xref: /openbmc/linux/drivers/edac/edac_mc.c (revision bcb84fb4)
1 /*
2  * edac_mc kernel module
3  * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Thayne Harbaugh
8  * Based on work by Dan Hollis <goemon at anime dot net> and others.
9  *	http://www.anime.net/~goemon/linux-ecc/
10  *
11  * Modified by Dave Peterson and Doug Thompson
12  *
13  */
14 
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <linux/uaccess.h>
32 #include <asm/page.h>
33 #include "edac_mc.h"
34 #include "edac_module.h"
35 #include <ras/ras_event.h>
36 
37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB
38 #include <asm/edac.h>
39 #else
40 #define edac_atomic_scrub(va, size) do { } while (0)
41 #endif
42 
43 /* lock to memory controller's control array */
44 static DEFINE_MUTEX(mem_ctls_mutex);
45 static LIST_HEAD(mc_devices);
46 
47 /*
48  * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
49  *	apei/ghes and i7core_edac to be used at the same time.
50  */
51 static void const *edac_mc_owner;
52 
53 static struct bus_type mc_bus[EDAC_MAX_MCS];
54 
55 unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
56 			         unsigned len)
57 {
58 	struct mem_ctl_info *mci = dimm->mci;
59 	int i, n, count = 0;
60 	char *p = buf;
61 
62 	for (i = 0; i < mci->n_layers; i++) {
63 		n = snprintf(p, len, "%s %d ",
64 			      edac_layer_name[mci->layers[i].type],
65 			      dimm->location[i]);
66 		p += n;
67 		len -= n;
68 		count += n;
69 		if (!len)
70 			break;
71 	}
72 
73 	return count;
74 }
75 
76 #ifdef CONFIG_EDAC_DEBUG
77 
78 static void edac_mc_dump_channel(struct rank_info *chan)
79 {
80 	edac_dbg(4, "  channel->chan_idx = %d\n", chan->chan_idx);
81 	edac_dbg(4, "    channel = %p\n", chan);
82 	edac_dbg(4, "    channel->csrow = %p\n", chan->csrow);
83 	edac_dbg(4, "    channel->dimm = %p\n", chan->dimm);
84 }
85 
86 static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
87 {
88 	char location[80];
89 
90 	edac_dimm_info_location(dimm, location, sizeof(location));
91 
92 	edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
93 		 dimm->mci->csbased ? "rank" : "dimm",
94 		 number, location, dimm->csrow, dimm->cschannel);
95 	edac_dbg(4, "  dimm = %p\n", dimm);
96 	edac_dbg(4, "  dimm->label = '%s'\n", dimm->label);
97 	edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
98 	edac_dbg(4, "  dimm->grain = %d\n", dimm->grain);
99 	edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
100 }
101 
102 static void edac_mc_dump_csrow(struct csrow_info *csrow)
103 {
104 	edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
105 	edac_dbg(4, "  csrow = %p\n", csrow);
106 	edac_dbg(4, "  csrow->first_page = 0x%lx\n", csrow->first_page);
107 	edac_dbg(4, "  csrow->last_page = 0x%lx\n", csrow->last_page);
108 	edac_dbg(4, "  csrow->page_mask = 0x%lx\n", csrow->page_mask);
109 	edac_dbg(4, "  csrow->nr_channels = %d\n", csrow->nr_channels);
110 	edac_dbg(4, "  csrow->channels = %p\n", csrow->channels);
111 	edac_dbg(4, "  csrow->mci = %p\n", csrow->mci);
112 }
113 
114 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
115 {
116 	edac_dbg(3, "\tmci = %p\n", mci);
117 	edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
118 	edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
119 	edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
120 	edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
121 	edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
122 		 mci->nr_csrows, mci->csrows);
123 	edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
124 		 mci->tot_dimms, mci->dimms);
125 	edac_dbg(3, "\tdev = %p\n", mci->pdev);
126 	edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
127 		 mci->mod_name, mci->ctl_name);
128 	edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
129 }
130 
131 #endif				/* CONFIG_EDAC_DEBUG */
132 
133 const char * const edac_mem_types[] = {
134 	[MEM_EMPTY]	= "Empty csrow",
135 	[MEM_RESERVED]	= "Reserved csrow type",
136 	[MEM_UNKNOWN]	= "Unknown csrow type",
137 	[MEM_FPM]	= "Fast page mode RAM",
138 	[MEM_EDO]	= "Extended data out RAM",
139 	[MEM_BEDO]	= "Burst Extended data out RAM",
140 	[MEM_SDR]	= "Single data rate SDRAM",
141 	[MEM_RDR]	= "Registered single data rate SDRAM",
142 	[MEM_DDR]	= "Double data rate SDRAM",
143 	[MEM_RDDR]	= "Registered Double data rate SDRAM",
144 	[MEM_RMBS]	= "Rambus DRAM",
145 	[MEM_DDR2]	= "Unbuffered DDR2 RAM",
146 	[MEM_FB_DDR2]	= "Fully buffered DDR2",
147 	[MEM_RDDR2]	= "Registered DDR2 RAM",
148 	[MEM_XDR]	= "Rambus XDR",
149 	[MEM_DDR3]	= "Unbuffered DDR3 RAM",
150 	[MEM_RDDR3]	= "Registered DDR3 RAM",
151 	[MEM_LRDDR3]	= "Load-Reduced DDR3 RAM",
152 	[MEM_DDR4]	= "Unbuffered DDR4 RAM",
153 	[MEM_RDDR4]	= "Registered DDR4 RAM",
154 };
155 EXPORT_SYMBOL_GPL(edac_mem_types);
156 
157 /**
158  * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
159  * @p:		pointer to a pointer with the memory offset to be used. At
160  *		return, this will be incremented to point to the next offset
161  * @size:	Size of the data structure to be reserved
162  * @n_elems:	Number of elements that should be reserved
163  *
164  * If 'size' is a constant, the compiler will optimize this whole function
165  * down to either a no-op or the addition of a constant to the value of '*p'.
