNING, EDAC_MC, 659 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev), 660 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx); 661 return 1; 662 663 fail1: 664 edac_printk(KERN_WARNING, EDAC_MC, 665 "bug in low-level driver: attempt to assign\n" 666 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__); 667 return 1; 668 } 669 670 static int del_mc_from_global_list(struct mem_ctl_info *mci) 671 { 672 int handlers = atomic_dec_return(&edac_handlers); 673 list_del_rcu(&mci->link); 674 675 /* these are for safe removal of devices from global list while 676 * NMI handlers may be traversing list 677 */ 678 synchronize_rcu(); 679 INIT_LIST_HEAD(&mci->link); 680 681 return handlers; 682 } 683 684 /** 685 * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'. 686 * 687 * If found, return a pointer to the structure. 688 * Else return NULL. 689 * 690 * Caller must hold mem_ctls_mutex. 691 */ 692 struct mem_ctl_info *edac_mc_find(int idx) 693 { 694 struct list_head *item; 695 struct mem_ctl_info *mci; 696 697 list_for_each(item, &mc_devices) { 698 mci = list_entry(item, struct mem_ctl_info, link); 699 700 if (mci->mc_idx >= idx) { 701 if (mci->mc_idx == idx) 702 return mci; 703 704 break; 705 } 706 } 707 708 return NULL; 709 } 710 EXPORT_SYMBOL(edac_mc_find); 711 712 /** 713 * edac_mc_add_mc_with_groups: Insert the 'mci' structure into the mci 714 * global list and create sysfs entries associated with mci structure 715 * @mci: pointer to the mci structure to be added to the list 716 * @groups: optional attribute groups for the driver-specific sysfs entries 717 * 718 * Return: 719 * 0 Success 720 * !0 Failure 721 */ 722 723 /* FIXME - should a warning be printed if no error detection? correction? */ 724 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci, 725 const struct attribute_group **groups) 726 { 727 int ret = -EINVAL; 728 edac_dbg(0, "\n"); 729 730 if (mci->mc_idx >= EDAC_MAX_MCS) { 731 pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx); 732 return -ENODEV; 733 } 734 735 #ifdef CONFIG_EDAC_DEBUG 736 if (edac_debug_level >= 3) 737 edac_mc_dump_mci(mci); 738 739 if (edac_debug_level >= 4) { 740 int i; 741 742 for (i = 0; i < mci->nr_csrows; i++) { 743 struct csrow_info *csrow = mci->csrows[i]; 744 u32 nr_pages = 0; 745 int j; 746 747 for (j = 0; j < csrow->nr_channels; j++) 748 nr_pages += csrow->channels[j]->dimm->nr_pages; 749 if (!nr_pages) 750 continue; 751 edac_mc_dump_csrow(csrow); 752 for (j = 0; j < csrow->nr_channels; j++) 753 if (csrow->channels[j]->dimm->nr_pages) 754 edac_mc_dump_channel(csrow->channels[j]); 755 } 756 for (i = 0; i < mci->tot_dimms; i++) 757 if (mci->dimms[i]->nr_pages) 758 edac_mc_dump_dimm(mci->dimms[i], i); 759 } 760 #endif 761 mutex_lock(&mem_ctls_mutex); 762 763 if (edac_mc_owner && edac_mc_owner != mci->mod_name) { 764 ret = -EPERM; 765 goto fail0; 766 } 767 768 if (add_mc_to_global_list(mci)) 769 goto fail0; 770 771 /* set load time so that error rate can be tracked */ 772 mci->start_time = jiffies; 773 774 mci->bus = &mc_bus[mci->mc_idx]; 775 776 if (edac_create_sysfs_mci_device(mci, groups)) { 777 edac_mc_printk(mci, KERN_WARNING, 778 "failed to create sysfs device\n"); 779 goto fail1; 780 } 781 782 /* If there IS a check routine, then we are running POLLED */ 783 if (mci->edac_check != NULL) { 784 /* This instance is NOW RUNNING */ 785 mci->op_state = OP_RUNNING_POLL; 786 787 edac_mc_workq_setup(mci, edac_mc_get_poll_msec(), true); 788 } else { 789 mci->op_state = OP_RUNNING_INTERRUPT; 790 } 791 792 /* Report action taken */ 793 edac_mc_printk(mci, KERN_INFO, 794 "Giving out device to module %s controller %s: DEV %s (%s)\n", 795 mci->mod_name, mci->ctl_name, mci->dev_name, 796 edac_op_state_to_string(mci->op_state)); 797 798 edac_mc_owner = mci->mod_name; 799 800 mutex_unlock(&mem_ctls_mutex); 801 return 0; 802 803 fail1: 804 del_mc_from_global_list(mci); 805 806 fail0: 807 mutex_unlock(&mem_ctls_mutex); 808 return ret; 809 } 810 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups); 811 812 /** 813 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and 814 * remove mci structure from global list 815 * @pdev: Pointer to 'struct device' representing mci structure to remove. 