1 /* 2 * edac_mc kernel module 3 * (C) 2005, 2006 Linux Networx (http://lnxi.com) 4 * This file may be distributed under the terms of the 5 * GNU General Public License. 6 * 7 * Written by Thayne Harbaugh 8 * Based on work by Dan Hollis <goemon at anime dot net> and others. 9 * http://www.anime.net/~goemon/linux-ecc/ 10 * 11 * Modified by Dave Peterson and Doug Thompson 12 * 13 */ 14 15 #include <linux/module.h> 16 #include <linux/proc_fs.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/smp.h> 20 #include <linux/init.h> 21 #include <linux/sysctl.h> 22 #include <linux/highmem.h> 23 #include <linux/timer.h> 24 #include <linux/slab.h> 25 #include <linux/jiffies.h> 26 #include <linux/spinlock.h> 27 #include <linux/list.h> 28 #include <linux/ctype.h> 29 #include <linux/edac.h> 30 #include <linux/bitops.h> 31 #include <linux/uaccess.h> 32 #include <asm/page.h> 33 #include "edac_mc.h" 34 #include "edac_module.h" 35 #include <ras/ras_event.h> 36 37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB 38 #include <asm/edac.h> 39 #else 40 #define edac_atomic_scrub(va, size) do { } while (0) 41 #endif 42 43 int edac_op_state = EDAC_OPSTATE_INVAL; 44 EXPORT_SYMBOL_GPL(edac_op_state); 45 46 /* lock to memory controller's control array */ 47 static DEFINE_MUTEX(mem_ctls_mutex); 48 static LIST_HEAD(mc_devices); 49 50 /* 51 * Used to lock EDAC MC to just one module, avoiding two drivers e. g. 52 * apei/ghes and i7core_edac to be used at the same time. 53 */ 54 static const char *edac_mc_owner; 55 56 static struct mem_ctl_info *error_desc_to_mci(struct edac_raw_error_desc *e) 57 { 58 return container_of(e, struct mem_ctl_info, error_desc); 59 } 60 61 unsigned int edac_dimm_info_location(struct dimm_info *dimm, char *buf, 62 unsigned int len) 63 { 64 struct mem_ctl_info *mci = dimm->mci; 65 int i, n, count = 0; 66 char *p = buf; 67 68 for (i = 0; i < mci->n_layers; i++) { 69 n = scnprintf(p, len, "%s %d ", 70 edac_layer_name[mci->layers[i].type], 71 dimm->location[i]); 72 p += n; 73 len -= n; 74 count += n; 75 } 76 77 return count; 78 } 79 80 #ifdef CONFIG_EDAC_DEBUG 81 82 static void edac_mc_dump_channel(struct rank_info *chan) 83 { 84 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx); 85 edac_dbg(4, " channel = %p\n", chan); 86 edac_dbg(4, " channel->csrow = %p\n", chan->csrow); 87 edac_dbg(4, " channel->dimm = %p\n", chan->dimm); 88 } 89 90 static void edac_mc_dump_dimm(struct dimm_info *dimm) 91 { 92 char location[80]; 93 94 if (!dimm->nr_pages) 95 return; 96 97 edac_dimm_info_location(dimm, location, sizeof(location)); 98 99 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n", 100 dimm->mci->csbased ? "rank" : "dimm", 101 dimm->idx, location, dimm->csrow, dimm->cschannel); 102 edac_dbg(4, " dimm = %p\n", dimm); 103 edac_dbg(4, " dimm->label = '%s'\n", dimm->label); 104 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); 105 edac_dbg(4, " dimm->grain = %d\n", dimm->grain); 106 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); 107 } 108 109 static void edac_mc_dump_csrow(struct csrow_info *csrow) 110 { 111 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx); 112 edac_dbg(4, " csrow = %p\n", csrow); 113 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page); 114 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page); 115 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask); 116 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels); 117 edac_dbg(4, " csrow->channels = %p\n", csrow->channels); 118 edac_dbg(4, " csrow->mci = %p\n", csrow->mci); 119 } 120 121 static void edac_mc_dump_mci(struct mem_ctl_info *mci) 122 { 123 edac_dbg(3, "\tmci = %p\n", mci); 124 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap); 125 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap); 126 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap); 127 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check); 128 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n", 129 mci->nr_csrows, mci->csrows); 130 