1 /* 2 * edac_mc kernel module 3 * (C) 2005, 2006 Linux Networx (http://lnxi.com) 4 * This file may be distributed under the terms of the 5 * GNU General Public License. 6 * 7 * Written by Thayne Harbaugh 8 * Based on work by Dan Hollis <goemon at anime dot net> and others. 9 * http://www.anime.net/~goemon/linux-ecc/ 10 * 11 * Modified by Dave Peterson and Doug Thompson 12 * 13 */ 14 15 #include <linux/module.h> 16 #include <linux/proc_fs.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/smp.h> 20 #include <linux/init.h> 21 #include <linux/sysctl.h> 22 #include <linux/highmem.h> 23 #include <linux/timer.h> 24 #include <linux/slab.h> 25 #include <linux/jiffies.h> 26 #include <linux/spinlock.h> 27 #include <linux/list.h> 28 #include <linux/ctype.h> 29 #include <linux/edac.h> 30 #include <linux/bitops.h> 31 #include <linux/uaccess.h> 32 #include <asm/page.h> 33 #include "edac_mc.h" 34 #include "edac_module.h" 35 #include <ras/ras_event.h> 36 37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB 38 #include <asm/edac.h> 39 #else 40 #define edac_atomic_scrub(va, size) do { } while (0) 41 #endif 42 43 int edac_op_state = EDAC_OPSTATE_INVAL; 44 EXPORT_SYMBOL_GPL(edac_op_state); 45 46 /* lock to memory controller's control array */ 47 static DEFINE_MUTEX(mem_ctls_mutex); 48 static LIST_HEAD(mc_devices); 49 50 /* 51 * Used to lock EDAC MC to just one module, avoiding two drivers e. g. 52 * apei/ghes and i7core_edac to be used at the same time. 53 */ 54 static const char *edac_mc_owner; 55 56 static struct mem_ctl_info *error_desc_to_mci(struct edac_raw_error_desc *e) 57 { 58 return container_of(e, struct mem_ctl_info, error_desc); 59 } 60 61 unsigned int edac_dimm_info_location(struct dimm_info *dimm, char *buf, 62 unsigned int len) 63 { 64 struct mem_ctl_info *mci = dimm->mci; 65 int i, n, count = 0; 66 char *p = buf; 67 68 for (i = 0; i < mci->n_layers; i++) { 69 n = scnprintf(p, len, "%s %d ", 70 edac_layer_name[mci->layers[i].type], 71 dimm->location[i]); 72 p += n; 73 len -= n; 74 count += n; 75 } 76 77 return count; 78 } 79 80 #ifdef CONFIG_EDAC_DEBUG 81 82 static void edac_mc_dump_channel(struct rank_info *chan) 83 { 84 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx); 85 edac_dbg(4, " channel = %p\n", chan); 86 edac_dbg(4, " channel->csrow = %p\n", chan->csrow); 87 edac_dbg(4, " channel->dimm = %p\n", chan->dimm); 88 } 89 90 static void edac_mc_dump_dimm(struct dimm_info *dimm) 91 { 92 char location[80]; 93 94 if (!dimm->nr_pages) 95 return; 96 97 edac_dimm_info_location(dimm, location, sizeof(location)); 98 99 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n", 100 dimm->mci->csbased ? "rank" : "dimm", 101 dimm->idx, location, dimm->csrow, dimm->cschannel); 102 edac_dbg(4, " dimm = %p\n", dimm); 103 edac_dbg(4, " dimm->label = '%s'\n", dimm->label); 104 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); 105 edac_dbg(4, " dimm->grain = %d\n", dimm->grain); 106 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); 107 } 108 109 static void edac_mc_dump_csrow(struct csrow_info *csrow) 110 { 111 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx); 112 edac_dbg(4, " csrow = %p\n", csrow); 113 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page); 114 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page); 115 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask); 116 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels); 117 edac_dbg(4, " csrow->channels = %p\n", csrow->channels); 118 edac_dbg(4, " csrow->mci = %p\n", csrow->mci); 119 } 120 121 static void edac_mc_dump_mci(struct mem_ctl_info *mci) 122 { 123 edac_dbg(3, "\tmci = %p\n", mci); 124 