166  *
167  * The 'p' pointer is absolutely needed to keep the proper advancing
168  * further in memory to the proper offsets when allocating the struct along
169  * with its embedded structs, as edac_device_alloc_ctl_info() does it
170  * above, for example.
171  *
172  * At return, the pointer 'p' will be incremented to be used on a next call
173  * to this function.
174  */
175 void *edac_align_ptr(void **p, unsigned size, int n_elems)
176 {
177 	unsigned align, r;
178 	void *ptr = *p;
179 
180 	*p += size * n_elems;
181 
182 	/*
183 	 * 'p' can possibly be an unaligned item X such that sizeof(X) is
184 	 * 'size'.  Adjust 'p' so that its alignment is at least as
185 	 * stringent as what the compiler would provide for X and return
186 	 * the aligned result.
187 	 * Here we assume that the alignment of a "long long" is the most
188 	 * stringent alignment that the compiler will ever provide by default.
189 	 * As far as I know, this is a reasonable assumption.
190 	 */
191 	if (size > sizeof(long))
192 		align = sizeof(long long);
193 	else if (size > sizeof(int))
194 		align = sizeof(long);
195 	else if (size > sizeof(short))
196 		align = sizeof(int);
197 	else if (size > sizeof(char))
198 		align = sizeof(short);
199 	else
200 		return (char *)ptr;
201 
202 	r = (unsigned long)p % align;
203 
204 	if (r == 0)
205 		return (char *)ptr;
206 
207 	*p += align - r;
208 
209 	return (void *)(((unsigned long)ptr) + align - r);
210 }
211 
212 static void _edac_mc_free(struct mem_ctl_info *mci)
213 {
214 	int i, chn, row;
215 	struct csrow_info *csr;
216 	const unsigned int tot_dimms = mci->tot_dimms;
217 	const unsigned int tot_channels = mci->num_cschannel;
218 	const unsigned int tot_csrows = mci->nr_csrows;
219 
220 	if (mci->dimms) {
221 		for (i = 0; i < tot_dimms; i++)
222 			kfree(mci->dimms[i]);
223 		kfree(mci->dimms);
224 	}
225 	if (mci->csrows) {
226 		for (row = 0; row < tot_csrows; row++) {
227 			csr = mci->csrows[row];
228 			if (csr) {
229 				if (csr->channels) {
230 					for (chn = 0; chn < tot_channels; chn++)
231 						kfree(csr->channels[chn]);
232 					kfree(csr->channels);
233 				}
234 				kfree(csr);
235 			}
236 		}
237 		kfree(mci->csrows);
238 	}
239 	kfree(mci);
240 }
241 
242 struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
243 				   unsigned n_layers,
244 				   struct edac_mc_layer *layers,
245 				   unsigned sz_pvt)
246 {
247 	struct mem_ctl_info *mci;
248 	struct edac_mc_layer *layer;
249 	struct csrow_info *csr;
250 	struct rank_info *chan;
251 	struct dimm_info *dimm;
252 	u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
253 	unsigned pos[EDAC_MAX_LAYERS];
254 	unsigned size, tot_dimms = 1, count = 1;
255 	unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
256 	void *pvt, *p, *ptr = NULL;
257 	int i, j, row, chn, n, len, off;
258 	bool per_rank = false;
259 
260 	BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
261 	/*
262 	 * Calculate the total amount of dimms and csrows/cschannels while
263 	 * in the old API emulation mode
264 	 */
265 	for (i = 0; i < n_layers; i++) {
266 		tot_dimms *= layers[i].size;
267 		if (layers[i].is_virt_csrow)
268 			tot_csrows *= layers[i].size;
269 		else
270 			tot_channels *= layers[i].size;
271 
272 		if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
273 			per_rank = true;
274 	}
275 
276 	/* Figure out the offsets of the various items from the start of an mc
277 	 * structure.  We want the alignment of each item to be at least as
278 	 * stringent as what the compiler would provide if we could simply
279 	 * hardcode everything into a single struct.