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n", 131 mci->tot_dimms, mci->dimms); 132 edac_dbg(3, "\tdev = %p\n", mci->pdev); 133 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n", 134 mci->mod_name, mci->ctl_name); 135 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info); 136 } 137 138 #endif /* CONFIG_EDAC_DEBUG */ 139 140 const char * const edac_mem_types[] = { 141 [MEM_EMPTY] = "Empty", 142 [MEM_RESERVED] = "Reserved", 143 [MEM_UNKNOWN] = "Unknown", 144 [MEM_FPM] = "FPM", 145 [MEM_EDO] = "EDO", 146 [MEM_BEDO] = "BEDO", 147 [MEM_SDR] = "Unbuffered-SDR", 148 [MEM_RDR] = "Registered-SDR", 149 [MEM_DDR] = "Unbuffered-DDR", 150 [MEM_RDDR] = "Registered-DDR", 151 [MEM_RMBS] = "RMBS", 152 [MEM_DDR2] = "Unbuffered-DDR2", 153 [MEM_FB_DDR2] = "FullyBuffered-DDR2", 154 [MEM_RDDR2] = "Registered-DDR2", 155 [MEM_XDR] = "XDR", 156 [MEM_DDR3] = "Unbuffered-DDR3", 157 [MEM_RDDR3] = "Registered-DDR3", 158 [MEM_LRDDR3] = "Load-Reduced-DDR3-RAM", 159 [MEM_LPDDR3] = "Low-Power-DDR3-RAM", 160 [MEM_DDR4] = "Unbuffered-DDR4", 161 [MEM_RDDR4] = "Registered-DDR4", 162 [MEM_LPDDR4] = "Low-Power-DDR4-RAM", 163 [MEM_LRDDR4] = "Load-Reduced-DDR4-RAM", 164 [MEM_DDR5] = "Unbuffered-DDR5", 165 [MEM_RDDR5] = "Registered-DDR5", 166 [MEM_LRDDR5] = "Load-Reduced-DDR5-RAM", 167 [MEM_NVDIMM] = "Non-volatile-RAM", 168 [MEM_WIO2] = "Wide-IO-2", 169 [MEM_HBM2] = "High-bandwidth-memory-Gen2", 170 }; 171 EXPORT_SYMBOL_GPL(edac_mem_types); 172 173 /** 174 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation 175 * @p: pointer to a pointer with the memory offset to be used. At 176 * return, this will be incremented to point to the next offset 177 * @size: Size of the data structure to be reserved 178 * @n_elems: Number of elements that should be reserved 179 * 180 * If 'size' is a constant, the compiler will optimize this whole function 181 * down to either a no-op or the addition of a constant to the value of '*p'. 182 * 183 * The 'p' pointer is absolutely needed to keep the proper advancing 184 * further in memory to the proper offsets when allocating the struct along 185 * with its embedded structs, as edac_device_alloc_ctl_info() does it 186 * above, for example. 187 * 188 * At return, the pointer 'p' will be incremented to be used on a next call 189 * to this function. 190 */ 191 void *edac_align_ptr(void **p, unsigned int size, int n_elems) 192 { 193 unsigned int align, r; 194 void *ptr = *p; 195 196 *p += size * n_elems; 197 198 /* 199 * 'p' can possibly be an unaligned item X such that sizeof(X) is 200 * 'size'. Adjust 'p' so that its alignment is at least as 201 * stringent as what the compiler would provide for X and return 202 * the aligned result. 203 * Here we assume that the alignment of a "long long" is the most 204 * stringent alignment that the compiler will ever provide by default. 205 * As far as I know, this is a reasonable assumption. 206 */ 207 if (size > sizeof(long)) 208 align = sizeof(long long); 209 else if (size > sizeof(int)) 210 align = sizeof(long); 211 else if (size > sizeof(short)) 212 align = sizeof(int); 213 else if (size > sizeof(char)) 214 align = sizeof(short); 215 else 216 return (char *)ptr; 217 218 r = (unsigned long)ptr % align; 219 220 if (r == 0) 221 return (char *)ptr; 222 223 *p += align - r; 224 225 return (void *)(((unsigned long)ptr) + align - r); 226 } 227 228 static void _edac_mc_free(struct mem_ctl_info *mci) 229 { 230 put_device(&mci->dev); 231 } 232 233 static void mci_release(struct device *dev) 234 { 235 struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev); 236 struct csrow_info *csr; 237 int i, chn, row; 238 239 if (mci->dimms) { 240 for (i = 0; i < mci->tot_dimms; i++) 241 kfree(mci->dimms[i]); 242 kfree(mci->dimms); 243 } 244 245 if (mci->csrows) { 246 for (row = 0; row < mci->nr_csrows; row++) { 247 csr = mci->csrows[row]; 248 if (!csr) 249 continue; 250 251 if (csr->channels) { 252 for (chn = 0; chn < mci->num_cschannel; chn++) 253 kfree(csr->channels[chn]); 254 kfree(csr->channels); 