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap); 125 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap); 126 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap); 127 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check); 128 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n", 129 mci->nr_csrows, mci->csrows); 130 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n", 131 mci->tot_dimms, mci->dimms); 132 edac_dbg(3, "\tdev = %p\n", mci->pdev); 133 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n", 134 mci->mod_name, mci->ctl_name); 135 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info); 136 } 137 138 #endif /* CONFIG_EDAC_DEBUG */ 139 140 const char * const edac_mem_types[] = { 141 [MEM_EMPTY] = "Empty", 142 [MEM_RESERVED] = "Reserved", 143 [MEM_UNKNOWN] = "Unknown", 144 [MEM_FPM] = "FPM", 145 [MEM_EDO] = "EDO", 146 [MEM_BEDO] = "BEDO", 147 [MEM_SDR] = "Unbuffered-SDR", 148 [MEM_RDR] = "Registered-SDR", 149 [MEM_DDR] = "Unbuffered-DDR", 150 [MEM_RDDR] = "Registered-DDR", 151 [MEM_RMBS] = "RMBS", 152 [MEM_DDR2] = "Unbuffered-DDR2", 153 [MEM_FB_DDR2] = "FullyBuffered-DDR2", 154 [MEM_RDDR2] = "Registered-DDR2", 155 [MEM_XDR] = "XDR", 156 [MEM_DDR3] = "Unbuffered-DDR3", 157 [MEM_RDDR3] = "Registered-DDR3", 158 [MEM_LRDDR3] = "Load-Reduced-DDR3-RAM", 159 [MEM_LPDDR3] = "Low-Power-DDR3-RAM", 160 [MEM_DDR4] = "Unbuffered-DDR4", 161 [MEM_RDDR4] = "Registered-DDR4", 162 [MEM_LPDDR4] = "Low-Power-DDR4-RAM", 163 [MEM_LRDDR4] = "Load-Reduced-DDR4-RAM", 164 [MEM_DDR5] = "Unbuffered-DDR5", 165 [MEM_RDDR5] = "Registered-DDR5", 166 [MEM_LRDDR5] = "Load-Reduced-DDR5-RAM", 167 [MEM_NVDIMM] = "Non-volatile-RAM", 168 [MEM_WIO2] = "Wide-IO-2", 169 [MEM_HBM2] = "High-bandwidth-memory-Gen2", 170 }; 171 EXPORT_SYMBOL_GPL(edac_mem_types); 172 173 static void _edac_mc_free(struct mem_ctl_info *mci) 174 { 175 put_device(&mci->dev); 176 } 177 178 static void mci_release(struct device *dev) 179 { 180 struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev); 181 struct csrow_info *csr; 182 int i, chn, row; 183 184 if (mci->dimms) { 185 for (i = 0; i < mci->tot_dimms; i++) 186 kfree(mci->dimms[i]); 187 kfree(mci->dimms); 188 } 189 190 if (mci->csrows) { 191 for (row = 0; row < mci->nr_csrows; row++) { 192 csr = mci->csrows[row]; 193 if (!csr) 194 continue; 195 196 if (csr->channels) { 197 for (chn = 0; chn < mci->num_cschannel; chn++) 198 kfree(csr->channels[chn]); 199 kfree(csr->channels); 200 } 201 kfree(csr); 202 } 203 kfree(mci->csrows); 204 } 205 kfree(mci->pvt_info); 206 kfree(mci->layers); 207 kfree(mci); 208 } 209 210 static int edac_mc_alloc_csrows(struct mem_ctl_info *mci) 211 { 212 unsigned int tot_channels = mci->num_cschannel; 213 unsigned int tot_csrows = mci->nr_csrows; 214 unsigned int row, chn; 215 216 /* 217 * Alocate and fill the csrow/channels structs 218 */ 219 mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL); 220 if (!mci->csrows) 221 return -ENOMEM; 222 223 for (row = 0; row < tot_csrows; row++) { 224 struct csrow_info *csr; 225 226 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL); 227 if (!csr) 228 return -ENOMEM; 229 230 mci->csrows[row] = csr; 231 csr->csrow_idx = row; 232 csr->mci = mci; 233 csr->nr_channels = tot_channels; 234 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels), 235 GFP_KERNEL); 236 if (!csr->channels) 237 return -ENOMEM; 238 239 for (chn = 0; chn < tot_channels; chn++) { 240 struct rank_info *chan; 241 242 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL); 243 if (!chan) 244 return -ENOMEM; 245 246 csr->channels[chn] = chan; 247 chan->chan_idx = chn; 248 chan->csrow = csr; 249 } 250 } 251 252 return 0; 253 } 254 255 static int