1 /* 2 * edac_mc kernel module 3 * (C) 2005, 2006 Linux Networx (http://lnxi.com) 4 * This file may be distributed under the terms of the 5 * GNU General Public License. 6 * 7 * Written by Thayne Harbaugh 8 * Based on work by Dan Hollis <goemon at anime dot net> and others. 9 * http://www.anime.net/~goemon/linux-ecc/ 10 * 11 * Modified by Dave Peterson and Doug Thompson 12 * 13 */ 14 15 #include <linux/module.h> 16 #include <linux/proc_fs.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/smp.h> 20 #include <linux/init.h> 21 #include <linux/sysctl.h> 22 #include <linux/highmem.h> 23 #include <linux/timer.h> 24 #include <linux/slab.h> 25 #include <linux/jiffies.h> 26 #include <linux/spinlock.h> 27 #include <linux/list.h> 28 #include <linux/ctype.h> 29 #include <linux/edac.h> 30 #include <linux/bitops.h> 31 #include <asm/uaccess.h> 32 #include <asm/page.h> 33 #include "edac_core.h" 34 #include "edac_module.h" 35 #include <ras/ras_event.h> 36 37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB 38 #include <asm/edac.h> 39 #else 40 #define edac_atomic_scrub(va, size) do { } while (0) 41 #endif 42 43 /* lock to memory controller's control array */ 44 static DEFINE_MUTEX(mem_ctls_mutex); 45 static LIST_HEAD(mc_devices); 46 47 /* 48 * Used to lock EDAC MC to just one module, avoiding two drivers e. g. 49 * apei/ghes and i7core_edac to be used at the same time. 50 */ 51 static void const *edac_mc_owner; 52 53 static struct bus_type mc_bus[EDAC_MAX_MCS]; 54 55 unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf, 56 unsigned len) 57 { 58 struct mem_ctl_info *mci = dimm->mci; 59 int i, n, count = 0; 60 char *p = buf; 61 62 for (i = 0; i < mci->n_layers; i++) { 63 n = snprintf(p, len, "%s %d ", 64 edac_layer_name[mci->layers[i].type], 65 dimm->location[i]); 66 p += n; 67 len -= n; 68 count += n; 69 if (!len) 70 break; 71 } 72 73 return count; 74 } 75 76 #ifdef CONFIG_EDAC_DEBUG 77 78 static void edac_mc_dump_channel(struct rank_info *chan) 79 { 80 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx); 81 edac_dbg(4, " channel = %p\n", chan); 82 edac_dbg(4, " channel->csrow = %p\n", chan->csrow); 83 edac_dbg(4, " channel->dimm = %p\n", chan->dimm); 84 } 85 86 static void edac_mc_dump_dimm(struct dimm_info *dimm, int number) 87 { 88 char location[80]; 89 90 edac_dimm_info_location(dimm, location, sizeof(location)); 91 92 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n", 93 dimm->mci->csbased ? "rank" : "dimm", 94 number, location, dimm->csrow, dimm->cschannel); 95 edac_dbg(4, " dimm = %p\n", dimm); 96 edac_dbg(4, " dimm->label = '%s'\n", dimm->label); 97 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); 98 edac_dbg(4, " dimm->grain = %d\n", dimm->grain); 99 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); 100 } 101 102 static void edac_mc_dump_csrow(struct csrow_info *csrow) 103 { 104 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx); 105 edac_dbg(4, " csrow = %p\n", csrow); 106 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page); 107 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page); 108 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask); 109 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels); 110 edac_dbg(4, " csrow->channels = %p\n", csrow->channels); 111 edac_dbg(4, " csrow->mci = %p\n", csrow->mci); 112 } 113 114 static void edac_mc_dump_mci(struct mem_ctl_info *mci) 115 { 116 edac_dbg(3, "\tmci = %p\n", mci); 117 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap); 118 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap); 119 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap); 120 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check); 121 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n", 122 mci->nr_csrows, mci->csrows); 123 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n", 124 mci->tot_dimms, mci->dimms); 125 edac_dbg(3, "\tdev = %p\n", mci->pdev); 126 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n", 127 mci->mod_name, mci->ctl_name); 128 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info); 129 } 130 131 #endif /* CONFIG_EDAC_DEBUG */ 132 133 const char * const edac_mem_types[] = { 134 [MEM_EMPTY] = "Empty csrow", 135 [MEM_RESERVED] = "Reserved csrow type", 136 [MEM_UNKNOWN] = "Unknown csrow type", 137 [MEM_FPM] = "Fast page mode RAM", 138 [MEM_EDO] = "Extended data out RAM", 139 [MEM_BEDO] = "Burst Extended data out RAM", 140 [MEM_SDR] = "Single data rate SDRAM", 141 [MEM_RDR] = "Registered single data rate SDRAM", 142 [MEM_DDR] = "Double data rate SDRAM", 143 [MEM_RDDR] = "Registered Double data rate SDRAM", 144 [MEM_RMBS] = "Rambus DRAM", 145 [MEM_DDR2] = "Unbuffered DDR2 RAM", 146 [MEM_FB_DDR2] = "Fully buffered