255 } 256 kfree(csr); 257 } 258 kfree(mci->csrows); 259 } 260 kfree(mci); 261 } 262 263 static int edac_mc_alloc_csrows(struct mem_ctl_info *mci) 264 { 265 unsigned int tot_channels = mci->num_cschannel; 266 unsigned int tot_csrows = mci->nr_csrows; 267 unsigned int row, chn; 268 269 /* 270 * Alocate and fill the csrow/channels structs 271 */ 272 mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL); 273 if (!mci->csrows) 274 return -ENOMEM; 275 276 for (row = 0; row < tot_csrows; row++) { 277 struct csrow_info *csr; 278 279 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL); 280 if (!csr) 281 return -ENOMEM; 282 283 mci->csrows[row] = csr; 284 csr->csrow_idx = row; 285 csr->mci = mci; 286 csr->nr_channels = tot_channels; 287 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels), 288 GFP_KERNEL); 289 if (!csr->channels) 290 return -ENOMEM; 291 292 for (chn = 0; chn < tot_channels; chn++) { 293 struct rank_info *chan; 294 295 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL); 296 if (!chan) 297 return -ENOMEM; 298 299 csr->channels[chn] = chan; 300 chan->chan_idx = chn; 301 chan->csrow = csr; 302 } 303 } 304 305 return 0; 306 } 307 308 static int edac_mc_alloc_dimms(struct mem_ctl_info *mci) 309 { 310 unsigned int pos[EDAC_MAX_LAYERS]; 311 unsigned int row, chn, idx; 312 int layer; 313 void *p; 314 315 /* 316 * Allocate and fill the dimm structs 317 */ 318 mci->dimms = kcalloc(mci->tot_dimms, sizeof(*mci->dimms), GFP_KERNEL); 319 if (!mci->dimms) 320 return -ENOMEM; 321 322 memset(&pos, 0, sizeof(pos)); 323 row = 0; 324 chn = 0; 325 for (idx = 0; idx < mci->tot_dimms; idx++) { 326 struct dimm_info *dimm; 327 struct rank_info *chan; 328 int n, len; 329 330 chan = mci->csrows[row]->channels[chn]; 331 332 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL); 333 if (!dimm) 334 return -ENOMEM; 335 mci->dimms[idx] = dimm; 336 dimm->mci = mci; 337 dimm->idx = idx; 338 339 /* 340 * Copy DIMM location and initialize it. 341 */ 342 len = sizeof(dimm->label); 343 p = dimm->label; 344 n = scnprintf(p, len, "mc#%u", mci->mc_idx); 345 p += n; 346 len -= n; 347 for (layer = 0; layer < mci->n_layers; layer++) { 348 n = scnprintf(p, len, "%s#%u", 349 edac_layer_name[mci->layers[layer].type], 350 pos[layer]); 351 p += n; 352 len -= n; 353 dimm->location[layer] = pos[layer]; 354 } 355 356 /* Link it to the csrows old API data */ 357 chan->dimm = dimm; 358 dimm->csrow = row; 359 dimm->cschannel = chn; 360 361 /* Increment csrow location */ 362 if (mci->layers[0].is_virt_csrow) { 363 chn++; 364 if (chn == mci->num_cschannel) { 365 chn = 0; 366 row++; 367 } 368 } else { 369 row++; 370 if (row == mci->nr_csrows) { 371 row = 0; 372 chn++; 373 } 374 } 375 376 /* Increment dimm location */ 377 for (layer = mci->n_layers - 1; layer >= 0; layer--) { 378 pos[layer]++; 379 if (pos[layer] < mci->layers[layer].size) 380 break; 381 pos[layer] = 0; 382 } 383 } 384 385 return 0; 386 } 387 388 struct mem_ctl_info *edac_mc_alloc(unsigned int mc_num, 389 unsigned int n_layers, 390 struct edac_mc_layer *layers, 391 unsigned int sz_pvt) 392 { 393 struct mem_ctl_info *mci; 394 struct edac_mc_layer *layer; 395 unsigned int idx, size, tot_dimms = 1; 396 unsigned int tot_csrows = 1, tot_channels = 1; 397 void *pvt, *ptr = NULL; 398 bool per_rank = false; 399 400 if (WARN_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0)) 401 return NULL; 402 403 /* 404 * Calculate the total amount of dimms and csrows/cschannels while 405 * in the old API emulation mode 406 */ 407 for (idx = 0; idx < n_layers; idx++) { 408 tot_dimms *= layers[idx].size; 409 410 if (layers[idx].is_virt_csrow) 411 tot_csrows *= layers[idx].size; 412 else 413 tot_channels *= layers[idx].size; 414 415 if (layers[idx].type == EDAC_MC_LAYER_CHIP_SELECT) 416 per_rank = true; 417 } 418 419 /* Figure out the offsets of the various items from the start of an mc 420 * structure. We want the alignment of each item to be at least as 421 * stringent as what the compiler would provide if we could simply 422 * hardcode everything into a single struct. 