280 	 */
281 	mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
282 	layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
283 	for (i = 0; i < n_layers; i++) {
284 		count *= layers[i].size;
285 		edac_dbg(4, "errcount layer %d size %d\n", i, count);
286 		ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
287 		ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
288 		tot_errcount += 2 * count;
289 	}
290 
291 	edac_dbg(4, "allocating %d error counters\n", tot_errcount);
292 	pvt = edac_align_ptr(&ptr, sz_pvt, 1);
293 	size = ((unsigned long)pvt) + sz_pvt;
294 
295 	edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
296 		 size,
297 		 tot_dimms,
298 		 per_rank ? "ranks" : "dimms",
299 		 tot_csrows * tot_channels);
300 
301 	mci = kzalloc(size, GFP_KERNEL);
302 	if (mci == NULL)
303 		return NULL;
304 
305 	/* Adjust pointers so they point within the memory we just allocated
306 	 * rather than an imaginary chunk of memory located at address 0.
307 	 */
308 	layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
309 	for (i = 0; i < n_layers; i++) {
310 		mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
311 		mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
312 	}
313 	pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
314 
315 	/* setup index and various internal pointers */
316 	mci->mc_idx = mc_num;
317 	mci->tot_dimms = tot_dimms;
318 	mci->pvt_info = pvt;
319 	mci->n_layers = n_layers;
320 	mci->layers = layer;
321 	memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
322 	mci->nr_csrows = tot_csrows;
323 	mci->num_cschannel = tot_channels;
324 	mci->csbased = per_rank;
325 
326 	/*
327 	 * Alocate and fill the csrow/channels structs
328 	 */
329 	mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
330 	if (!mci->csrows)
331 		goto error;
332 	for (row = 0; row < tot_csrows; row++) {
333 		csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
334 		if (!csr)
335 			goto error;
336 		mci->csrows[row] = csr;
337 		csr->csrow_idx = row;
338 		csr->mci = mci;
339 		csr->nr_channels = tot_channels;
340 		csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
341 					GFP_KERNEL);
342 		if (!csr->channels)
343 			goto error;
344 
345 		for (chn = 0; chn < tot_channels; chn++) {
346 			chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
347 			if (!chan)
348 				goto error;
349 			csr->channels[chn] = chan;
350 			chan->chan_idx = chn;
351 			chan->csrow = csr;
352 		}
353 	}
354 
355 	/*
356 	 * Allocate and fill the dimm structs
357 	 */
358 	mci->dimms  = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
359 	if (!mci->dimms)
360 		goto error;
361 
362 	memset(&pos, 0, sizeof(pos));
363 	row = 0;
364 	chn = 0;
365 	for (i = 0; i < tot_dimms; i++) {
366 		chan = mci->csrows[row]->channels[chn];
367 		off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
368 		if (off < 0 || off >= tot_dimms) {
369 			edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
370 			goto error;
371 		}
372 
373 		dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
374 		if (!dimm)
375 			goto error;
376 		mci->dimms[off] = dimm;
377 		dimm->mci = mci;
378 
379 		/*
380 		 * Copy DIMM location and initialize it.
381 		 */
382 		len = sizeof(dimm->label);
383 		p = dimm->label;
384 		n = snprintf(p, len, "mc#%u", mc_num);
385 		p += n;
386 		len -= n;
387 		for (j = 0; j < n_layers; j++) {
388 			n = snprintf(p, len, "%s#%u",
389 				     edac_layer_name[layers[j].type],
390 				     pos[j]);
391 			p += n;
392 			len -= n;
393 			dimm->location[j] = pos[j];
394 
395 			if (len <= 0)
396 				break;
397 		}
398 
399 		/* Link it to the csrows old API data */
400 		chan->dimm = dimm;
401 		dimm->csrow = row;
402 		dimm->cschannel = chn;
403 
404 		/* Increment csrow location */
405 		if (layers[0].is_virt_csrow) {
406 			chn++;
407 			if (chn == tot_channels) {
408 				chn = 0;
409 				row++;
410 			}
411 		} else {
412 			row++;
413 			if (row == tot_csrows) {
414 				row = 0;
415 				chn++;
416 			}
417 		}
418 
419 		/* Increment dimm location */
420 		for (j = n_layers - 1; j >= 0; j--) {
421 			pos[j]++;
422 			if (pos[j] < layers[j].size)
423 				break;
424 			pos[j] = 0;
425 		}
426 	}
427 
428 	mci->op_state = OP_ALLOC;
429 
430 	return mci;
431 
432 error:
433 	_edac_mc_free(mci);
434 
435 	return NULL;
436 }
437 EXPORT_SYMBOL_GPL(edac_mc_alloc);
438 
439 void edac_mc_free(struct mem_ctl_info *mci)
440 {
441 	edac_dbg(1, "\n");
442 
443 	/* If we're not yet registered with sysfs free only what was allocated
444 	 * in edac_mc_alloc().