816 * 817 * Return pointer to removed mci structure, or NULL if device not found. 818 */ 819 struct mem_ctl_info *edac_mc_del_mc(struct device *dev) 820 { 821 struct mem_ctl_info *mci; 822 823 edac_dbg(0, "\n"); 824 825 mutex_lock(&mem_ctls_mutex); 826 827 /* find the requested mci struct in the global list */ 828 mci = find_mci_by_dev(dev); 829 if (mci == NULL) { 830 mutex_unlock(&mem_ctls_mutex); 831 return NULL; 832 } 833 834 if (!del_mc_from_global_list(mci)) 835 edac_mc_owner = NULL; 836 mutex_unlock(&mem_ctls_mutex); 837 838 /* flush workq processes */ 839 edac_mc_workq_teardown(mci); 840 841 /* marking MCI offline */ 842 mci->op_state = OP_OFFLINE; 843 844 /* remove from sysfs */ 845 edac_remove_sysfs_mci_device(mci); 846 847 edac_printk(KERN_INFO, EDAC_MC, 848 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx, 849 mci->mod_name, mci->ctl_name, edac_dev_name(mci)); 850 851 return mci; 852 } 853 EXPORT_SYMBOL_GPL(edac_mc_del_mc); 854 855 static void edac_mc_scrub_block(unsigned long page, unsigned long offset, 856 u32 size) 857 { 858 struct page *pg; 859 void *virt_addr; 860 unsigned long flags = 0; 861 862 edac_dbg(3, "\n"); 863 864 /* ECC error page was not in our memory. Ignore it. */ 865 if (!pfn_valid(page)) 866 return; 867 868 /* Find the actual page structure then map it and fix */ 869 pg = pfn_to_page(page); 870 871 if (PageHighMem(pg)) 872 local_irq_save(flags); 873 874 virt_addr = kmap_atomic(pg); 875 876 /* Perform architecture specific atomic scrub operation */ 877 atomic_scrub(virt_addr + offset, size); 878 879 /* Unmap and complete */ 880 kunmap_atomic(virt_addr); 881 882 if (PageHighMem(pg)) 883 local_irq_restore(flags); 884 } 885 886 /* FIXME - should return -1 */ 887 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page) 888 { 889 struct csrow_info **csrows = mci->csrows; 890 int row, i, j, n; 891 892 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page); 893 row = -1; 894 895 for (i = 0; i < mci->nr_csrows; i++) { 896 struct csrow_info *csrow = csrows[i]; 897 n = 0; 898 for (j = 0; j < csrow->nr_channels; j++) { 899 struct dimm_info *dimm = csrow->channels[j]->dimm; 900 n += dimm->nr_pages; 901 } 902 if (n == 0) 903 continue; 904 905 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n", 906 mci->mc_idx, 907 csrow->first_page, page, csrow->last_page, 908 csrow->page_mask); 909 910 if ((page >= csrow->first_page) && 911 (page <= csrow->last_page) && 912 ((page & csrow->page_mask) == 913 (csrow->first_page & csrow->page_mask))) { 914 row = i; 915 break; 916 } 917 } 918 919 if (row == -1) 920 edac_mc_printk(mci, KERN_ERR, 921 "could not look up page error address %lx\n", 922 (unsigned long)page); 923 924 return row; 925 } 926 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page); 927 928 const char *edac_layer_name[] = { 929 [EDAC_MC_LAYER_BRANCH] = "branch", 930 [EDAC_MC_LAYER_CHANNEL] = "channel", 931 [EDAC_MC_LAYER_SLOT] = "slot", 932 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow", 933 [EDAC_MC_LAYER_ALL_MEM] = "memory", 934 }; 935 EXPORT_SYMBOL_GPL(edac_layer_name); 936 937 static void edac_inc_ce_error(struct mem_ctl_info *mci, 938 bool enable_per_layer_report, 939 const int pos[EDAC_MAX_LAYERS], 940 const u16 count) 941 { 942 int i, index = 0; 943 944 mci->ce_mc += count; 945 946 if (!enable_per_layer_report) { 947 mci->ce_noinfo_count += count; 948 return; 949 } 950 951 for (i = 0; i < mci->n_layers; i++) { 952 if (pos[i] < 0) 953 break; 954 index += pos[i]; 955 mci->ce_per_layer[i][index] += count; 956 957 if (i < mci->n_layers - 1) 958 index *= mci->layers[i + 1].size; 959 } 960 } 961 962 static void edac_inc_ue_error(struct mem_ctl_info *mci, 963 bool enable_per_layer_report, 964 const int pos[EDAC_MAX_LAYERS], 965 const u16 count) 966 { 967 int i, index = 0; 968 969 mci->ue_mc += count; 970 971 if (!enable_per_layer_report) { 972 mci->ce_noinfo_count += count; 973 return; 974 } 975 976 for (i = 0; i < mci->n_layers; i++) { 977 if (pos[i] < 0) 978 break; 979 index += pos[i]; 980 mci->ue_per_layer[i][index] += count; 981 982 if (i < mci->n_layers - 1) 983 index *= mci->layers[i + 1].size; 984 } 985 } 986 987 static void edac_ce_error(struct mem_ctl_info *mci, 988 const u16 error_count, 989 const int pos[EDAC_MAX_LAYERS], 990 const char *msg, 991 const char *location, 992 const char *label, 993 const char *detail, 994 const char *other_detail, 995 const bool enable_per_layer_report, 996 const unsigned long page_frame_number, 997 const unsigned long offset_in_page, 998 long grain) 999 { 1000 unsigned long remapped_page; 1001 char *msg_aux = ""; 1002 1003 if (*msg) 1004 msg_aux = " "; 1005 1006 if (edac_mc_get_log_ce()) { 1007 if (other_detail && *other_detail) 1008 edac_mc_printk(mci, KERN_WARNING, 1009 "%d CE %s%son %s (%s %s - %s)\n", 1010 error_count, msg, msg_aux, label, 1011 location, detail, other_detail); 1012 else 1013 edac_mc_printk(mci, KERN_WARNING, 1014 "%d CE %s%son %s (%s %s)\n", 1015 error_count, msg, msg_aux, label, 1016 location, detail); 1017 } 1018 edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count); 1019 1020 if (mci->scrub_mode == SCRUB_SW_SRC) { 1021 /* 1022 * Some memory controllers (called MCs below) can remap 1023 * memory so that it is still available at a different 1024 * address when PCI devices map into memory. 1025 * MC's that can't do this, lose the memory where PCI 1026 * devices are mapped. This mapping is MC-dependent 1027 * and so we call back into the MC driver for it to 1028 * map the MC page to a physical (CPU) page which can 1029 * then be mapped to a virtual page - which can then 1030 * be scrubbed. 1031 */ 1032 remapped_page = mci->ctl_page_to_phys ? 1033 mci->ctl_page_to_phys(mci, page_frame_number) : 1034 page_frame_number; 1035 1036 edac_mc_scrub_block(remapped_page, 1037 offset_in_page, grain); 1038 } 1039 } 1040 1041 static void edac_ue_error(struct mem_ctl_info *mci, 1042 const u16 error_count, 1043 const int pos[EDAC_MAX_LAYERS], 1044 const char *msg, 1045 const char *location, 1046 const char *label, 1047 const char *detail, 1048 const char *other_detail, 1049 const bool enable_per_layer_report) 1050 { 1051 char *msg_aux = ""; 1052 1053 if (*msg) 1054 msg_aux = " "; 1055 1056 if (edac_mc_get_log_ue()) { 1057 if (other_detail && *other_detail) 1058 edac_mc_printk(mci, KERN_WARNING, 1059 "%d UE %s%son %s (%s %s - %s)\n", 1060 error_count, msg, msg_aux, label, 1061 location, detail, other_detail); 1062 else 1063 edac_mc_printk(mci, KERN_WARNING, 1064 "%d UE %s%son %s (%s %s)\n", 1065 error_count, msg, msg_aux, label, 1066 location, detail); 1067 } 1068 1069 if (edac_mc_get_panic_on_ue()) { 1070 if (other_detail && *other_detail) 1071 panic("UE %s%son %s (%s%s - %s)\n", 1072 msg, msg_aux, label, location, detail, other_detail); 1073 else 1074 panic("UE %s%son %s (%s%s)\n", 1075 msg, msg_aux, label, location, detail); 1076 } 1077 1078 edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count); 1079 } 1080 1081 /** 1082 * edac_raw_mc_handle_error - reports a memory event to userspace without doing 1083 * anything to discover the error location 1084 * 1085 * @type: severity of the error (CE/UE/Fatal) 1086 * @mci: a struct mem_ctl_info pointer 1087 * @e: error description 1088 * 1089 * This raw function is used internally by edac_mc_handle_error(). It should 1090 * only be called directly when the hardware error come directly from BIOS, 1091 * like in the case of APEI GHES driver. 