423 */ 424 mci = edac_align_ptr(&ptr, sizeof(*mci), 1); 425 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers); 426 pvt = edac_align_ptr(&ptr, sz_pvt, 1); 427 size = ((unsigned long)pvt) + sz_pvt; 428 429 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n", 430 size, 431 tot_dimms, 432 per_rank ? "ranks" : "dimms", 433 tot_csrows * tot_channels); 434 435 mci = kzalloc(size, GFP_KERNEL); 436 if (mci == NULL) 437 return NULL; 438 439 mci->dev.release = mci_release; 440 device_initialize(&mci->dev); 441 442 /* Adjust pointers so they point within the memory we just allocated 443 * rather than an imaginary chunk of memory located at address 0. 444 */ 445 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer)); 446 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL; 447 448 /* setup index and various internal pointers */ 449 mci->mc_idx = mc_num; 450 mci->tot_dimms = tot_dimms; 451 mci->pvt_info = pvt; 452 mci->n_layers = n_layers; 453 mci->layers = layer; 454 memcpy(mci->layers, layers, sizeof(*layer) * n_layers); 455 mci->nr_csrows = tot_csrows; 456 mci->num_cschannel = tot_channels; 457 mci->csbased = per_rank; 458 459 if (edac_mc_alloc_csrows(mci)) 460 goto error; 461 462 if (edac_mc_alloc_dimms(mci)) 463 goto error; 464 465 mci->op_state = OP_ALLOC; 466 467 return mci; 468 469 error: 470 _edac_mc_free(mci); 471 472 return NULL; 473 } 474 EXPORT_SYMBOL_GPL(edac_mc_alloc); 475 476 void edac_mc_free(struct mem_ctl_info *mci) 477 { 478 edac_dbg(1, "\n"); 479 480 _edac_mc_free(mci); 481 } 482 EXPORT_SYMBOL_GPL(edac_mc_free); 483 484 bool edac_has_mcs(void) 485 { 486 bool ret; 487 488 mutex_lock(&mem_ctls_mutex); 489 490 ret = list_empty(&mc_devices); 491 492 mutex_unlock(&mem_ctls_mutex); 493 494 return !ret; 495 } 496 EXPORT_SYMBOL_GPL(edac_has_mcs); 497 498 /* Caller must hold mem_ctls_mutex */ 499 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev) 500 { 501 struct mem_ctl_info *mci; 502 struct list_head *item; 503 504 edac_dbg(3, "\n"); 505 506 list_for_each(item, &mc_devices) { 507 mci = list_entry(item, struct mem_ctl_info, link); 508 509 if (mci->pdev == dev) 510 return mci; 511 } 512 513 return NULL; 514 } 515 516 /** 517 * find_mci_by_dev 518 * 519 * scan list of controllers looking for the one that manages 520 * the 'dev' device 521 * @dev: pointer to a struct device related with the MCI 522 */ 523 struct mem_ctl_info *find_mci_by_dev(struct device *dev) 524 { 525 struct mem_ctl_info *ret; 526 527 mutex_lock(&mem_ctls_mutex); 528 ret = __find_mci_by_dev(dev); 529 mutex_unlock(&mem_ctls_mutex); 530 531 return ret; 532 } 533 EXPORT_SYMBOL_GPL(find_mci_by_dev); 534 535 /* 536 * edac_mc_workq_function 537 * performs the operation scheduled by a workq request 538 */ 539 static void edac_mc_workq_function(struct work_struct *work_req) 540 { 541 struct delayed_work *d_work = to_delayed_work(work_req); 542 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work); 543 544 mutex_lock(&mem_ctls_mutex); 545 546 if (mci->op_state != OP_RUNNING_POLL) { 547 mutex_unlock(&mem_ctls_mutex); 548 return; 549 } 550 551 if (edac_op_state == EDAC_OPSTATE_POLL) 552 mci->edac_check(mci); 553 554 mutex_unlock(&mem_ctls_mutex); 555 556 /* Queue ourselves again. */ 557 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec())); 558 } 559 560 /* 561 * edac_mc_reset_delay_period(unsigned long value) 562 * 563 * user space has updated our poll period value, need to 564 * reset our workq delays 565 */ 566 void edac_mc_reset_delay_period(unsigned long value) 567 { 568 struct mem_ctl_info *mci; 569 struct list_head *item; 570 571 mutex_lock(&mem_ctls_mutex); 572 573 list_for_each(item, &mc_devices) { 574 mci = list_entry(item, struct mem_ctl_info, link); 575 576 if (mci->op_state == OP_RUNNING_POLL) 577 edac_mod_work(&mci->work, value); 578 } 579 mutex_unlock(&mem_ctls_mutex); 580 } 581 582 583 584 /* Return 0 on success, 1 on failure. 