DDR2", 147 [MEM_RDDR2] = "Registered DDR2 RAM", 148 [MEM_XDR] = "Rambus XDR", 149 [MEM_DDR3] = "Unbuffered DDR3 RAM", 150 [MEM_RDDR3] = "Registered DDR3 RAM", 151 [MEM_LRDDR3] = "Load-Reduced DDR3 RAM", 152 [MEM_DDR4] = "Unbuffered DDR4 RAM", 153 [MEM_RDDR4] = "Registered DDR4 RAM", 154 }; 155 EXPORT_SYMBOL_GPL(edac_mem_types); 156 157 /** 158 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation 159 * @p: pointer to a pointer with the memory offset to be used. At 160 * return, this will be incremented to point to the next offset 161 * @size: Size of the data structure to be reserved 162 * @n_elems: Number of elements that should be reserved 163 * 164 * If 'size' is a constant, the compiler will optimize this whole function 165 * down to either a no-op or the addition of a constant to the value of '*p'. 166 * 167 * The 'p' pointer is absolutely needed to keep the proper advancing 168 * further in memory to the proper offsets when allocating the struct along 169 * with its embedded structs, as edac_device_alloc_ctl_info() does it 170 * above, for example. 171 * 172 * At return, the pointer 'p' will be incremented to be used on a next call 173 * to this function. 174 */ 175 void *edac_align_ptr(void **p, unsigned size, int n_elems) 176 { 177 unsigned align, r; 178 void *ptr = *p; 179 180 *p += size * n_elems; 181 182 /* 183 * 'p' can possibly be an unaligned item X such that sizeof(X) is 184 * 'size'. Adjust 'p' so that its alignment is at least as 185 * stringent as what the compiler would provide for X and return 186 * the aligned result. 187 * Here we assume that the alignment of a "long long" is the most 188 * stringent alignment that the compiler will ever provide by default. 189 * As far as I know, this is a reasonable assumption. 190 */ 191 if (size > sizeof(long)) 192 align = sizeof(long long); 193 else if (size > sizeof(int)) 194 align = sizeof(long); 195 else if (size > sizeof(short)) 196 align = sizeof(int); 197 else if (size > sizeof(char)) 198 align = sizeof(short); 199 else 200 return (char *)ptr; 201 202 r = (unsigned long)p % align; 203 204 if (r == 0) 205 return (char *)ptr; 206 207 *p += align - r; 208 209 return (void *)(((unsigned long)ptr) + align - r); 210 } 211 212 static void _edac_mc_free(struct mem_ctl_info *mci) 213 { 214 int i, chn, row; 215 struct csrow_info *csr; 216 const unsigned int tot_dimms = mci->tot_dimms; 217 const unsigned int tot_channels = mci->num_cschannel; 218 const unsigned int tot_csrows = mci->nr_csrows; 219 220 if (mci->dimms) { 221 for (i = 0; i < tot_dimms; i++) 222 kfree(mci->dimms[i]); 223 kfree(mci->dimms); 224 } 225 if (mci->csrows) { 226 for (row = 0; row < tot_csrows; row++) { 227 csr = mci->csrows[row]; 228 if (csr) { 229 if (csr->channels) { 230 for (chn = 0; chn < tot_channels; chn++) 231 kfree(csr->channels[chn]); 232 kfree(csr->channels); 233 } 234 kfree(csr); 235 } 236 } 237 kfree(mci->csrows); 238 } 239 kfree(mci); 240 } 241 242 /** 243 * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure 244 * @mc_num: Memory controller number 245 * @n_layers: Number of MC hierarchy layers 246 * layers: Describes each layer as seen by the Memory Controller 247 * @size_pvt: size of private storage needed 248 * 249 * 250 * Everything is kmalloc'ed as one big chunk - more efficient. 251 * Only can be used if all structures have the same lifetime - otherwise 252 * you have to allocate and initialize your own structures. 253 * 254 * Use edac_mc_free() to free mc structures allocated by this function. 255 * 256 * NOTE: drivers handle multi-rank memories in different ways: in some 257 * drivers, one multi-rank memory stick is mapped as one entry, while, in 258 * others, a single multi-rank memory stick would be mapped into several 259 * entries. Currently, this function will allocate multiple struct dimm_info 260 * on such scenarios, as grouping the multiple ranks require drivers change. 261 * 262 * Returns: 263 * On failure: NULL 264 * On success: struct mem_ctl_info pointer 265 */ 266 struct mem_ctl_info *edac_mc_alloc(unsigned mc_num, 267 unsigned n_layers, 268 struct edac_mc_layer *layers, 269 unsigned sz_pvt) 270 { 271 struct mem_ctl_info *mci; 272 struct edac_mc_layer *layer; 273 struct csrow_info *csr; 274 struct rank_info *chan; 275 struct dimm_info *dimm; 276 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS]; 277 unsigned pos[EDAC_MAX_LAYERS]; 278 unsigned size, tot_dimms = 1, count = 1; 279 unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0; 280 void *pvt, *p, *ptr = NULL; 281 int i, j, row, chn, n, len, off; 282 bool per_rank = false; 283 284 BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0); 285 /* 286 * Calculate the total amount of dimms and csrows/cschannels while 287 * in the old API emulation mode 288 */ 289 for (i = 0; i < n_layers; i++) { 290 tot_dimms *= layers[i].size; 291 if (layers[i].is_virt_csrow) 292 tot_csrows *= layers[i].size; 293 else 294 tot_channels *= layers[i].size; 295 296 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT) 297 per_rank = true; 298 } 299 300 /* Figure out the offsets of the various items from the start of an mc 301 * structure. We want the alignment of each item to be at least as 302 * stringent as what the compiler would provide if we could simply 303 * hardcode everything into a single struct. 