edac_mc_alloc_dimms(struct mem_ctl_info *mci) 256 { 257 unsigned int pos[EDAC_MAX_LAYERS]; 258 unsigned int row, chn, idx; 259 int layer; 260 void *p; 261 262 /* 263 * Allocate and fill the dimm structs 264 */ 265 mci->dimms = kcalloc(mci->tot_dimms, sizeof(*mci->dimms), GFP_KERNEL); 266 if (!mci->dimms) 267 return -ENOMEM; 268 269 memset(&pos, 0, sizeof(pos)); 270 row = 0; 271 chn = 0; 272 for (idx = 0; idx < mci->tot_dimms; idx++) { 273 struct dimm_info *dimm; 274 struct rank_info *chan; 275 int n, len; 276 277 chan = mci->csrows[row]->channels[chn]; 278 279 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL); 280 if (!dimm) 281 return -ENOMEM; 282 mci->dimms[idx] = dimm; 283 dimm->mci = mci; 284 dimm->idx = idx; 285 286 /* 287 * Copy DIMM location and initialize it. 288 */ 289 len = sizeof(dimm->label); 290 p = dimm->label; 291 n = scnprintf(p, len, "mc#%u", mci->mc_idx); 292 p += n; 293 len -= n; 294 for (layer = 0; layer < mci->n_layers; layer++) { 295 n = scnprintf(p, len, "%s#%u", 296 edac_layer_name[mci->layers[layer].type], 297 pos[layer]); 298 p += n; 299 len -= n; 300 dimm->location[layer] = pos[layer]; 301 } 302 303 /* Link it to the csrows old API data */ 304 chan->dimm = dimm; 305 dimm->csrow = row; 306 dimm->cschannel = chn; 307 308 /* Increment csrow location */ 309 if (mci->layers[0].is_virt_csrow) { 310 chn++; 311 if (chn == mci->num_cschannel) { 312 chn = 0; 313 row++; 314 } 315 } else { 316 row++; 317 if (row == mci->nr_csrows) { 318 row = 0; 319 chn++; 320 } 321 } 322 323 /* Increment dimm location */ 324 for (layer = mci->n_layers - 1; layer >= 0; layer--) { 325 pos[layer]++; 326 if (pos[layer] < mci->layers[layer].size) 327 break; 328 pos[layer] = 0; 329 } 330 } 331 332 return 0; 333 } 334 335 struct mem_ctl_info *edac_mc_alloc(unsigned int mc_num, 336 unsigned int n_layers, 337 struct edac_mc_layer *layers, 338 unsigned int sz_pvt) 339 { 340 struct mem_ctl_info *mci; 341 struct edac_mc_layer *layer; 342 unsigned int idx, tot_dimms = 1; 343 unsigned int tot_csrows = 1, tot_channels = 1; 344 bool per_rank = false; 345 346 if (WARN_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0)) 347 return NULL; 348 349 /* 350 * Calculate the total amount of dimms and csrows/cschannels while 351 * in the old API emulation mode 352 */ 353 for (idx = 0; idx < n_layers; idx++) { 354 tot_dimms *= layers[idx].size; 355 356 if (layers[idx].is_virt_csrow) 357 tot_csrows *= layers[idx].size; 358 else 359 tot_channels *= layers[idx].size; 360 361 if (layers[idx].type == EDAC_MC_LAYER_CHIP_SELECT) 362 per_rank = true; 363 } 364 365 mci = kzalloc(sizeof(struct mem_ctl_info), GFP_KERNEL); 366 if (!mci) 367 return NULL; 368 369 mci->layers = kcalloc(n_layers, sizeof(struct edac_mc_layer), GFP_KERNEL); 370 if (!mci->layers) 371 goto error; 372 373 mci->pvt_info = kzalloc(sz_pvt, GFP_KERNEL); 374 if (!mci->pvt_info) 375 goto error; 376 377 mci->dev.release = mci_release; 378 device_initialize(&mci->dev); 379 380 /* setup index and various internal pointers */ 381 mci->mc_idx = mc_num; 382 mci->tot_dimms = tot_dimms; 383 mci->n_layers = n_layers; 384 memcpy(mci->layers, layers, sizeof(*layer) * n_layers); 385 mci->nr_csrows = tot_csrows; 386 mci->num_cschannel = tot_channels; 387 mci->csbased = per_rank; 388 389 if (edac_mc_alloc_csrows(mci)) 390 goto error; 391 392 if (edac_mc_alloc_dimms(mci)) 393 goto error; 394 395 mci->op_state = OP_ALLOC; 396 397 return mci; 398 399 error: 400 _edac_mc_free(mci); 401 402 return NULL; 403 } 404 EXPORT_SYMBOL_GPL(edac_mc_alloc); 405 406 void edac_mc_free(struct mem_ctl_info *mci) 407 { 408 edac_dbg(1, "\n"); 409 410 _edac_mc_free(mci); 411 } 412 EXPORT_SYMBOL_GPL(edac_mc_free); 