1092 */ 1093 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type, 1094 struct mem_ctl_info *mci, 1095 struct edac_raw_error_desc *e) 1096 { 1097 char detail[80]; 1098 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer }; 1099 1100 /* Memory type dependent details about the error */ 1101 if (type == HW_EVENT_ERR_CORRECTED) { 1102 snprintf(detail, sizeof(detail), 1103 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx", 1104 e->page_frame_number, e->offset_in_page, 1105 e->grain, e->syndrome); 1106 edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label, 1107 detail, e->other_detail, e->enable_per_layer_report, 1108 e->page_frame_number, e->offset_in_page, e->grain); 1109 } else { 1110 snprintf(detail, sizeof(detail), 1111 "page:0x%lx offset:0x%lx grain:%ld", 1112 e->page_frame_number, e->offset_in_page, e->grain); 1113 1114 edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label, 1115 detail, e->other_detail, e->enable_per_layer_report); 1116 } 1117 1118 1119 } 1120 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error); 1121 1122 /** 1123 * edac_mc_handle_error - reports a memory event to userspace 1124 * 1125 * @type: severity of the error (CE/UE/Fatal) 1126 * @mci: a struct mem_ctl_info pointer 1127 * @error_count: Number of errors of the same type 1128 * @page_frame_number: mem page where the error occurred 1129 * @offset_in_page: offset of the error inside the page 1130 * @syndrome: ECC syndrome 1131 * @top_layer: Memory layer[0] position 1132 * @mid_layer: Memory layer[1] position 1133 * @low_layer: Memory layer[2] position 1134 * @msg: Message meaningful to the end users that 1135 * explains the event 1136 * @other_detail: Technical details about the event that 1137 * may help hardware manufacturers and 1138 * EDAC developers to analyse the event 1139 */ 1140 void edac_mc_handle_error(const enum hw_event_mc_err_type type, 1141 struct mem_ctl_info *mci, 1142 const u16 error_count, 1143 const unsigned long page_frame_number, 1144 const unsigned long offset_in_page, 1145 const unsigned long syndrome, 1146 const int top_layer, 1147 const int mid_layer, 1148 const int low_layer, 1149 const char *msg, 1150 const char *other_detail) 1151 { 1152 char *p; 1153 int row = -1, chan = -1; 1154 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer }; 1155 int i, n_labels = 0; 1156 u8 grain_bits; 1157 struct edac_raw_error_desc *e = &mci->error_desc; 1158 1159 edac_dbg(3, "MC%d\n", mci->mc_idx); 1160 1161 /* Fills the error report buffer */ 1162 memset(e, 0, sizeof (*e)); 1163 e->error_count = error_count; 1164 e->top_layer = top_layer; 1165 e->mid_layer = mid_layer; 1166 e->low_layer = low_layer; 1167 e->page_frame_number = page_frame_number; 1168 e->offset_in_page = offset_in_page; 1169 e->syndrome = syndrome; 1170 e->msg = msg; 1171 e->other_detail = other_detail; 1172 1173 /* 1174 * Check if the event report is consistent and if the memory 1175 * location is known. If it is known, enable_per_layer_report will be 1176 * true, the DIMM(s) label info will be filled and the per-layer 1177 * error counters will be incremented. 