585 * Before calling this function, caller must 586 * assign a unique value to mci->mc_idx. 587 * 588 * locking model: 589 * 590 * called with the mem_ctls_mutex lock held 591 */ 592 static int add_mc_to_global_list(struct mem_ctl_info *mci) 593 { 594 struct list_head *item, *insert_before; 595 struct mem_ctl_info *p; 596 597 insert_before = &mc_devices; 598 599 p = __find_mci_by_dev(mci->pdev); 600 if (unlikely(p != NULL)) 601 goto fail0; 602 603 list_for_each(item, &mc_devices) { 604 p = list_entry(item, struct mem_ctl_info, link); 605 606 if (p->mc_idx >= mci->mc_idx) { 607 if (unlikely(p->mc_idx == mci->mc_idx)) 608 goto fail1; 609 610 insert_before = item; 611 break; 612 } 613 } 614 615 list_add_tail_rcu(&mci->link, insert_before); 616 return 0; 617 618 fail0: 619 edac_printk(KERN_WARNING, EDAC_MC, 620 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev), 621 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx); 622 return 1; 623 624 fail1: 625 edac_printk(KERN_WARNING, EDAC_MC, 626 "bug in low-level driver: attempt to assign\n" 627 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__); 628 return 1; 629 } 630 631 static int del_mc_from_global_list(struct mem_ctl_info *mci) 632 { 633 list_del_rcu(&mci->link); 634 635 /* these are for safe removal of devices from global list while 636 * NMI handlers may be traversing list 637 */ 638 synchronize_rcu(); 639 INIT_LIST_HEAD(&mci->link); 640 641 return list_empty(&mc_devices); 642 } 643 644 struct mem_ctl_info *edac_mc_find(int idx) 645 { 646 struct mem_ctl_info *mci; 647 struct list_head *item; 648 649 mutex_lock(&mem_ctls_mutex); 650 651 list_for_each(item, &mc_devices) { 652 mci = list_entry(item, struct mem_ctl_info, link); 653 if (mci->mc_idx == idx) 654 goto unlock; 655 } 656 657 mci = NULL; 658 unlock: 659 mutex_unlock(&mem_ctls_mutex); 660 return mci; 661 } 662 EXPORT_SYMBOL(edac_mc_find); 663 664 const char *edac_get_owner(void) 665 { 666 return edac_mc_owner; 667 } 668 EXPORT_SYMBOL_GPL(edac_get_owner); 669 670 /* FIXME - should a warning be printed if no error detection? correction? */ 671 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci, 672 const struct attribute_group **groups) 673 { 674 int ret = -EINVAL; 675 edac_dbg(0, "\n"); 676 677 #ifdef CONFIG_EDAC_DEBUG 678 if (edac_debug_level >= 3) 679 edac_mc_dump_mci(mci); 680 681 if (edac_debug_level >= 4) { 682 struct dimm_info *dimm; 683 int i; 684 685 for (i = 0; i < mci->nr_csrows; i++) { 686 struct csrow_info *csrow = mci->csrows[i]; 687 u32 nr_pages = 0; 688 int j; 689 690 for (j = 0; j < csrow->nr_channels; j++) 691 nr_pages += csrow->channels[j]->dimm->nr_pages; 692 if (!nr_pages) 693 continue; 694 edac_mc_dump_csrow(csrow); 695 for (j = 0; j < csrow->nr_channels; j++) 696 if (csrow->channels[j]->dimm->nr_pages) 697 edac_mc_dump_channel(csrow->channels[j]); 698 } 699 700 mci_for_each_dimm(mci, dimm) 701 edac_mc_dump_dimm(dimm); 702 } 703 #endif 704 mutex_lock(&mem_ctls_mutex); 705 706 if (edac_mc_owner && edac_mc_owner != mci->mod_name) { 707 ret = -EPERM; 708 goto fail0; 709 } 710 711 if (add_mc_to_global_list(mci)) 712 goto fail0; 713 714 /* set load time so that error rate can be tracked */ 715 mci->start_time = jiffies; 716 717 mci->bus = edac_get_sysfs_subsys(); 718 719 if (edac_create_sysfs_mci_device(mci, groups)) { 720 edac_mc_printk(mci, KERN_WARNING, 721 "failed to create sysfs device\n"); 722 goto fail1; 723 } 724 725 if (mci->edac_check) { 726 mci->op_state = OP_RUNNING_POLL; 727 728 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function); 729 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec())); 730 731 } else { 732 mci->op_state = OP_RUNNING_INTERRUPT; 733 } 734 735 /* Report action taken */ 736 edac_mc_printk(mci, KERN_INFO, 737 "Giving out device to module %s controller %s: DEV %s (%s)\n", 738 mci->mod_name, mci->ctl_name, mci->dev_name, 739 edac_op_state_to_string(mci->op_state)); 740 741 edac_mc_owner = mci->mod_name; 742 743 mutex_unlock(&mem_ctls_mutex); 744 return 0; 745 746 fail1: 747 del_mc_from_global_list(mci); 