413 414 bool edac_has_mcs(void) 415 { 416 bool ret; 417 418 mutex_lock(&mem_ctls_mutex); 419 420 ret = list_empty(&mc_devices); 421 422 mutex_unlock(&mem_ctls_mutex); 423 424 return !ret; 425 } 426 EXPORT_SYMBOL_GPL(edac_has_mcs); 427 428 /* Caller must hold mem_ctls_mutex */ 429 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev) 430 { 431 struct mem_ctl_info *mci; 432 struct list_head *item; 433 434 edac_dbg(3, "\n"); 435 436 list_for_each(item, &mc_devices) { 437 mci = list_entry(item, struct mem_ctl_info, link); 438 439 if (mci->pdev == dev) 440 return mci; 441 } 442 443 return NULL; 444 } 445 446 /** 447 * find_mci_by_dev 448 * 449 * scan list of controllers looking for the one that manages 450 * the 'dev' device 451 * @dev: pointer to a struct device related with the MCI 452 */ 453 struct mem_ctl_info *find_mci_by_dev(struct device *dev) 454 { 455 struct mem_ctl_info *ret; 456 457 mutex_lock(&mem_ctls_mutex); 458 ret = __find_mci_by_dev(dev); 459 mutex_unlock(&mem_ctls_mutex); 460 461 return ret; 462 } 463 EXPORT_SYMBOL_GPL(find_mci_by_dev); 464 465 /* 466 * edac_mc_workq_function 467 * performs the operation scheduled by a workq request 468 */ 469 static void edac_mc_workq_function(struct work_struct *work_req) 470 { 471 struct delayed_work *d_work = to_delayed_work(work_req); 472 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work); 473 474 mutex_lock(&mem_ctls_mutex); 475 476 if (mci->op_state != OP_RUNNING_POLL) { 477 mutex_unlock(&mem_ctls_mutex); 478 return; 479 } 480 481 if (edac_op_state == EDAC_OPSTATE_POLL) 482 mci->edac_check(mci); 483 484 mutex_unlock(&mem_ctls_mutex); 485 486 /* Queue ourselves again. */ 487 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec())); 488 } 489 490 /* 491 * edac_mc_reset_delay_period(unsigned long value) 492 * 493 * user space has updated our poll period value, need to 494 * reset our workq delays 495 */ 496 void edac_mc_reset_delay_period(unsigned long value) 497 { 498 struct mem_ctl_info *mci; 499 struct list_head *item; 500 501 mutex_lock(&mem_ctls_mutex); 502 503 list_for_each(item, &mc_devices) { 504 mci = list_entry(item, struct mem_ctl_info, link); 505 506 if (mci->op_state == OP_RUNNING_POLL) 507 edac_mod_work(&mci->work, value); 508 } 509 mutex_unlock(&mem_ctls_mutex); 510 } 511 512 513 514 /* Return 0 on success, 1 on failure. 515 * Before calling this function, caller must 516 * assign a unique value to mci->mc_idx. 517 * 518 * locking model: 519 * 520 * called with the mem_ctls_mutex lock held 521 */ 522 static int add_mc_to_global_list(struct mem_ctl_info *mci) 523 { 524 struct list_head *item, *insert_before; 525 struct mem_ctl_info *p; 526 527 insert_before = &mc_devices; 528 529 p = __find_mci_by_dev(mci->pdev); 530 if (unlikely(p != NULL)) 531 goto fail0; 532 533 list_for_each(item, &mc_devices) { 534 p = list_entry(item, struct mem_ctl_info, link); 535 536 if (p->mc_idx >= mci->mc_idx) { 537 if (unlikely(p->mc_idx == mci->mc_idx)) 538 goto fail1; 539 540 insert_before = item; 541 break; 542 } 543 } 544 545 list_add_tail_rcu(&mci->link, insert_before); 546 return 0; 547 548 fail0: 549 edac_printk(KERN_WARNING, EDAC_MC, 550 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev), 551 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx); 552 return 1; 553 554 fail1: 555 edac_printk(KERN_WARNING, EDAC_MC, 556 "bug in low-level driver: attempt to assign\n" 557 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__); 558 return 1; 559 } 560 561 static int del_mc_from_global_list(struct mem_ctl_info *mci) 562 { 563 list_del_rcu(&mci->link); 564 565 /* these are for safe removal of devices from global list