304 */ 305 mci = edac_align_ptr(&ptr, sizeof(*mci), 1); 306 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers); 307 for (i = 0; i < n_layers; i++) { 308 count *= layers[i].size; 309 edac_dbg(4, "errcount layer %d size %d\n", i, count); 310 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count); 311 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count); 312 tot_errcount += 2 * count; 313 } 314 315 edac_dbg(4, "allocating %d error counters\n", tot_errcount); 316 pvt = edac_align_ptr(&ptr, sz_pvt, 1); 317 size = ((unsigned long)pvt) + sz_pvt; 318 319 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n", 320 size, 321 tot_dimms, 322 per_rank ? "ranks" : "dimms", 323 tot_csrows * tot_channels); 324 325 mci = kzalloc(size, GFP_KERNEL); 326 if (mci == NULL) 327 return NULL; 328 329 /* Adjust pointers so they point within the memory we just allocated 330 * rather than an imaginary chunk of memory located at address 0. 331 */ 332 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer)); 333 for (i = 0; i < n_layers; i++) { 334 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i])); 335 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i])); 336 } 337 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL; 338 339 /* setup index and various internal pointers */ 340 mci->mc_idx = mc_num; 341 mci->tot_dimms = tot_dimms; 342 mci->pvt_info = pvt; 343 mci->n_layers = n_layers; 344 mci->layers = layer; 345 memcpy(mci->layers, layers, sizeof(*layer) * n_layers); 346 mci->nr_csrows = tot_csrows; 347 mci->num_cschannel = tot_channels; 348 mci->csbased = per_rank; 349 350 /* 351 * Alocate and fill the csrow/channels structs 352 */ 353 mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL); 354 if (!mci->csrows) 355 goto error; 356 for (row = 0; row < tot_csrows; row++) { 357 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL); 358 if (!csr) 359 goto error; 360 mci->csrows[row] = csr; 361 csr->csrow_idx = row; 362 csr->mci = mci; 363 csr->nr_channels = tot_channels; 364 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels), 365 GFP_KERNEL); 366 if (!csr->channels) 367 goto error; 368 369 for (chn = 0; chn < tot_channels; chn++) { 370 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL); 371 if (!chan) 372 goto error; 373 csr->channels[chn] = chan; 374 chan->chan_idx = chn; 375 chan->csrow = csr; 376 } 377 } 378 379 /* 380 * Allocate and fill the dimm structs 381 */ 382 mci->dimms = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL); 383 if (!mci->dimms) 384 goto error; 385 386 memset(&pos, 0, sizeof(pos)); 387 row = 0; 388 chn = 0; 389 for (i = 0; i < tot_dimms; i++) { 390 chan = mci->csrows[row]->channels[chn]; 391 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]); 392 if (off < 0 || off >= tot_dimms) { 393 edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n"); 394 goto error; 395 } 396 397 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL); 398 if (!dimm) 399 goto error; 400 mci->dimms[off] = dimm; 401 dimm->mci = mci; 402 403 /* 404 * Copy DIMM location and initialize it. 405 */ 406 len = sizeof(dimm->label); 407 p = dimm->label; 408 n = snprintf(p, len, "mc#%u", mc_num); 409 p += n; 410 len -= n; 411 for (j = 0; j < n_layers; j++) { 412 n = snprintf(p, len, "%s#%u", 413 edac_layer_name[layers[j].type], 414 pos[j]); 415 p += n; 416 len -= n; 417 dimm->location[j] = pos[j]; 418 419 if (len <= 0) 420 break; 421 } 422 423 /* Link it to the csrows old API data */ 424 chan->dimm = dimm; 425 dimm->csrow = row; 426 dimm->cschannel = chn; 427 428 /* Increment csrow location */ 429 if (layers[0].is_virt_csrow) { 430 chn++; 431 if (chn == tot_channels) { 432 chn = 0; 433 row++; 434 } 435 } else { 436 row++; 437 if (row == tot_csrows) { 438 row = 0; 439 chn++; 440 } 441 } 442 443 /* Increment dimm location */ 444 for (j = n_layers - 1; j >= 0; j--) { 445 pos[j]++; 446 if (pos[j] < layers[j].size) 447 break; 448 pos[j] = 0; 449 } 450 } 451 452 mci->op_state = OP_ALLOC; 453 454 return mci; 455 456 error: 457 _edac_mc_free(mci); 458 459 return NULL; 460 } 461 EXPORT_SYMBOL_GPL(edac_mc_alloc); 462 463 /** 464 * edac_mc_free 465 * 'Free' a previously allocated 'mci' structure 466 * @mci: pointer to a struct mem_ctl_info structure 467 */ 468 void edac_mc_free(struct mem_ctl_info *mci) 469 { 470 edac_dbg(1, "\n"); 471 472 /* If we're not yet registered with sysfs free only what was allocated 473 * in edac_mc_alloc(). 