748 749 fail0: 750 mutex_unlock(&mem_ctls_mutex); 751 return ret; 752 } 753 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups); 754 755 struct mem_ctl_info *edac_mc_del_mc(struct device *dev) 756 { 757 struct mem_ctl_info *mci; 758 759 edac_dbg(0, "\n"); 760 761 mutex_lock(&mem_ctls_mutex); 762 763 /* find the requested mci struct in the global list */ 764 mci = __find_mci_by_dev(dev); 765 if (mci == NULL) { 766 mutex_unlock(&mem_ctls_mutex); 767 return NULL; 768 } 769 770 /* mark MCI offline: */ 771 mci->op_state = OP_OFFLINE; 772 773 if (del_mc_from_global_list(mci)) 774 edac_mc_owner = NULL; 775 776 mutex_unlock(&mem_ctls_mutex); 777 778 if (mci->edac_check) 779 edac_stop_work(&mci->work); 780 781 /* remove from sysfs */ 782 edac_remove_sysfs_mci_device(mci); 783 784 edac_printk(KERN_INFO, EDAC_MC, 785 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx, 786 mci->mod_name, mci->ctl_name, edac_dev_name(mci)); 787 788 return mci; 789 } 790 EXPORT_SYMBOL_GPL(edac_mc_del_mc); 791 792 static void edac_mc_scrub_block(unsigned long page, unsigned long offset, 793 u32 size) 794 { 795 struct page *pg; 796 void *virt_addr; 797 unsigned long flags = 0; 798 799 edac_dbg(3, "\n"); 800 801 /* ECC error page was not in our memory. Ignore it. */ 802 if (!pfn_valid(page)) 803 return; 804 805 /* Find the actual page structure then map it and fix */ 806 pg = pfn_to_page(page); 807 808 if (PageHighMem(pg)) 809 local_irq_save(flags); 810 811 virt_addr = kmap_atomic(pg); 812 813 /* Perform architecture specific atomic scrub operation */ 814 edac_atomic_scrub(virt_addr + offset, size); 815 816 /* Unmap and complete */ 817 kunmap_atomic(virt_addr); 818 819 if (PageHighMem(pg)) 820 local_irq_restore(flags); 821 } 822 823 /* FIXME - should return -1 */ 824 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page) 825 { 826 struct csrow_info **csrows = mci->csrows; 827 int row, i, j, n; 828 829 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page); 830 row = -1; 831 832 for (i = 0; i < mci->nr_csrows; i++) { 833 struct csrow_info *csrow = csrows[i]; 834 n = 0; 835 for (j = 0; j < csrow->nr_channels; j++) { 836 struct dimm_info *dimm = csrow->channels[j]->dimm; 837 n += dimm->nr_pages; 838 } 839 if (n == 0) 840 continue; 841 842 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n", 843 mci->mc_idx, 844 csrow->first_page, page, csrow->last_page, 845 csrow->page_mask); 846 847 if ((page >= csrow->first_page) && 848 (page <= csrow->last_page) && 849 ((page & csrow->page_mask) == 850 (csrow->first_page & csrow->page_mask))) { 851 row = i; 852 break; 853 } 854 } 855 856 if (row == -1) 857 edac_mc_printk(mci, KERN_ERR, 858 "could not look up page error address %lx\n", 859 (unsigned long)page); 860 861 return row; 862 } 863 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page); 864 865 const char *edac_layer_name[] = { 866 [EDAC_MC_LAYER_BRANCH] = "branch", 867 [EDAC_MC_LAYER_CHANNEL] = "channel", 868 [EDAC_MC_LAYER_SLOT] = "slot", 869 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow", 870 [EDAC_MC_LAYER_ALL_MEM] = "memory", 871 }; 872 EXPORT_SYMBOL_GPL(edac_layer_name); 873 874 static void edac_inc_ce_error(struct edac_raw_error_desc *e) 875 { 876 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer }; 877 struct mem_ctl_info *mci = error_desc_to_mci(e); 878 struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]); 879 880 mci->ce_mc += e->error_count; 881 882 if (dimm) 883 dimm->ce_count += e->error_count; 884 else 885 mci->ce_noinfo_count += e->error_count; 886 } 887 888 static void edac_inc_ue_error(struct edac_raw_error_desc *e) 889 { 890 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer }; 891 struct mem_ctl_info *mci = error_desc_to_mci(e); 892 struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]); 893 894 mci->ue_mc += e->error_count; 895 896 if (dimm) 897 dimm->ue_count += e->error_count; 898 else 899 mci->ue_noinfo_count += e->error_count; 900 } 901 902 static void edac_ce_error(struct