while 566 * NMI handlers may be traversing list 567 */ 568 synchronize_rcu(); 569 INIT_LIST_HEAD(&mci->link); 570 571 return list_empty(&mc_devices); 572 } 573 574 struct mem_ctl_info *edac_mc_find(int idx) 575 { 576 struct mem_ctl_info *mci; 577 struct list_head *item; 578 579 mutex_lock(&mem_ctls_mutex); 580 581 list_for_each(item, &mc_devices) { 582 mci = list_entry(item, struct mem_ctl_info, link); 583 if (mci->mc_idx == idx) 584 goto unlock; 585 } 586 587 mci = NULL; 588 unlock: 589 mutex_unlock(&mem_ctls_mutex); 590 return mci; 591 } 592 EXPORT_SYMBOL(edac_mc_find); 593 594 const char *edac_get_owner(void) 595 { 596 return edac_mc_owner; 597 } 598 EXPORT_SYMBOL_GPL(edac_get_owner); 599 600 /* FIXME - should a warning be printed if no error detection? correction? */ 601 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci, 602 const struct attribute_group **groups) 603 { 604 int ret = -EINVAL; 605 edac_dbg(0, "\n"); 606 607 #ifdef CONFIG_EDAC_DEBUG 608 if (edac_debug_level >= 3) 609 edac_mc_dump_mci(mci); 610 611 if (edac_debug_level >= 4) { 612 struct dimm_info *dimm; 613 int i; 614 615 for (i = 0; i < mci->nr_csrows; i++) { 616 struct csrow_info *csrow = mci->csrows[i]; 617 u32 nr_pages = 0; 618 int j; 619 620 for (j = 0; j < csrow->nr_channels; j++) 621 nr_pages += csrow->channels[j]->dimm->nr_pages; 622 if (!nr_pages) 623 continue; 624 edac_mc_dump_csrow(csrow); 625 for (j = 0; j < csrow->nr_channels; j++) 626 if (csrow->channels[j]->dimm->nr_pages) 627 edac_mc_dump_channel(csrow->channels[j]); 628 } 629 630 mci_for_each_dimm(mci, dimm) 631 edac_mc_dump_dimm(dimm); 632 } 633 #endif 634 mutex_lock(&mem_ctls_mutex); 635 636 if (edac_mc_owner && edac_mc_owner != mci->mod_name) { 637 ret = -EPERM; 638 goto fail0; 639 } 640 641 if (add_mc_to_global_list(mci)) 642 goto fail0; 643 644 /* set load time so that error rate can be tracked */ 645 mci->start_time = jiffies; 646 647 mci->bus = edac_get_sysfs_subsys(); 648 649 if (edac_create_sysfs_mci_device(mci, groups)) { 650 edac_mc_printk(mci, KERN_WARNING, 651 "failed to create sysfs device\n"); 652 goto fail1; 653 } 654 655 if (mci->edac_check) { 656 mci->op_state = OP_RUNNING_POLL; 657 658 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function); 659 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec())); 660 661 } else { 662 mci->op_state = OP_RUNNING_INTERRUPT; 663 } 664 665 /* Report action taken */ 666 edac_mc_printk(mci, KERN_INFO, 667 "Giving out device to module %s controller %s: DEV %s (%s)\n", 668 mci->mod_name, mci->ctl_name, mci->dev_name, 669 edac_op_state_to_string(mci->op_state)); 670 671 edac_mc_owner = mci->mod_name; 672 673 mutex_unlock(&mem_ctls_mutex); 674 return 0; 675 676 fail1: 677 del_mc_from_global_list(mci); 678 679 fail0: 680 mutex_unlock(&mem_ctls_mutex); 681 return ret; 682 } 683 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups); 684 685 struct mem_ctl_info *edac_mc_del_mc(struct device *dev) 686 { 687 struct mem_ctl_info *mci; 688 689 edac_dbg(0, "\n"); 690 691 mutex_lock(&mem_ctls_mutex); 692 693 /* find the requested mci struct in the global list */ 694 mci = __find_mci_by_dev(dev); 695 if (mci == NULL) { 696 mutex_unlock(&mem_ctls_mutex); 697 return NULL; 698 } 699 700 /* mark MCI offline: */ 701 mci->op_state = OP_OFFLINE; 702 703 if (del_mc_from_global_list(mci)) 704 edac_mc_owner = NULL; 705 706 mutex_unlock(&mem_ctls_mutex); 707 708 if (mci->edac_check) 709 edac_stop_work(&mci->work); 710 711 /* remove from sysfs */ 712 edac_remove_sysfs_mci_device(mci); 713 714 edac_printk(KERN_INFO, EDAC_MC, 715 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx, 716 mci->mod_name, mci->ctl_name, edac_dev_name(mci)); 