445 	 */
446 	if (!device_is_registered(&mci->dev)) {
447 		_edac_mc_free(mci);
448 		return;
449 	}
450 
451 	/* the mci instance is freed here, when the sysfs object is dropped */
452 	edac_unregister_sysfs(mci);
453 }
454 EXPORT_SYMBOL_GPL(edac_mc_free);
455 
456 bool edac_has_mcs(void)
457 {
458 	bool ret;
459 
460 	mutex_lock(&mem_ctls_mutex);
461 
462 	ret = list_empty(&mc_devices);
463 
464 	mutex_unlock(&mem_ctls_mutex);
465 
466 	return !ret;
467 }
468 EXPORT_SYMBOL_GPL(edac_has_mcs);
469 
470 /* Caller must hold mem_ctls_mutex */
471 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
472 {
473 	struct mem_ctl_info *mci;
474 	struct list_head *item;
475 
476 	edac_dbg(3, "\n");
477 
478 	list_for_each(item, &mc_devices) {
479 		mci = list_entry(item, struct mem_ctl_info, link);
480 
481 		if (mci->pdev == dev)
482 			return mci;
483 	}
484 
485 	return NULL;
486 }
487 
488 /**
489  * find_mci_by_dev
490  *
491  *	scan list of controllers looking for the one that manages
492  *	the 'dev' device
493  * @dev: pointer to a struct device related with the MCI
494  */
495 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
496 {
497 	struct mem_ctl_info *ret;
498 
499 	mutex_lock(&mem_ctls_mutex);
500 	ret = __find_mci_by_dev(dev);
501 	mutex_unlock(&mem_ctls_mutex);
502 
503 	return ret;
504 }
505 EXPORT_SYMBOL_GPL(find_mci_by_dev);
506 
507 /*
508  * handler for EDAC to check if NMI type handler has asserted interrupt
509  */
510 static int edac_mc_assert_error_check_and_clear(void)
511 {
512 	int old_state;
513 
514 	if (edac_op_state == EDAC_OPSTATE_POLL)
515 		return 1;
516 
517 	old_state = edac_err_assert;
518 	edac_err_assert = 0;
519 
520 	return old_state;
521 }
522 
523 /*
524  * edac_mc_workq_function
525  *	performs the operation scheduled by a workq request
526  */
527 static void edac_mc_workq_function(struct work_struct *work_req)
528 {
529 	struct delayed_work *d_work = to_delayed_work(work_req);
530 	struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
531 
532 	mutex_lock(&mem_ctls_mutex);
533 
534 	if (mci->op_state != OP_RUNNING_POLL) {
535 		mutex_unlock(&mem_ctls_mutex);
536 		return;
537 	}
538 
539 	if (edac_mc_assert_error_check_and_clear())
540 		mci->edac_check(mci);
541 
542 	mutex_unlock(&mem_ctls_mutex);
543 
544 	/* Queue ourselves again. */
545 	edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
546 }
547 
548 /*
549  * edac_mc_reset_delay_period(unsigned long value)
550  *
551  *	user space has updated our poll period value, need to
552  *	reset our workq delays
553  */
554 void edac_mc_reset_delay_period(unsigned long value)
555 {
556 	struct mem_ctl_info *mci;
557 	struct list_head *item;
558 
559 	mutex_lock(&mem_ctls_mutex);
560 
561 	list_for_each(item, &mc_devices) {
562 		mci = list_entry(item, struct mem_ctl_info, link);
563 
564 		if (mci->op_state == OP_RUNNING_POLL)
565 			edac_mod_work(&mci->work, value);
566 	}
567 	mutex_unlock(&mem_ctls_mutex);
568 }
569 
570 
571 
572 /* Return 0 on success, 1 on failure.
573  * Before calling this function, caller must
574  * assign a unique value to mci->mc_idx.