1178 */ 1179 for (i = 0; i < mci->n_layers; i++) { 1180 if (pos[i] >= (int)mci->layers[i].size) { 1181 1182 edac_mc_printk(mci, KERN_ERR, 1183 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n", 1184 edac_layer_name[mci->layers[i].type], 1185 pos[i], mci->layers[i].size); 1186 /* 1187 * Instead of just returning it, let's use what's 1188 * known about the error. The increment routines and 1189 * the DIMM filter logic will do the right thing by 1190 * pointing the likely damaged DIMMs. 1191 */ 1192 pos[i] = -1; 1193 } 1194 if (pos[i] >= 0) 1195 e->enable_per_layer_report = true; 1196 } 1197 1198 /* 1199 * Get the dimm label/grain that applies to the match criteria. 1200 * As the error algorithm may not be able to point to just one memory 1201 * stick, the logic here will get all possible labels that could 1202 * pottentially be affected by the error. 1203 * On FB-DIMM memory controllers, for uncorrected errors, it is common 1204 * to have only the MC channel and the MC dimm (also called "branch") 1205 * but the channel is not known, as the memory is arranged in pairs, 1206 * where each memory belongs to a separate channel within the same 1207 * branch. 1208 */ 1209 p = e->label; 1210 *p = '\0'; 1211 1212 for (i = 0; i < mci->tot_dimms; i++) { 1213 struct dimm_info *dimm = mci->dimms[i]; 1214 1215 if (top_layer >= 0 && top_layer != dimm->location[0]) 1216 continue; 1217 if (mid_layer >= 0 && mid_layer != dimm->location[1]) 1218 continue; 1219 if (low_layer >= 0 && low_layer != dimm->location[2]) 1220 continue; 1221 1222 /* get the max grain, over the error match range */ 1223 if (dimm->grain > e->grain) 1224 e->grain = dimm->grain; 1225 1226 /* 1227 * If the error is memory-controller wide, there's no need to 1228 * seek for the affected DIMMs because the whole 1229 * channel/memory controller/... may be affected. 1230 * Also, don't show errors for empty DIMM slots. 1231 */ 1232 if (e->enable_per_layer_report && dimm->nr_pages) { 1233 if (n_labels >= EDAC_MAX_LABELS) { 1234 e->enable_per_layer_report = false; 1235 break; 1236 } 1237 n_labels++; 1238 if (p != e->label) { 1239 strcpy(p, OTHER_LABEL); 1240 p += strlen(OTHER_LABEL); 1241 } 1242 strcpy(p, dimm->label); 1243 p += strlen(p); 1244 *p = '\0'; 1245 1246 /* 1247 * get csrow/channel of the DIMM, in order to allow 1248 * incrementing the compat API counters 1249 */ 1250 edac_dbg(4, "%s csrows map: (%d,%d)\n", 1251 mci->csbased ? "rank" : "dimm", 1252 dimm->csrow, dimm->cschannel); 1253 if (row == -1) 1254 row = dimm->csrow; 1255 else if (row >= 0 && row != dimm->csrow) 1256 row = -2; 1257 1258 if (chan == -1) 1259 chan = dimm->cschannel; 1260 else if (chan >= 0 && chan != dimm->cschannel) 1261 chan = -2; 1262 } 1263 } 1264 1265 if (!e->enable_per_layer_report) { 1266 strcpy(e->label, "any memory"); 1267 } else { 1268 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan); 1269 if (p == e->label) 1270 strcpy(e->label, "unknown memory"); 1271 if (type == HW_EVENT_ERR_CORRECTED) { 1272 if (row >= 0) { 1273 mci->csrows[row]->ce_count += error_count; 1274 if (chan >= 0) 1275 mci->csrows[row]->channels[chan]->ce_count += error_count; 1276 } 1277 } else 1278 if (row >= 0) 1279 mci->csrows[row]->ue_count += error_count; 1280 } 1281 1282 /* Fill the RAM location data */ 1283 p = e->location; 1284 1285 for (i = 0; i < mci->n_layers; i++) { 1286 if (pos[i] < 0) 1287 continue; 1288 1289 p += sprintf(p, "%s:%d ", 1290 edac_layer_name[mci->layers[i].type], 1291 pos[i]); 1292 } 1293 if (p > e->location) 1294 *(p - 1) = '\0'; 1295 1296 /* Report the error via the trace interface */ 1297 grain_bits = fls_long(e->grain) + 1; 1298 trace_mc_event(type, e->msg, e->label, e->error_count, 1299 mci->mc_idx, e->top_layer, e->mid_layer, e->low_layer, 1300 PAGES_TO_MiB(e->page_frame_number) | e->offset_in_page, 1301 grain_bits, e->syndrome, e->other_detail); 1302 1303 edac_raw_mc_handle_error(type, mci, e); 1304 } 1305 EXPORT_SYMBOL_GPL(edac_mc_handle_error); 1306