717 718 return mci; 719 } 720 EXPORT_SYMBOL_GPL(edac_mc_del_mc); 721 722 static void edac_mc_scrub_block(unsigned long page, unsigned long offset, 723 u32 size) 724 { 725 struct page *pg; 726 void *virt_addr; 727 unsigned long flags = 0; 728 729 edac_dbg(3, "\n"); 730 731 /* ECC error page was not in our memory. Ignore it. */ 732 if (!pfn_valid(page)) 733 return; 734 735 /* Find the actual page structure then map it and fix */ 736 pg = pfn_to_page(page); 737 738 if (PageHighMem(pg)) 739 local_irq_save(flags); 740 741 virt_addr = kmap_atomic(pg); 742 743 /* Perform architecture specific atomic scrub operation */ 744 edac_atomic_scrub(virt_addr + offset, size); 745 746 /* Unmap and complete */ 747 kunmap_atomic(virt_addr); 748 749 if (PageHighMem(pg)) 750 local_irq_restore(flags); 751 } 752 753 /* FIXME - should return -1 */ 754 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page) 755 { 756 struct csrow_info **csrows = mci->csrows; 757 int row, i, j, n; 758 759 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page); 760 row = -1; 761 762 for (i = 0; i < mci->nr_csrows; i++) { 763 struct csrow_info *csrow = csrows[i]; 764 n = 0; 765 for (j = 0; j < csrow->nr_channels; j++) { 766 struct dimm_info *dimm = csrow->channels[j]->dimm; 767 n += dimm->nr_pages; 768 } 769 if (n == 0) 770 continue; 771 772 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n", 773 mci->mc_idx, 774 csrow->first_page, page, csrow->last_page, 775 csrow->page_mask); 776 777 if ((page >= csrow->first_page) && 778 (page <= csrow->last_page) && 779 ((page & csrow->page_mask) == 780 (csrow->first_page & csrow->page_mask))) { 781 row = i; 782 break; 783 } 784 } 785 786 if (row == -1) 787 edac_mc_printk(mci, KERN_ERR, 788 "could not look up page error address %lx\n", 789 (unsigned long)page); 790 791 return row; 792 } 793 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page); 794 795 const char *edac_layer_name[] = { 796 [EDAC_MC_LAYER_BRANCH] = "branch", 797 [EDAC_MC_LAYER_CHANNEL] = "channel", 798 [EDAC_MC_LAYER_SLOT] = "slot", 799 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow", 800 [EDAC_MC_LAYER_ALL_MEM] = "memory", 801 }; 802 EXPORT_SYMBOL_GPL(edac_layer_name); 803 804 static void edac_inc_ce_error(struct edac_raw_error_desc *e) 805 { 806 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer }; 807 struct mem_ctl_info *mci = error_desc_to_mci(e); 808 struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]); 809 810 mci->ce_mc += e->error_count; 811 812 if (dimm) 813 dimm->ce_count += e->error_count; 814 else 815 mci->ce_noinfo_count += e->error_count; 816 } 817 818 static void edac_inc_ue_error(struct edac_raw_error_desc *e) 819 { 820 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer }; 821 struct mem_ctl_info *mci = error_desc_to_mci(e); 822 struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]); 823 824 mci->ue_mc += e->error_count; 825 826 if (dimm) 827 dimm->ue_count += e->error_count; 828 else 829 mci->ue_noinfo_count += e->error_count; 830 } 831 832 static void edac_ce_error(struct edac_raw_error_desc *e) 833 { 834 struct mem_ctl_info *mci = error_desc_to_mci(e); 835 unsigned long remapped_page; 836 837 if (edac_mc_get_log_ce()) { 838 edac_mc_printk(mci, KERN_WARNING, 839 "%d CE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx%s%s)\n", 840 e->error_count, e->msg, 841 *e->msg ? " " : "", 842 e->label, e->location, e->page_frame_number, e->offset_in_page, 843 e->grain, e->syndrome, 844 *e->other_detail ? " - " : "", 845 e->other_detail); 846 } 847 848 edac_inc_ce_error(e); 849 850 if (mci->scrub_mode == SCRUB_SW_SRC) { 851 /* 852 * Some memory controllers (called MCs below) can remap 853 * memory so that it is still available at a different 854 * address when PCI devices map into memory. 