575  *
576  *	locking model:
577  *
578  *		called with the mem_ctls_mutex lock held
579  */
580 static int add_mc_to_global_list(struct mem_ctl_info *mci)
581 {
582 	struct list_head *item, *insert_before;
583 	struct mem_ctl_info *p;
584 
585 	insert_before = &mc_devices;
586 
587 	p = __find_mci_by_dev(mci->pdev);
588 	if (unlikely(p != NULL))
589 		goto fail0;
590 
591 	list_for_each(item, &mc_devices) {
592 		p = list_entry(item, struct mem_ctl_info, link);
593 
594 		if (p->mc_idx >= mci->mc_idx) {
595 			if (unlikely(p->mc_idx == mci->mc_idx))
596 				goto fail1;
597 
598 			insert_before = item;
599 			break;
600 		}
601 	}
602 
603 	list_add_tail_rcu(&mci->link, insert_before);
604 	atomic_inc(&edac_handlers);
605 	return 0;
606 
607 fail0:
608 	edac_printk(KERN_WARNING, EDAC_MC,
609 		"%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
610 		edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
611 	return 1;
612 
613 fail1:
614 	edac_printk(KERN_WARNING, EDAC_MC,
615 		"bug in low-level driver: attempt to assign\n"
616 		"    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
617 	return 1;
618 }
619 
620 static int del_mc_from_global_list(struct mem_ctl_info *mci)
621 {
622 	int handlers = atomic_dec_return(&edac_handlers);
623 	list_del_rcu(&mci->link);
624 
625 	/* these are for safe removal of devices from global list while
626 	 * NMI handlers may be traversing list
627 	 */
628 	synchronize_rcu();
629 	INIT_LIST_HEAD(&mci->link);
630 
631 	return handlers;
632 }
633 
634 struct mem_ctl_info *edac_mc_find(int idx)
635 {
636 	struct mem_ctl_info *mci = NULL;
637 	struct list_head *item;
638 
639 	mutex_lock(&mem_ctls_mutex);
640 
641 	list_for_each(item, &mc_devices) {
642 		mci = list_entry(item, struct mem_ctl_info, link);
643 
644 		if (mci->mc_idx >= idx) {
645 			if (mci->mc_idx == idx) {
646 				goto unlock;
647 			}
648 			break;
649 		}
650 	}
651 
652 unlock:
653 	mutex_unlock(&mem_ctls_mutex);
654 	return mci;
655 }
656 EXPORT_SYMBOL(edac_mc_find);
657 
658 
659 /* FIXME - should a warning be printed if no error detection? correction? */
660 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
661 			       const struct attribute_group **groups)
662 {
663 	int ret = -EINVAL;
664 	edac_dbg(0, "\n");
665 
666 	if (mci->mc_idx >= EDAC_MAX_MCS) {
667 		pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx);
668 		return -ENODEV;
669 	}
670 
671 #ifdef CONFIG_EDAC_DEBUG
672 	if (edac_debug_level >= 3)
673 		edac_mc_dump_mci(mci);
674 
675 	if (edac_debug_level >= 4) {
676 		int i;
677 
678 		for (i = 0; i < mci->nr_csrows; i++) {
679 			struct csrow_info *csrow = mci->csrows[i];
680 			u32 nr_pages = 0;
681 			int j;
682 
683 			for (j = 0; j < csrow->nr_channels; j++)
684 				nr_pages += csrow->channels[j]->dimm->nr_pages;
685 			if (!nr_pages)
686 				continue;
687 			edac_mc_dump_csrow(csrow);
688 			for (j = 0; j < csrow->nr_channels; j++)
689 				if (csrow->channels[j]->dimm->nr_pages)
690 					edac_mc_dump_channel(csrow->channels[j]);
691 		}
692 		for (i = 0; i < mci->tot_dimms; i++)
693 			if (mci->dimms[i]->nr_pages)
694 				edac_mc_dump_dimm(mci->dimms[i], i);
695 	}
696 #endif
697 	mutex_lock(&mem_ctls_mutex);
698 
699 	if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
700 		ret = -EPERM;
701 		goto fail0;
702 	}
703 
704 	if (add_mc_to_global_list(mci))
705 		goto fail0;
706 
707 	/* set load time so that error rate can be tracked */
708 	mci->start_time = jiffies;
709 
710 	mci->bus = &mc_bus[mci->mc_idx];
711 
712 	if (edac_create_sysfs_mci_device(mci, groups)) {
713 		edac_mc_printk(mci, KERN_WARNING,
714 			"failed to create sysfs device\n");
715 		goto fail1;
716 	}
717 
718 	if (mci->edac_check) {
719 		mci->op_state = OP_RUNNING_POLL;
720 
721 		INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
722 		edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
723 
724 	} else {
725 		mci->op_state = OP_RUNNING_INTERRUPT;
726 	}
727 
728 	/* Report action taken */
729 	edac_mc_printk(mci, KERN_INFO,
730 		"Giving out device to module %s controller %s: DEV %s (%s)\n",
731 		mci->mod_name, mci->ctl_name, mci->dev_name,
732 		edac_op_state_to_string(mci->op_state));
733 
734 	edac_mc_owner = mci->mod_name;
735 
736 	mutex_unlock(&mem_ctls_mutex);
737 	return 0;
738 
739 fail1:
740 	del_mc_from_global_list(mci);
741 
742 fail0:
743 	mutex_unlock(&mem_ctls_mutex);
744 	return ret;
745 }
746 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
747 
748 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
749 {
750 	struct mem_ctl_info *mci;
751 
752 	edac_dbg(0, "\n");
753 
754 	mutex_lock(&mem_ctls_mutex);
755 
756 	/* find the requested mci struct in the global list */
757 	mci = __find_mci_by_dev(dev);
758 	if (mci == NULL) {
759 		mutex_unlock(&mem_ctls_mutex);
760 		return NULL;
761 	}
762 
763 	/* mark MCI offline: */
764 	mci->op_state = OP_OFFLINE;
765 
766 	if (!del_mc_from_global_list(mci))
767 		edac_mc_owner = NULL;
768 
769 	mutex_unlock(&mem_ctls_mutex);
770 
771 	if (mci->edac_check)