edac_raw_error_desc *e) 903 { 904 struct mem_ctl_info *mci = error_desc_to_mci(e); 905 unsigned long remapped_page; 906 907 if (edac_mc_get_log_ce()) { 908 edac_mc_printk(mci, KERN_WARNING, 909 "%d CE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx%s%s)\n", 910 e->error_count, e->msg, 911 *e->msg ? " " : "", 912 e->label, e->location, e->page_frame_number, e->offset_in_page, 913 e->grain, e->syndrome, 914 *e->other_detail ? " - " : "", 915 e->other_detail); 916 } 917 918 edac_inc_ce_error(e); 919 920 if (mci->scrub_mode == SCRUB_SW_SRC) { 921 /* 922 * Some memory controllers (called MCs below) can remap 923 * memory so that it is still available at a different 924 * address when PCI devices map into memory. 925 * MC's that can't do this, lose the memory where PCI 926 * devices are mapped. This mapping is MC-dependent 927 * and so we call back into the MC driver for it to 928 * map the MC page to a physical (CPU) page which can 929 * then be mapped to a virtual page - which can then 930 * be scrubbed. 931 */ 932 remapped_page = mci->ctl_page_to_phys ? 933 mci->ctl_page_to_phys(mci, e->page_frame_number) : 934 e->page_frame_number; 935 936 edac_mc_scrub_block(remapped_page, e->offset_in_page, e->grain); 937 } 938 } 939 940 static void edac_ue_error(struct edac_raw_error_desc *e) 941 { 942 struct mem_ctl_info *mci = error_desc_to_mci(e); 943 944 if (edac_mc_get_log_ue()) { 945 edac_mc_printk(mci, KERN_WARNING, 946 "%d UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n", 947 e->error_count, e->msg, 948 *e->msg ? " " : "", 949 e->label, e->location, e->page_frame_number, e->offset_in_page, 950 e->grain, 951 *e->other_detail ? " - " : "", 952 e->other_detail); 953 } 954 955 edac_inc_ue_error(e); 956 957 if (edac_mc_get_panic_on_ue()) { 958 panic("UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n", 959 e->msg, 960 *e->msg ? " " : "", 961 e->label, e->location, e->page_frame_number, e->offset_in_page, 962 e->grain, 963 *e->other_detail ? " - " : "", 964 e->other_detail); 965 } 966 } 967 968 static void edac_inc_csrow(struct edac_raw_error_desc *e, int row, int chan) 969 { 970 struct mem_ctl_info *mci = error_desc_to_mci(e); 971 enum hw_event_mc_err_type type = e->type; 972 u16 count = e->error_count; 973 974 if (row < 0) 975 return; 976 977 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan); 978 979 if (type == HW_EVENT_ERR_CORRECTED) { 980 mci->csrows[row]->ce_count += count; 981 if (chan >= 0) 982 mci->csrows[row]->channels[chan]->ce_count += count; 983 } else { 984 mci->csrows[row]->ue_count += count; 985 } 986 } 987 988 void edac_raw_mc_handle_error(struct edac_raw_error_desc *e) 989 { 990 struct mem_ctl_info *mci = error_desc_to_mci(e); 991 u8 grain_bits; 992 993 /* Sanity-check driver-supplied grain value. */ 994 if (WARN_ON_ONCE(!e->grain)) 995 e->grain = 1; 996 997 grain_bits = fls_long(e->grain - 1); 998 999 /* Report the error via the trace interface */ 1000 if (IS_ENABLED(CONFIG_RAS)) 1001 trace_mc_event(e->type, e->msg, e->label, e->error_count, 1002 mci->mc_idx, e->top_layer, e->mid_layer, 1003 e->low_layer, 1004 (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page, 1005 grain_bits, e->syndrome, e->other_detail); 1006 1007 if (e->type == HW_EVENT_ERR_CORRECTED) 1008 edac_ce_error(e); 1009 else 1010 edac_ue_error(e); 1011 } 1012 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error); 1013 1014 void edac_mc_handle_error(const enum hw_event_mc_err_type type, 1015 struct mem_ctl_info *mci, 1016 const u16 error_count, 1017 const unsigned long page_frame_number, 1018 const unsigned long offset_in_page, 1019 const unsigned long syndrome, 1020 const int top_layer, 1021 const int mid_layer, 1022 const int low_layer, 1023 const char *msg, 1024 const char *other_detail) 1025 { 1026 struct dimm_info *dimm; 1027 char *p, *end; 1028 int row = -1, chan = -1; 1029 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer }; 1030 int i, n_labels = 0; 1031 struct edac_raw_error_desc *e = &mci->error_desc; 1032 bool