855 * MC's that can't do this, lose the memory where PCI 856 * devices are mapped. This mapping is MC-dependent 857 * and so we call back into the MC driver for it to 858 * map the MC page to a physical (CPU) page which can 859 * then be mapped to a virtual page - which can then 860 * be scrubbed. 861 */ 862 remapped_page = mci->ctl_page_to_phys ? 863 mci->ctl_page_to_phys(mci, e->page_frame_number) : 864 e->page_frame_number; 865 866 edac_mc_scrub_block(remapped_page, e->offset_in_page, e->grain); 867 } 868 } 869 870 static void edac_ue_error(struct edac_raw_error_desc *e) 871 { 872 struct mem_ctl_info *mci = error_desc_to_mci(e); 873 874 if (edac_mc_get_log_ue()) { 875 edac_mc_printk(mci, KERN_WARNING, 876 "%d UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n", 877 e->error_count, e->msg, 878 *e->msg ? " " : "", 879 e->label, e->location, e->page_frame_number, e->offset_in_page, 880 e->grain, 881 *e->other_detail ? " - " : "", 882 e->other_detail); 883 } 884 885 edac_inc_ue_error(e); 886 887 if (edac_mc_get_panic_on_ue()) { 888 panic("UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n", 889 e->msg, 890 *e->msg ? " " : "", 891 e->label, e->location, e->page_frame_number, e->offset_in_page, 892 e->grain, 893 *e->other_detail ? " - " : "", 894 e->other_detail); 895 } 896 } 897 898 static void edac_inc_csrow(struct edac_raw_error_desc *e, int row, int chan) 899 { 900 struct mem_ctl_info *mci = error_desc_to_mci(e); 901 enum hw_event_mc_err_type type = e->type; 902 u16 count = e->error_count; 903 904 if (row < 0) 905 return; 906 907 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan); 908 909 if (type == HW_EVENT_ERR_CORRECTED) { 910 mci->csrows[row]->ce_count += count; 911 if (chan >= 0) 912 mci->csrows[row]->channels[chan]->ce_count += count; 913 } else { 914 mci->csrows[row]->ue_count += count; 915 } 916 } 917 918 void edac_raw_mc_handle_error(struct edac_raw_error_desc *e) 919 { 920 struct mem_ctl_info *mci = error_desc_to_mci(e); 921 u8 grain_bits; 922 923 /* Sanity-check driver-supplied grain value. */ 924 if (WARN_ON_ONCE(!e->grain)) 925 e->grain = 1; 926 927 grain_bits = fls_long(e->grain - 1); 928 929 /* Report the error via the trace interface */ 930 if (IS_ENABLED(CONFIG_RAS)) 931 trace_mc_event(e->type, e->msg, e->label, e->error_count, 932 mci->mc_idx, e->top_layer, e->mid_layer, 933 e->low_layer, 934 (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page, 935 grain_bits, e->syndrome, e->other_detail); 936 937 if (e->type == HW_EVENT_ERR_CORRECTED) 938 edac_ce_error(e); 939 else 940 edac_ue_error(e); 941 } 942 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error); 943 944 void edac_mc_handle_error(const enum hw_event_mc_err_type type, 945 struct mem_ctl_info *mci, 946 const u16 error_count, 947 const unsigned long page_frame_number, 948 const unsigned long offset_in_page, 949 const unsigned long syndrome, 950 const int top_layer, 951 const int mid_layer, 952 const int low_layer, 953 const char *msg, 954 const char *other_detail) 955 { 956 struct dimm_info *dimm; 957 char *p, *end; 958 int row = -1, chan = -1; 959 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer }; 960 int i, n_labels = 0; 961 struct edac_raw_error_desc *e = &mci->error_desc; 962 bool any_memory = true; 963 const char *prefix; 964 965 edac_dbg(3, "MC%d\n", mci->mc_idx); 966 967 /* Fills the error report buffer */ 968 memset(e, 0, sizeof (*e)); 969 e->error_count = error_count; 970 e->type = type; 971 e->top_layer = top_layer; 972 e->mid_layer = mid_layer; 973 e->low_layer = low_layer; 974 e->page_frame_number = page_frame_number; 975 e->offset_in_page = offset_in_page; 976 e->syndrome = syndrome; 977 /* need valid strings here for both: */ 978 e->msg = msg ?: ""; 979 e->other_detail = other_detail ?: ""; 980 981 /* 982 * Check if the event report is consistent and if the memory location is 983 * known. If it is, the DIMM(s) label info will be filled and the DIMM's 984 * error counters will be incremented. 