474 */ 475 if (!device_is_registered(&mci->dev)) { 476 _edac_mc_free(mci); 477 return; 478 } 479 480 /* the mci instance is freed here, when the sysfs object is dropped */ 481 edac_unregister_sysfs(mci); 482 } 483 EXPORT_SYMBOL_GPL(edac_mc_free); 484 485 486 /** 487 * find_mci_by_dev 488 * 489 * scan list of controllers looking for the one that manages 490 * the 'dev' device 491 * @dev: pointer to a struct device related with the MCI 492 */ 493 struct mem_ctl_info *find_mci_by_dev(struct device *dev) 494 { 495 struct mem_ctl_info *mci; 496 struct list_head *item; 497 498 edac_dbg(3, "\n"); 499 500 list_for_each(item, &mc_devices) { 501 mci = list_entry(item, struct mem_ctl_info, link); 502 503 if (mci->pdev == dev) 504 return mci; 505 } 506 507 return NULL; 508 } 509 EXPORT_SYMBOL_GPL(find_mci_by_dev); 510 511 /* 512 * handler for EDAC to check if NMI type handler has asserted interrupt 513 */ 514 static int edac_mc_assert_error_check_and_clear(void) 515 { 516 int old_state; 517 518 if (edac_op_state == EDAC_OPSTATE_POLL) 519 return 1; 520 521 old_state = edac_err_assert; 522 edac_err_assert = 0; 523 524 return old_state; 525 } 526 527 /* 528 * edac_mc_workq_function 529 * performs the operation scheduled by a workq request 530 */ 531 static void edac_mc_workq_function(struct work_struct *work_req) 532 { 533 struct delayed_work *d_work = to_delayed_work(work_req); 534 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work); 535 536 mutex_lock(&mem_ctls_mutex); 537 538 /* if this control struct has movd to offline state, we are done */ 539 if (mci->op_state == OP_OFFLINE) { 540 mutex_unlock(&mem_ctls_mutex); 541 return; 542 } 543 544 /* Only poll controllers that are running polled and have a check */ 545 if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL)) 546 mci->edac_check(mci); 547 548 mutex_unlock(&mem_ctls_mutex); 549 550 /* Reschedule */ 551 queue_delayed_work(edac_workqueue, &mci->work, 552 msecs_to_jiffies(edac_mc_get_poll_msec())); 553 } 554 555 /* 556 * edac_mc_workq_setup 557 * initialize a workq item for this mci 558 * passing in the new delay period in msec 559 * 560 * locking model: 561 * 562 * called with the mem_ctls_mutex held 563 */ 564 static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec, 565 bool init) 566 { 567 edac_dbg(0, "\n"); 568 569 /* if this instance is not in the POLL state, then simply return */ 570 if (mci->op_state != OP_RUNNING_POLL) 571 return; 572 573 if (init) 574 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function); 575 576 mod_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec)); 577 } 578 579 /* 580 * edac_mc_workq_teardown 581 * stop the workq processing on this mci 582 * 583 * locking model: 584 * 585 * called WITHOUT lock held 586 */ 587 static void edac_mc_workq_teardown(struct mem_ctl_info *mci) 588 { 589 int status; 590 591 if (mci->op_state != OP_RUNNING_POLL) 592 return; 593 594 status = cancel_delayed_work(&mci->work); 595 if (status == 0) { 596 edac_dbg(0, "not canceled, flush the queue\n"); 597 598 /* workq instance might be running, wait for it */ 599 flush_workqueue(edac_workqueue); 600 } 601 } 602 603 /* 604 * edac_mc_reset_delay_period(unsigned long value) 605 * 606 * user space has updated our poll period value, need to 607 * reset our workq delays 608 */ 609 void edac_mc_reset_delay_period(unsigned long value) 610 { 611 struct mem_ctl_info *mci; 612 struct list_head *item; 613 614 mutex_lock(&mem_ctls_mutex); 615 616 list_for_each(item, &mc_devices) { 617 mci = list_entry(item, struct mem_ctl_info, link); 618 619 edac_mc_workq_setup(mci, value, false); 620 } 621 622 mutex_unlock(&mem_ctls_mutex); 623 } 624 625 626 627 /* Return 0 on success, 1 on failure. 