772 		edac_stop_work(&mci->work);
773 
774 	/* remove from sysfs */
775 	edac_remove_sysfs_mci_device(mci);
776 
777 	edac_printk(KERN_INFO, EDAC_MC,
778 		"Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
779 		mci->mod_name, mci->ctl_name, edac_dev_name(mci));
780 
781 	return mci;
782 }
783 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
784 
785 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
786 				u32 size)
787 {
788 	struct page *pg;
789 	void *virt_addr;
790 	unsigned long flags = 0;
791 
792 	edac_dbg(3, "\n");
793 
794 	/* ECC error page was not in our memory. Ignore it. */
795 	if (!pfn_valid(page))
796 		return;
797 
798 	/* Find the actual page structure then map it and fix */
799 	pg = pfn_to_page(page);
800 
801 	if (PageHighMem(pg))
802 		local_irq_save(flags);
803 
804 	virt_addr = kmap_atomic(pg);
805 
806 	/* Perform architecture specific atomic scrub operation */
807 	edac_atomic_scrub(virt_addr + offset, size);
808 
809 	/* Unmap and complete */
810 	kunmap_atomic(virt_addr);
811 
812 	if (PageHighMem(pg))
813 		local_irq_restore(flags);
814 }
815 
816 /* FIXME - should return -1 */
817 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
818 {
819 	struct csrow_info **csrows = mci->csrows;
820 	int row, i, j, n;
821 
822 	edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
823 	row = -1;
824 
825 	for (i = 0; i < mci->nr_csrows; i++) {
826 		struct csrow_info *csrow = csrows[i];
827 		n = 0;
828 		for (j = 0; j < csrow->nr_channels; j++) {
829 			struct dimm_info *dimm = csrow->channels[j]->dimm;
830 			n += dimm->nr_pages;
831 		}
832 		if (n == 0)
833 			continue;
834 
835 		edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
836 			 mci->mc_idx,
837 			 csrow->first_page, page, csrow->last_page,
838 			 csrow->page_mask);
839 
840 		if ((page >= csrow->first_page) &&
841 		    (page <= csrow->last_page) &&
842 		    ((page & csrow->page_mask) ==
843 		     (csrow->first_page & csrow->page_mask))) {
844 			row = i;
845 			break;
846 		}
847 	}
848 
849 	if (row == -1)
850 		edac_mc_printk(mci, KERN_ERR,
851 			"could not look up page error address %lx\n",
852 			(unsigned long)page);
853 
854 	return row;
855 }
856 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
857 
858 const char *edac_layer_name[] = {
859 	[EDAC_MC_LAYER_BRANCH] = "branch",
860 	[EDAC_MC_LAYER_CHANNEL] = "channel",
861 	[EDAC_MC_LAYER_SLOT] = "slot",
862 	[EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
863 	[EDAC_MC_LAYER_ALL_MEM] = "memory",
864 };
865 EXPORT_SYMBOL_GPL(edac_layer_name);
866 
867 static void edac_inc_ce_error(struct mem_ctl_info *mci,
868 			      bool enable_per_layer_report,
869 			      const int pos[EDAC_MAX_LAYERS],
870 			      const u16 count)
871 {
872 	int i, index = 0;
873 
874 	mci->ce_mc += count;
875 
876 	if (!enable_per_layer_report) {
877 		mci->ce_noinfo_count += count;
878 		return;
879 	}
880 
881 	for (i = 0; i < mci->n_layers; i++) {
882 		if (pos[i] < 0)
883 			break;
884 		index += pos[i];
885 		mci->ce_per_layer[i][index] += count;
886 
887 		if (i < mci->n_layers - 1)
888 			index *= mci->layers[i + 1].size;
889 	}
890 }
891 
892 static void edac_inc_ue_error(struct mem_ctl_info *mci,
893 				    bool enable_per_layer_report,
894 				    const int pos[EDAC_MAX_LAYERS],
895 				    const u16 count)
896 {
897 	int i, index = 0;
898 
899 	mci->ue_mc += count;
900 
901 	if (!enable_per_layer_report) {
902 		mci->ue_noinfo_count += count;
903 		return;
904 	}
905 
906 	for (i = 0; i < mci->n_layers; i++) {
907 		if (pos[i] < 0)
908 			break;
909 		index += pos[i];
910 		mci->ue_per_layer[i][index] += count;
911 
912 		if (i < mci->n_layers - 1)
913 			index *= mci->layers[i + 1].size;
914 	}
915 }
916 
917 static void edac_ce_error(struct mem_ctl_info *mci,
918 			  const u16 error_count,
919 			  const int pos[EDAC_MAX_LAYERS],
920 			  const char *msg,
921 			  const char *location,
922 			  const char *label,
923 			  const char *detail,
924 			  const char *other_detail,
925 			  const bool enable_per_layer_report,
926 			  const unsigned long page_frame_number,
927 			  const unsigned long offset_in_page,
928 			  long grain)
929 {
930 	unsigned long remapped_page;
931 	char *msg_aux = "";
932 
933 	if (*msg)
934 		msg_aux = " ";
935 
936 	if (edac_mc_get_log_ce()) {
937 		if (other_detail && *other_detail)
938 			edac_mc_printk(mci, KERN_WARNING,
939 				       "%d CE %s%son %s (%s %s - %s)\n",
940 				       error_count, msg, msg_aux, label,
941 				       location, detail, other_detail);
942 		else
943 			edac_mc_printk(mci, KERN_WARNING,
944 				       "%d CE %s%son %s (%s %s)\n",
945 				       error_count, msg, msg_aux, label,
946 				       location, detail);
947 	}
948 	edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
949 
950 	if (mci->scrub_mode == SCRUB_SW_SRC) {
951 		/*
952 			* Some memory controllers (called MCs below) can remap
953 			* memory so that it is still available at a different
954 			* address when PCI devices map into memory.