any_memory = true; 1033 const char *prefix; 1034 1035 edac_dbg(3, "MC%d\n", mci->mc_idx); 1036 1037 /* Fills the error report buffer */ 1038 memset(e, 0, sizeof (*e)); 1039 e->error_count = error_count; 1040 e->type = type; 1041 e->top_layer = top_layer; 1042 e->mid_layer = mid_layer; 1043 e->low_layer = low_layer; 1044 e->page_frame_number = page_frame_number; 1045 e->offset_in_page = offset_in_page; 1046 e->syndrome = syndrome; 1047 /* need valid strings here for both: */ 1048 e->msg = msg ?: ""; 1049 e->other_detail = other_detail ?: ""; 1050 1051 /* 1052 * Check if the event report is consistent and if the memory location is 1053 * known. If it is, the DIMM(s) label info will be filled and the DIMM's 1054 * error counters will be incremented. 1055 */ 1056 for (i = 0; i < mci->n_layers; i++) { 1057 if (pos[i] >= (int)mci->layers[i].size) { 1058 1059 edac_mc_printk(mci, KERN_ERR, 1060 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n", 1061 edac_layer_name[mci->layers[i].type], 1062 pos[i], mci->layers[i].size); 1063 /* 1064 * Instead of just returning it, let's use what's 1065 * known about the error. The increment routines and 1066 * the DIMM filter logic will do the right thing by 1067 * pointing the likely damaged DIMMs. 1068 */ 1069 pos[i] = -1; 1070 } 1071 if (pos[i] >= 0) 1072 any_memory = false; 1073 } 1074 1075 /* 1076 * Get the dimm label/grain that applies to the match criteria. 1077 * As the error algorithm may not be able to point to just one memory 1078 * stick, the logic here will get all possible labels that could 1079 * pottentially be affected by the error. 1080 * On FB-DIMM memory controllers, for uncorrected errors, it is common 1081 * to have only the MC channel and the MC dimm (also called "branch") 1082 * but the channel is not known, as the memory is arranged in pairs, 1083 * where each memory belongs to a separate channel within the same 1084 * branch. 1085 */ 1086 p = e->label; 1087 *p = '\0'; 1088 end = p + sizeof(e->label); 1089 prefix = ""; 1090 1091 mci_for_each_dimm(mci, dimm) { 1092 if (top_layer >= 0 && top_layer != dimm->location[0]) 1093 continue; 1094 if (mid_layer >= 0 && mid_layer != dimm->location[1]) 1095 continue; 1096 if (low_layer >= 0 && low_layer != dimm->location[2]) 1097 continue; 1098 1099 /* get the max grain, over the error match range */ 1100 if (dimm->grain > e->grain) 1101 e->grain = dimm->grain; 1102 1103 /* 1104 * If the error is memory-controller wide, there's no need to 1105 * seek for the affected DIMMs because the whole channel/memory 1106 * controller/... may be affected. Also, don't show errors for 1107 * empty DIMM slots. 1108 */ 1109 if (!dimm->nr_pages) 1110 continue; 1111 1112 n_labels++; 1113 if (n_labels > EDAC_MAX_LABELS) { 1114 p = e->label; 1115 *p = '\0'; 1116 } else { 1117 p += scnprintf(p, end - p, "%s%s", prefix, dimm->label); 1118 prefix = OTHER_LABEL; 1119 } 1120 1121 /* 1122 * get csrow/channel of the DIMM, in order to allow 1123 * incrementing the compat API counters 1124 */ 1125 edac_dbg(4, "%s csrows map: (%d,%d)\n", 1126 mci->csbased ? "rank" : "dimm", 1127 dimm->csrow, dimm->cschannel); 1128 if (row == -1) 1129 row = dimm->csrow; 1130 else if (row >= 0 && row != dimm->csrow) 1131 row = -2; 1132 1133 if (chan == -1) 1134 chan = dimm->cschannel; 1135 else if (chan >= 0 && chan != dimm->cschannel) 1136 chan = -2; 1137 } 1138 1139 if (any_memory) 1140 strscpy(e->label, "any memory", sizeof(e->label)); 1141 else if (!*e->label) 1142 strscpy(e->label, "unknown memory", sizeof(e->label)); 1143 1144 edac_inc_csrow(e, row, chan); 1145 1146 /* Fill the RAM location data */ 1147 p = e->location; 1148 end = p + sizeof(e->location); 1149 prefix = ""; 1150 1151 for (i = 0; i < mci->n_layers; i++) { 1152 if (pos[i] < 0) 1153 continue; 1154 1155 p += scnprintf(p, end - p, "%s%s:%d", prefix, 1156 edac_layer_name[mci->layers[i].type], pos[i]); 1157 prefix = " "; 1158 } 1159 1160 edac_raw_mc_handle_error(e); 1161 } 1162 EXPORT_SYMBOL_GPL(edac_mc_handle_error); 1163