628 * Before calling this function, caller must 629 * assign a unique value to mci->mc_idx. 630 * 631 * locking model: 632 * 633 * called with the mem_ctls_mutex lock held 634 */ 635 static int add_mc_to_global_list(struct mem_ctl_info *mci) 636 { 637 struct list_head *item, *insert_before; 638 struct mem_ctl_info *p; 639 640 insert_before = &mc_devices; 641 642 p = find_mci_by_dev(mci->pdev); 643 if (unlikely(p != NULL)) 644 goto fail0; 645 646 list_for_each(item, &mc_devices) { 647 p = list_entry(item, struct mem_ctl_info, link); 648 649 if (p->mc_idx >= mci->mc_idx) { 650 if (unlikely(p->mc_idx == mci->mc_idx)) 651 goto fail1; 652 653 insert_before = item; 654 break; 655 } 656 } 657 658 list_add_tail_rcu(&mci->link, insert_before); 659 atomic_inc(&edac_handlers); 660 return 0; 661 662 fail0: 663 edac_printk(KERN_WARNING, EDAC_MC, 664 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev), 665 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx); 666 return 1; 667 668 fail1: 669 edac_printk(KERN_WARNING, EDAC_MC, 670 "bug in low-level driver: attempt to assign\n" 671 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__); 672 return 1; 673 } 674 675 static int del_mc_from_global_list(struct mem_ctl_info *mci) 676 { 677 int handlers = atomic_dec_return(&edac_handlers); 678 list_del_rcu(&mci->link); 679 680 /* these are for safe removal of devices from global list while 681 * NMI handlers may be traversing list 682 */ 683 synchronize_rcu(); 684 INIT_LIST_HEAD(&mci->link); 685 686 return handlers; 687 } 688 689 /** 690 * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'. 691 * 692 * If found, return a pointer to the structure. 693 * Else return NULL. 694 * 695 * Caller must hold mem_ctls_mutex. 696 */ 697 struct mem_ctl_info *edac_mc_find(int idx) 698 { 699 struct list_head *item; 700 struct mem_ctl_info *mci; 701 702 list_for_each(item, &mc_devices) { 703 mci = list_entry(item, struct mem_ctl_info, link); 704 705 if (mci->mc_idx >= idx) { 706 if (mci->mc_idx == idx) 707 return mci; 708 709 break; 710 } 711 } 712 713 return NULL; 714 } 715 EXPORT_SYMBOL(edac_mc_find); 716 717 /** 718 * edac_mc_add_mc_with_groups: Insert the 'mci' structure into the mci 719 * global list and create sysfs entries associated with mci structure 720 * @mci: pointer to the mci structure to be added to the list 721 * @groups: optional attribute groups for the driver-specific sysfs entries 722 * 723 * Return: 724 * 0 Success 725 * !0 Failure 726 */ 727 728 /* FIXME - should a warning be printed if no error detection? correction? */ 729 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci, 730 const struct attribute_group **groups) 731 { 732 int ret = -EINVAL; 733 edac_dbg(0, "\n"); 734 735 if (mci->mc_idx >= EDAC_MAX_MCS) { 736 pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx); 737 return -ENODEV; 738 } 739 740 #ifdef CONFIG_EDAC_DEBUG 741 if (edac_debug_level >= 3) 742 edac_mc_dump_mci(mci); 743 744 if (edac_debug_level >= 4) { 745 int i; 746 747 for (i = 0; i < mci->nr_csrows; i++) { 748 struct csrow_info *csrow = mci->csrows[i]; 749 u32 nr_pages = 0; 750 int j; 751 752 for (j = 0; j < csrow->nr_channels; j++) 753 nr_pages += csrow->channels[j]->dimm->nr_pages; 754 if (!nr_pages) 755 continue; 756 edac_mc_dump_csrow(csrow); 757 for (j = 0; j < csrow->nr_channels; j++) 758 if (csrow->channels[j]->dimm->nr_pages) 759 edac_mc_dump_channel(csrow->channels[j]); 760 } 761 for (i = 0; i < mci->tot_dimms; i++) 762 if (mci->dimms[i]->nr_pages) 763 edac_mc_dump_dimm(mci->dimms[i], i); 764 } 765 #endif 766 mutex_lock(&mem_ctls_mutex); 767 768 if (edac_mc_owner && edac_mc_owner != mci->mod_name) { 769 ret = -EPERM; 770 goto fail0; 771 } 772 773 if (add_mc_to_global_list(mci)) 774 goto fail0; 775 776 /* set load time so that error rate can be tracked */ 777 mci->start_time = jiffies; 778 779 mci->bus = &mc_bus[mci->mc_idx]; 780 781 if (edac_create_sysfs_mci_device(mci, groups)) { 782 edac_mc_printk(mci, KERN_WARNING, 783 "failed to create sysfs device\n"); 784 goto fail1; 785 } 786 787 /* If there IS a check routine, then we are running POLLED */ 788 if (mci->edac_check != NULL) { 789 /* This instance is NOW RUNNING */ 790 mci->op_state = OP_RUNNING_POLL; 791 792 edac_mc_workq_setup(mci, edac_mc_get_poll_msec(), true); 793 } else { 794 mci->op_state = OP_RUNNING_INTERRUPT; 795 } 796 797 /* Report action taken */ 798 edac_mc_printk(mci, KERN_INFO, 799 "Giving out device to module %s controller %s: DEV %s (%s)\n", 800 mci->mod_name, mci->ctl_name, mci->dev_name, 801 edac_op_state_to_string(mci->op_state)); 802 803 edac_mc_owner = mci->mod_name; 804 805 mutex_unlock(&mem_ctls_mutex); 806 return 0; 807 808 fail1: 809 del_mc_from_global_list(mci); 810 811 fail0: 812 mutex_unlock(&mem_ctls_mutex); 813 return ret; 814 } 815 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups); 816 817 /** 818 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and 819 * remove mci structure from global list 820 * @pdev: Pointer to 'struct device' representing mci structure to remove. 821 * 822 * Return pointer to removed mci structure, or NULL if device not found. 