955 			* MC's that can't do this, lose the memory where PCI
956 			* devices are mapped. This mapping is MC-dependent
957 			* and so we call back into the MC driver for it to
958 			* map the MC page to a physical (CPU) page which can
959 			* then be mapped to a virtual page - which can then
960 			* be scrubbed.
961 			*/
962 		remapped_page = mci->ctl_page_to_phys ?
963 			mci->ctl_page_to_phys(mci, page_frame_number) :
964 			page_frame_number;
965 
966 		edac_mc_scrub_block(remapped_page,
967 					offset_in_page, grain);
968 	}
969 }
970 
971 static void edac_ue_error(struct mem_ctl_info *mci,
972 			  const u16 error_count,
973 			  const int pos[EDAC_MAX_LAYERS],
974 			  const char *msg,
975 			  const char *location,
976 			  const char *label,
977 			  const char *detail,
978 			  const char *other_detail,
979 			  const bool enable_per_layer_report)
980 {
981 	char *msg_aux = "";
982 
983 	if (*msg)
984 		msg_aux = " ";
985 
986 	if (edac_mc_get_log_ue()) {
987 		if (other_detail && *other_detail)
988 			edac_mc_printk(mci, KERN_WARNING,
989 				       "%d UE %s%son %s (%s %s - %s)\n",
990 				       error_count, msg, msg_aux, label,
991 				       location, detail, other_detail);
992 		else
993 			edac_mc_printk(mci, KERN_WARNING,
994 				       "%d UE %s%son %s (%s %s)\n",
995 				       error_count, msg, msg_aux, label,
996 				       location, detail);
997 	}
998 
999 	if (edac_mc_get_panic_on_ue()) {
1000 		if (other_detail && *other_detail)
1001 			panic("UE %s%son %s (%s%s - %s)\n",
1002 			      msg, msg_aux, label, location, detail, other_detail);
1003 		else
1004 			panic("UE %s%son %s (%s%s)\n",
1005 			      msg, msg_aux, label, location, detail);
1006 	}
1007 
1008 	edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
1009 }
1010 
1011 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
1012 			      struct mem_ctl_info *mci,
1013 			      struct edac_raw_error_desc *e)
1014 {
1015 	char detail[80];
1016 	int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
1017 
1018 	/* Memory type dependent details about the error */
1019 	if (type == HW_EVENT_ERR_CORRECTED) {
1020 		snprintf(detail, sizeof(detail),
1021 			"page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1022 			e->page_frame_number, e->offset_in_page,
1023 			e->grain, e->syndrome);
1024 		edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1025 			      detail, e->other_detail, e->enable_per_layer_report,
1026 			      e->page_frame_number, e->offset_in_page, e->grain);
1027 	} else {
1028 		snprintf(detail, sizeof(detail),
1029 			"page:0x%lx offset:0x%lx grain:%ld",
1030 			e->page_frame_number, e->offset_in_page, e->grain);
1031 
1032 		edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1033 			      detail, e->other_detail, e->enable_per_layer_report);
1034 	}
1035 
1036 
1037 }
1038 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1039 
1040 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1041 			  struct mem_ctl_info *mci,
1042 			  const u16 error_count,
1043 			  const unsigned long page_frame_number,
1044 			  const unsigned long offset_in_page,
1045 			  const unsigned long syndrome,
1046 			  const int top_layer,
1047 			  const int mid_layer,
1048 			  const int low_layer,
1049 			  const char *msg,
1050 			  const char *other_detail)
1051 {
1052 	char *p;
1053 	int row = -1, chan = -1;
1054 	int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1055 	int i, n_labels = 0;
1056 	u8 grain_bits;
1057 	struct edac_raw_error_desc *e = &mci->error_desc;
1058 
1059 	edac_dbg(3, "MC%d\n", mci->mc_idx);
1060 
1061 	/* Fills the error report buffer */
1062 	memset(e, 0, sizeof (*e));
1063 	e->error_count = error_count;
1064 	e->top_layer = top_layer;
1065 	e->mid_layer = mid_layer;
1066 	e->low_layer = low_layer;
1067 	e->page_frame_number = page_frame_number;
1068 	e->offset_in_page = offset_in_page;
1069 	e->syndrome = syndrome;
1070 	e->msg = msg;
1071 	e->other_detail = other_detail;
1072 
1073 	/*
1074 	 * Check if the event report is consistent and if the memory
1075 	 * location is known. If it is known, enable_per_layer_report will be
1076 	 * true, the DIMM(s) label info will be filled and the per-layer
1077 	 * error counters will be incremented.