985 */ 986 for (i = 0; i < mci->n_layers; i++) { 987 if (pos[i] >= (int)mci->layers[i].size) { 988 989 edac_mc_printk(mci, KERN_ERR, 990 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n", 991 edac_layer_name[mci->layers[i].type], 992 pos[i], mci->layers[i].size); 993 /* 994 * Instead of just returning it, let's use what's 995 * known about the error. The increment routines and 996 * the DIMM filter logic will do the right thing by 997 * pointing the likely damaged DIMMs. 998 */ 999 pos[i] = -1; 1000 } 1001 if (pos[i] >= 0) 1002 any_memory = false; 1003 } 1004 1005 /* 1006 * Get the dimm label/grain that applies to the match criteria. 1007 * As the error algorithm may not be able to point to just one memory 1008 * stick, the logic here will get all possible labels that could 1009 * pottentially be affected by the error. 1010 * On FB-DIMM memory controllers, for uncorrected errors, it is common 1011 * to have only the MC channel and the MC dimm (also called "branch") 1012 * but the channel is not known, as the memory is arranged in pairs, 1013 * where each memory belongs to a separate channel within the same 1014 * branch. 1015 */ 1016 p = e->label; 1017 *p = '\0'; 1018 end = p + sizeof(e->label); 1019 prefix = ""; 1020 1021 mci_for_each_dimm(mci, dimm) { 1022 if (top_layer >= 0 && top_layer != dimm->location[0]) 1023 continue; 1024 if (mid_layer >= 0 && mid_layer != dimm->location[1]) 1025 continue; 1026 if (low_layer >= 0 && low_layer != dimm->location[2]) 1027 continue; 1028 1029 /* get the max grain, over the error match range */ 1030 if (dimm->grain > e->grain) 1031 e->grain = dimm->grain; 1032 1033 /* 1034 * If the error is memory-controller wide, there's no need to 1035 * seek for the affected DIMMs because the whole channel/memory 1036 * controller/... may be affected. Also, don't show errors for 1037 * empty DIMM slots. 1038 */ 1039 if (!dimm->nr_pages) 1040 continue; 1041 1042 n_labels++; 1043 if (n_labels > EDAC_MAX_LABELS) { 1044 p = e->label; 1045 *p = '\0'; 1046 } else { 1047 p += scnprintf(p, end - p, "%s%s", prefix, dimm->label); 1048 prefix = OTHER_LABEL; 1049 } 1050 1051 /* 1052 * get csrow/channel of the DIMM, in order to allow 1053 * incrementing the compat API counters 1054 */ 1055 edac_dbg(4, "%s csrows map: (%d,%d)\n", 1056 mci->csbased ? "rank" : "dimm", 1057 dimm->csrow, dimm->cschannel); 1058 if (row == -1) 1059 row = dimm->csrow; 1060 else if (row >= 0 && row != dimm->csrow) 1061 row = -2; 1062 1063 if (chan == -1) 1064 chan = dimm->cschannel; 1065 else if (chan >= 0 && chan != dimm->cschannel) 1066 chan = -2; 1067 } 1068 1069 if (any_memory) 1070 strscpy(e->label, "any memory", sizeof(e->label)); 1071 else if (!*e->label) 1072 strscpy(e->label, "unknown memory", sizeof(e->label)); 1073 1074 edac_inc_csrow(e, row, chan); 1075 1076 /* Fill the RAM location data */ 1077 p = e->location; 1078 end = p + sizeof(e->location); 1079 prefix = ""; 1080 1081 for (i = 0; i < mci->n_layers; i++) { 1082 if (pos[i] < 0) 1083 continue; 1084 1085 p += scnprintf(p, end - p, "%s%s:%d", prefix, 1086 edac_layer_name[mci->layers[i].type], pos[i]); 1087 prefix = " "; 1088 } 1089 1090 edac_raw_mc_handle_error(e); 1091 } 1092 EXPORT_SYMBOL_GPL(edac_mc_handle_error); 1093