823 */ 824 struct mem_ctl_info *edac_mc_del_mc(struct device *dev) 825 { 826 struct mem_ctl_info *mci; 827 828 edac_dbg(0, "\n"); 829 830 mutex_lock(&mem_ctls_mutex); 831 832 /* find the requested mci struct in the global list */ 833 mci = find_mci_by_dev(dev); 834 if (mci == NULL) { 835 mutex_unlock(&mem_ctls_mutex); 836 return NULL; 837 } 838 839 if (!del_mc_from_global_list(mci)) 840 edac_mc_owner = NULL; 841 mutex_unlock(&mem_ctls_mutex); 842 843 /* flush workq processes */ 844 edac_mc_workq_teardown(mci); 845 846 /* marking MCI offline */ 847 mci->op_state = OP_OFFLINE; 848 849 /* remove from sysfs */ 850 edac_remove_sysfs_mci_device(mci); 851 852 edac_printk(KERN_INFO, EDAC_MC, 853 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx, 854 mci->mod_name, mci->ctl_name, edac_dev_name(mci)); 855 856 return mci; 857 } 858 EXPORT_SYMBOL_GPL(edac_mc_del_mc); 859 860 static void edac_mc_scrub_block(unsigned long page, unsigned long offset, 861 u32 size) 862 { 863 struct page *pg; 864 void *virt_addr; 865 unsigned long flags = 0; 866 867 edac_dbg(3, "\n"); 868 869 /* ECC error page was not in our memory. Ignore it. */ 870 if (!pfn_valid(page)) 871 return; 872 873 /* Find the actual page structure then map it and fix */ 874 pg = pfn_to_page(page); 875 876 if (PageHighMem(pg)) 877 local_irq_save(flags); 878 879 virt_addr = kmap_atomic(pg); 880 881 /* Perform architecture specific atomic scrub operation */ 882 edac_atomic_scrub(virt_addr + offset, size); 883 884 /* Unmap and complete */ 885 kunmap_atomic(virt_addr); 886 887 if (PageHighMem(pg)) 888 local_irq_restore(flags); 889 } 890 891 /* FIXME - should return -1 */ 892 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page) 893 { 894 struct csrow_info **csrows = mci->csrows; 895 int row, i, j, n; 896 897 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page); 898 row = -1; 899 900 for (i = 0; i < mci->nr_csrows; i++) { 901 struct csrow_info *csrow = csrows[i]; 902 n = 0; 903 for (j = 0; j < csrow->nr_channels; j++) { 904 struct dimm_info *dimm = csrow->channels[j]->dimm; 905 n += dimm->nr_pages; 906 } 907 if (n == 0) 908 continue; 909 910 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n", 911 mci->mc_idx, 912 csrow->first_page, page, csrow->last_page, 913 csrow->page_mask); 914 915 if ((page >= csrow->first_page) && 916 (page <= csrow->last_page) && 917 ((page & csrow->page_mask) == 918 (csrow->first_page & csrow->page_mask))) { 919 row = i; 920 break; 921 } 922 } 923 924 if (row == -1) 925 edac_mc_printk(mci, KERN_ERR, 926 "could not look up page error address %lx\n", 927 (unsigned long)page); 928 929 return row; 930 } 931 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page); 932 933 const char *edac_layer_name[] = { 934 [EDAC_MC_LAYER_BRANCH] = "branch", 935 [EDAC_MC_LAYER_CHANNEL] = "channel", 936 [EDAC_MC_LAYER_SLOT] = "slot", 937 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow", 938 [EDAC_MC_LAYER_ALL_MEM] = "memory", 939 }; 940 EXPORT_SYMBOL_GPL(edac_layer_name); 941 942 static void edac_inc_ce_error(struct mem_ctl_info *mci, 943 bool enable_per_layer_report, 944 const int pos[EDAC_MAX_LAYERS], 945 const u16 count) 946 { 947 int i, index = 0; 948 949 mci->ce_mc += count; 950 951 if (!enable_per_layer_report) { 952 mci->ce_noinfo_count += count; 953 return; 954 } 955 956 for (i = 0; i < mci->n_layers; i++) { 957 if (pos[i] < 0) 958 break; 959 index += pos[i]; 960 mci->ce_per_layer[i][index] += count; 961 962 if (i < mci->n_layers - 1) 963 index *= mci->layers[i + 1].size; 964 } 965 } 966 967 static void edac_inc_ue_error(struct mem_ctl_info *mci, 968 bool enable_per_layer_report, 969 const int pos[EDAC_MAX_LAYERS], 970 const u16 count) 971 { 972 int i, index = 0; 973 974 mci->ue_mc += count; 975 976 if (!enable_per_layer_report) { 977 mci->ce_noinfo_count += count; 978 return; 979 } 980 981 for (i = 0; i < mci->n_layers; i++) { 982 if (pos[i] < 0) 983 break; 984 index += pos[i]; 985 mci->ue_per_layer[i][index] += count; 986 987 if (i < mci->n_layers - 1) 988 index *= mci->layers[i + 1].size; 989 } 990 } 991 992 static void edac_ce_error(struct mem_ctl_info *mci, 993 const u16 error_count, 994 const int pos[EDAC_MAX_LAYERS], 995 const char *msg, 996 const char *location, 997 const char *label, 998 const char *detail, 999 const char *other_detail, 1000 const bool enable_per_layer_report, 1001 const unsigned long page_frame_number, 1002 const unsigned long offset_in_page, 1003 long grain) 1004 { 1005 unsigned long remapped_page; 1006 char *msg_aux = ""; 1007 1008 if (*msg) 1009 msg_aux = " "; 1010 1011 if (edac_mc_get_log_ce()) { 1012 if (other_detail && *other_detail) 1013 edac_mc_printk(mci, KERN_WARNING, 1014 "%d CE %s%son %s (%s %s - %s)\n", 1015 error_count, msg, msg_aux, label, 1016 location, detail, other_detail); 1017 else 1018 edac_mc_printk(mci, KERN_WARNING, 1019 "%d CE %s%son %s (%s %s)\n", 1020 error_count, msg, msg_aux, label, 1021 location, detail); 1022 } 1023 edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count); 1024 1025 if (mci->scrub_mode == SCRUB_SW_SRC) { 1026 /* 1027 * Some memory controllers (called MCs below) can remap 1028 * memory so that it is still available at a different 1029 * address when PCI devices map into memory. 