1078 	 */
1079 	for (i = 0; i < mci->n_layers; i++) {
1080 		if (pos[i] >= (int)mci->layers[i].size) {
1081 
1082 			edac_mc_printk(mci, KERN_ERR,
1083 				       "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1084 				       edac_layer_name[mci->layers[i].type],
1085 				       pos[i], mci->layers[i].size);
1086 			/*
1087 			 * Instead of just returning it, let's use what's
1088 			 * known about the error. The increment routines and
1089 			 * the DIMM filter logic will do the right thing by
1090 			 * pointing the likely damaged DIMMs.
1091 			 */
1092 			pos[i] = -1;
1093 		}
1094 		if (pos[i] >= 0)
1095 			e->enable_per_layer_report = true;
1096 	}
1097 
1098 	/*
1099 	 * Get the dimm label/grain that applies to the match criteria.
1100 	 * As the error algorithm may not be able to point to just one memory
1101 	 * stick, the logic here will get all possible labels that could
1102 	 * pottentially be affected by the error.
1103 	 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1104 	 * to have only the MC channel and the MC dimm (also called "branch")
1105 	 * but the channel is not known, as the memory is arranged in pairs,
1106 	 * where each memory belongs to a separate channel within the same
1107 	 * branch.
1108 	 */
1109 	p = e->label;
1110 	*p = '\0';
1111 
1112 	for (i = 0; i < mci->tot_dimms; i++) {
1113 		struct dimm_info *dimm = mci->dimms[i];
1114 
1115 		if (top_layer >= 0 && top_layer != dimm->location[0])
1116 			continue;
1117 		if (mid_layer >= 0 && mid_layer != dimm->location[1])
1118 			continue;
1119 		if (low_layer >= 0 && low_layer != dimm->location[2])
1120 			continue;
1121 
1122 		/* get the max grain, over the error match range */
1123 		if (dimm->grain > e->grain)
1124 			e->grain = dimm->grain;
1125 
1126 		/*
1127 		 * If the error is memory-controller wide, there's no need to
1128 		 * seek for the affected DIMMs because the whole
1129 		 * channel/memory controller/...  may be affected.
1130 		 * Also, don't show errors for empty DIMM slots.
1131 		 */
1132 		if (e->enable_per_layer_report && dimm->nr_pages) {
1133 			if (n_labels >= EDAC_MAX_LABELS) {
1134 				e->enable_per_layer_report = false;
1135 				break;
1136 			}
1137 			n_labels++;
1138 			if (p != e->label) {
1139 				strcpy(p, OTHER_LABEL);
1140 				p += strlen(OTHER_LABEL);
1141 			}
1142 			strcpy(p, dimm->label);
1143 			p += strlen(p);
1144 			*p = '\0';
1145 
1146 			/*
1147 			 * get csrow/channel of the DIMM, in order to allow
1148 			 * incrementing the compat API counters
1149 			 */
1150 			edac_dbg(4, "%s csrows map: (%d,%d)\n",
1151 				 mci->csbased ? "rank" : "dimm",
1152 				 dimm->csrow, dimm->cschannel);
1153 			if (row == -1)
1154 				row = dimm->csrow;
1155 			else if (row >= 0 && row != dimm->csrow)
1156 				row = -2;
1157 
1158 			if (chan == -1)
1159 				chan = dimm->cschannel;
1160 			else if (chan >= 0 && chan != dimm->cschannel)
1161 				chan = -2;
1162 		}
1163 	}
1164 
1165 	if (!e->enable_per_layer_report) {
1166 		strcpy(e->label, "any memory");
1167 	} else {
1168 		edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
1169 		if (p == e->label)
1170 			strcpy(e->label, "unknown memory");
1171 		if (type == HW_EVENT_ERR_CORRECTED) {
1172 			if (row >= 0) {
1173 				mci->csrows[row]->ce_count += error_count;
1174 				if (chan >= 0)
1175 					mci->csrows[row]->channels[chan]->ce_count += error_count;
1176 			}
1177 		} else
1178 			if (row >= 0)
1179 				mci->csrows[row]->ue_count += error_count;
1180 	}
1181 
1182 	/* Fill the RAM location data */
1183 	p = e->location;
1184 
1185 	for (i = 0; i < mci->n_layers; i++) {
1186 		if (pos[i] < 0)
1187 			continue;
1188 
1189 		p += sprintf(p, "%s:%d ",
1190 			     edac_layer_name[mci->layers[i].type],
1191 			     pos[i]);
1192 	}
1193 	if (p > e->location)
1194 		*(p - 1) = '\0';
1195 
1196 	/* Report the error via the trace interface */
1197 	grain_bits = fls_long(e->grain) + 1;
1198 	trace_mc_event(type, e->msg, e->label, e->error_count,
1199 		       mci->mc_idx, e->top_layer, e->mid_layer, e->low_layer,
1200 		       (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
1201 		       grain_bits, e->syndrome, e->other_detail);
1202 
1203 	edac_raw_mc_handle_error(type, mci, e);
1204 }
1205 EXPORT_SYMBOL_GPL(edac_mc_handle_error);
1206