1030 * MC's that can't do this, lose the memory where PCI 1031 * devices are mapped. This mapping is MC-dependent 1032 * and so we call back into the MC driver for it to 1033 * map the MC page to a physical (CPU) page which can 1034 * then be mapped to a virtual page - which can then 1035 * be scrubbed. 1036 */ 1037 remapped_page = mci->ctl_page_to_phys ? 1038 mci->ctl_page_to_phys(mci, page_frame_number) : 1039 page_frame_number; 1040 1041 edac_mc_scrub_block(remapped_page, 1042 offset_in_page, grain); 1043 } 1044 } 1045 1046 static void edac_ue_error(struct mem_ctl_info *mci, 1047 const u16 error_count, 1048 const int pos[EDAC_MAX_LAYERS], 1049 const char *msg, 1050 const char *location, 1051 const char *label, 1052 const char *detail, 1053 const char *other_detail, 1054 const bool enable_per_layer_report) 1055 { 1056 char *msg_aux = ""; 1057 1058 if (*msg) 1059 msg_aux = " "; 1060 1061 if (edac_mc_get_log_ue()) { 1062 if (other_detail && *other_detail) 1063 edac_mc_printk(mci, KERN_WARNING, 1064 "%d UE %s%son %s (%s %s - %s)\n", 1065 error_count, msg, msg_aux, label, 1066 location, detail, other_detail); 1067 else 1068 edac_mc_printk(mci, KERN_WARNING, 1069 "%d UE %s%son %s (%s %s)\n", 1070 error_count, msg, msg_aux, label, 1071 location, detail); 1072 } 1073 1074 if (edac_mc_get_panic_on_ue()) { 1075 if (other_detail && *other_detail) 1076 panic("UE %s%son %s (%s%s - %s)\n", 1077 msg, msg_aux, label, location, detail, other_detail); 1078 else 1079 panic("UE %s%son %s (%s%s)\n", 1080 msg, msg_aux, label, location, detail); 1081 } 1082 1083 edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count); 1084 } 1085 1086 /** 1087 * edac_raw_mc_handle_error - reports a memory event to userspace without doing 1088 * anything to discover the error location 1089 * 1090 * @type: severity of the error (CE/UE/Fatal) 1091 * @mci: a struct mem_ctl_info pointer 1092 * @e: error description 1093 * 1094 * This raw function is used internally by edac_mc_handle_error(). It should 1095 * only be called directly when the hardware error come directly from BIOS, 1096 * like in the case of APEI GHES driver. 1097 */ 1098 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type, 1099 struct mem_ctl_info *mci, 1100 struct edac_raw_error_desc *e) 1101 { 1102 char detail[80]; 1103 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer }; 1104 1105 /* Memory type dependent details about the error */ 1106 if (type == HW_EVENT_ERR_CORRECTED) { 1107 snprintf(detail, sizeof(detail), 1108 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx", 1109 e->page_frame_number, e->offset_in_page, 1110 e->grain, e->syndrome); 1111 edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label, 1112 detail, e->other_detail, e->enable_per_layer_report, 1113 e->page_frame_number, e->offset_in_page, e->grain); 1114 } else { 1115 snprintf(detail, sizeof(detail), 1116 "page:0x%lx offset:0x%lx grain:%ld", 1117 e->page_frame_number, e->offset_in_page, e->grain); 1118 1119 edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label, 1120 detail, e->other_detail, e->enable_per_layer_report); 1121 } 1122 1123 1124 } 1125 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error); 1126 1127 /** 1128 * edac_mc_handle_error - reports a memory event to userspace 1129 * 1130 * @type: severity of the error (CE/UE/Fatal) 1131 * @mci: a struct mem_ctl_info pointer 1132 * @error_count: Number of errors of the same type 1133 * @page_frame_number: mem page where the error occurred 1134 * @offset_in_page: offset of the error inside the page 1135 * @syndrome: ECC syndrome 1136 * @top_layer: Memory layer[0] position 1137 * @mid_layer: Memory layer[1] position 1138 * @low_layer: Memory layer[2] position 1139 * @msg: Message meaningful to the end users that 1140 * explains the event 1141 * @other_detail: Technical details about the event that 1142 * may help hardware manufacturers and 1143 * EDAC developers to analyse the event 1144 */ 1145 void edac_mc_handle_error(const enum hw_event_mc_err_type type, 1146 struct mem_ctl_info *mci, 1147 const u16 error_count, 1148 const unsigned long page_frame_number, 1149 const unsigned long offset_in_page, 1150 const unsigned long syndrome, 1151 const int top_layer, 1152 const int mid_layer, 1153 const int low_layer, 1154 const char *msg, 1155 const char *other_detail) 1156 { 1157 char *p; 1158 int row = -1, chan = -1; 1159 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer }; 1160 int i, n_labels = 0; 1161 u8 grain_bits; 1162 struct edac_raw_error_desc *e = &mci->error_desc; 1163 1164 edac_dbg(3, "MC%d\n", mci->mc_idx); 1165 1166 /* Fills the error report buffer */ 1167 memset(e, 0, sizeof (*e)); 1168 e->error_count = error_count; 1169 e->top_layer = top_layer; 1170 e->mid_layer = mid_layer; 1171 e->low_layer = low_layer; 1172 e->page_frame_number = page_frame_number; 1173 e->offset_in_page = offset_in_page; 1174 e->syndrome = syndrome; 1175 e->msg = msg; 1176 e->other_detail = other_detail; 1177 1178 /* 1179 * Check if the event report is consistent and if the memory 1180 * location is known. If it is known, enable_per_layer_report will be 1181 * true, the DIMM(s) label info will be filled and the per-layer 1182 * error counters will be incremented. 1183 */ 1184 for (i = 0; i < mci->n_layers; i++) { 1185 if (pos[i] >= (int)mci->layers[i].size) { 1186 1187 edac_mc_printk(mci, KERN_ERR, 1188 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n", 1189 edac_layer_name[mci->layers[i].type], 1190 pos[i], mci->layers[i].size); 1191 /* 1192 * Instead of just returning it, let's use what's 1193 * known about the error. The increment routines and 1194 * the DIMM filter logic will do the right thing by 1195 * pointing the likely damaged DIMMs. 1196 */ 1197 pos[i] = -1; 1198 } 1199 if (pos[i] >= 0) 1200 e->enable_per_layer_report = true; 1201 } 1202 1203 /* 1204 * Get the dimm label/grain that applies to the match criteria. 1205 * As the error algorithm may not be able to point to just one memory 1206 * stick, the logic here will get all possible labels that could 1207 * pottentially be affected by the error. 1208 * On FB-DIMM memory controllers, for uncorrected errors, it is common 1209 * to have only the MC channel and the MC dimm (also called "branch") 1210 * but the channel is not known, as the memory is arranged in pairs, 1211 * where each memory belongs to a separate channel within the same 1212 * branch. 1213 */ 1214 p = e->label; 1215 *p = '\0'; 1216 1217 for (i = 0; i < mci->tot_dimms; i++) { 1218 struct dimm_info *dimm = mci->dimms[i]; 1219 1220 if (top_layer >= 0 && top_layer != dimm->location[0]) 1221 continue; 1222 if (mid_layer >= 0 && mid_layer != dimm->location[1]) 1223 continue; 1224 if (low_layer >= 0 && low_layer != dimm->location[2]) 1225 continue; 1226 1227 /* get the max grain, over the error match range */ 1228 if (dimm->grain > e->grain) 1229 e->grain = dimm->grain; 1230 1231 /* 1232 * If the error is memory-controller wide, there's no need to 1233 * seek for the affected DIMMs because the whole 1234 * channel/memory controller/... may be affected. 1235 * Also, don't show errors for empty DIMM slots. 1236 */ 1237 if (e->enable_per_layer_report && dimm->nr_pages) { 1238 if (n_labels >= EDAC_MAX_LABELS) { 1239 e->enable_per_layer_report = false; 1240 break; 1241 } 1242 n_labels++; 1243 if (p != e->label) { 1244 strcpy(p, OTHER_LABEL); 1245 p += strlen(OTHER_LABEL); 1246 } 1247 strcpy(p, dimm->label); 1248 p += strlen(p); 1249 *p = '\0'; 1250 1251 /* 1252 * get csrow/channel of the DIMM, in order to allow 1253 * incrementing the compat API counters 1254 */ 1255 edac_dbg(4, "%s csrows map: (%d,%d)\n", 1256 mci->csbased ? "rank" : "dimm", 1257 dimm->csrow, dimm->cschannel); 1258 if (row == -1) 1259 row = dimm->csrow; 1260 else if (row >= 0 && row != dimm->csrow) 1261 row = -2; 1262 1263 if (chan == -1) 1264 chan = dimm->cschannel; 1265 else if (chan >= 0 && chan != dimm->cschannel) 1266 chan = -2; 1267 } 1268 } 1269 1270 if (!e->enable_per_layer_report) { 1271 strcpy(e->label, "any memory"); 1272 } else { 1273 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan); 1274 if (p == e->label) 1275 strcpy(e->label, "unknown memory"); 1276 if (type == HW_EVENT_ERR_CORRECTED) { 1277 if (row >= 0) { 1278 mci->csrows[row]->ce_count += error_count; 1279 if (chan >= 0) 1280 mci->csrows[row]->channels[chan]->ce_count += error_count; 1281 } 1282 } else 1283 if (row >= 0) 1284 mci->csrows[row]->ue_count += error_count; 1285 } 1286 1287 /* Fill the RAM location data */ 1288 p = e->location; 1289 1290 for (i = 0; i < mci->n_layers; i++) { 1291 if (pos[i] < 0) 1292 continue; 1293 1294 p += sprintf(p, "%s:%d ", 1295 edac_layer_name[mci->layers[i].type], 1296 pos[i]); 1297 } 1298 if (p > e->location) 1299 *(p - 1) = '\0'; 1300 1301 /* Report the error via the trace interface */ 1302 grain_bits = fls_long(e->grain) + 1; 1303 trace_mc_event(type, e->msg, e->label, e->error_count, 1304 mci->mc_idx, e->top_layer, e->mid_layer, e->low_layer, 1305 PAGES_TO_MiB(e->page_frame_number) | e->offset_in_page, 1306 grain_bits, e->syndrome, e->other_detail); 1307 1308 edac_raw_mc_handle_error(type, mci, e); 1309 } 1310 EXPORT_SYMBOL_GPL(edac_mc_handle_error); 1311