1 /* 2 * edac_mc kernel module 3 * (C) 2005, 2006 Linux Networx (http://lnxi.com) 4 * This file may be distributed under the terms of the 5 * GNU General Public License. 6 * 7 * Written by Thayne Harbaugh 8 * Based on work by Dan Hollis <goemon at anime dot net> and others. 9 * http://www.anime.net/~goemon/linux-ecc/ 10 * 11 * Modified by Dave Peterson and Doug Thompson 12 * 13 */ 14 15 #include <linux/module.h> 16 #include <linux/proc_fs.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/smp.h> 20 #include <linux/init.h> 21 #include <linux/sysctl.h> 22 #include <linux/highmem.h> 23 #include <linux/timer.h> 24 #include <linux/slab.h> 25 #include <linux/jiffies.h> 26 #include <linux/spinlock.h> 27 #include <linux/list.h> 28 #include <linux/ctype.h> 29 #include <linux/edac.h> 30 #include <linux/bitops.h> 31 #include <linux/uaccess.h> 32 #include <asm/page.h> 33 #include "edac_mc.h" 34 #include "edac_module.h" 35 #include <ras/ras_event.h> 36 37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB 38 #include <asm/edac.h> 39 #else 40 #define edac_atomic_scrub(va, size) do { } while (0) 41 #endif 42 43 int edac_op_state = EDAC_OPSTATE_INVAL; 44 EXPORT_SYMBOL_GPL(edac_op_state); 45 46 static int edac_report = EDAC_REPORTING_ENABLED; 47 48 /* lock to memory controller's control array */ 49 static DEFINE_MUTEX(mem_ctls_mutex); 50 static LIST_HEAD(mc_devices); 51 52 /* 53 * Used to lock EDAC MC to just one module, avoiding two drivers e. g. 54 * apei/ghes and i7core_edac to be used at the same time. 55 */ 56 static const char *edac_mc_owner; 57 58 static struct bus_type mc_bus[EDAC_MAX_MCS]; 59 60 int edac_get_report_status(void) 61 { 62 return edac_report; 63 } 64 EXPORT_SYMBOL_GPL(edac_get_report_status); 65 66 void edac_set_report_status(int new) 67 { 68 if (new == EDAC_REPORTING_ENABLED || 69 new == EDAC_REPORTING_DISABLED || 70 new == EDAC_REPORTING_FORCE) 71 edac_report = new; 72 } 73 EXPORT_SYMBOL_GPL(edac_set_report_status); 74 75 static int edac_report_set(const char *str, const struct kernel_param *kp) 76 { 77 if (!str) 78 return -EINVAL; 79 80 if (!strncmp(str, "on", 2)) 81 edac_report = EDAC_REPORTING_ENABLED; 82 else if (!strncmp(str, "off", 3)) 83 edac_report = EDAC_REPORTING_DISABLED; 84 else if (!strncmp(str, "force", 5)) 85 edac_report = EDAC_REPORTING_FORCE; 86 87 return 0; 88 } 89 90 static int edac_report_get(char *buffer, const struct kernel_param *kp) 91 { 92 int ret = 0; 93 94 switch (edac_report) { 95 case EDAC_REPORTING_ENABLED: 96 ret = sprintf(buffer, "on"); 97 break; 98 case EDAC_REPORTING_DISABLED: 99 ret = sprintf(buffer, "off"); 100 break; 101 case EDAC_REPORTING_FORCE: 102 ret = sprintf(buffer, "force"); 103 break; 104 default: 105 ret = -EINVAL; 106 break; 107 } 108 109 return ret; 110 } 111 112 static const struct kernel_param_ops edac_report_ops = { 113 .set = edac_report_set, 114 .get = edac_report_get, 115 }; 116 117 module_param_cb(edac_report, &edac_report_ops, &edac_report, 0644); 118 119 unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf, 120 unsigned len) 121 { 122 struct mem_ctl_info *mci = dimm->mci; 123 int i, n, count = 0; 124 char *p = buf; 125 126 for (i = 0; i < mci->n_layers; i++) { 127 n = snprintf(p, len, "%s %d ", 128 edac_layer_name[mci->layers[i].type], 129 dimm->location[i]); 130 p += n; 131 len -= n; 132 count += n; 133 if (!len) 134 break; 135 } 136 137 return count; 138 } 139 140 #ifdef CONFIG_EDAC_DEBUG 141 142 static void edac_mc_dump_channel(struct rank_info *chan) 143 { 144 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx); 145 edac_dbg(4, " channel = %p\n", chan); 146 edac_dbg(4, " channel->csrow = %p\n", chan->csrow); 147 edac_dbg(4, " channel->dimm = %p\n", chan->dimm); 148 } 149 150 static void edac_mc_dump_dimm(struct dimm_info *dimm, int number) 151 { 152 char location[80]; 153 154 edac_dimm_info_location(dimm, location, sizeof(location)); 155 156 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n", 157 dimm->mci->csbased ? "rank" : "dimm", 158 number, location, dimm->csrow, dimm->cschannel); 159 edac_dbg(4, " dimm = %p\n", dimm); 160 edac_dbg(4, " dimm->label = '%s'\n", dimm->label); 161 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); 162 edac_dbg(4, " dimm->grain = %d\n", dimm->grain); 163 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); 164 } 165 166 static void edac_mc_dump_csrow(struct csrow_info *csrow) 167 { 168 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx); 169 edac_dbg(4, " csrow = %p\n", csrow); 170 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page); 171 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page); 172 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask); 173 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels); 174 edac_dbg(4, " csrow->channels = %p\n", csrow->channels); 175 edac_dbg(4, " csrow->mci = %p\n", csrow->mci); 176 } 177 178 static void edac_mc_dump_mci(struct mem_ctl_info *mci) 179 { 180 edac_dbg(3, "\tmci = %p\n", mci); 181 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap); 182 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap); 183 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap); 184 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check); 185 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n", 186 mci->nr_csrows, mci->csrows); 187 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n", 188 mci->tot_dimms, mci->dimms); 189 edac_dbg(3, "\tdev = %p\n", mci->pdev); 190 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n", 191 mci->mod_name, mci->ctl_name); 192 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info); 193 } 194 195 #endif /* CONFIG_EDAC_DEBUG */ 196 197 const char * const edac_mem_types[] = { 198 [MEM_EMPTY] = "Empty", 199 [MEM_RESERVED] = "Reserved", 200 [MEM_UNKNOWN] = "Unknown", 201 [MEM_FPM] = "FPM", 202 [MEM_EDO] = "EDO", 203 [MEM_BEDO] = "BEDO", 204 [MEM_SDR] = "Unbuffered-SDR", 205 [MEM_RDR] = "Registered-SDR", 206 [MEM_DDR] = "Unbuffered-DDR", 207 [MEM_RDDR] = "Registered-DDR", 208 [MEM_RMBS] = "RMBS", 209 [MEM_DDR2] = "Unbuffered-DDR2", 210 [MEM_FB_DDR2] = "FullyBuffered-DDR2", 211 [MEM_RDDR2] = "Registered-DDR2", 212 [MEM_XDR] = "XDR", 213 [MEM_DDR3] = "Unbuffered-DDR3", 214 [MEM_RDDR3] = "Registered-DDR3", 215 [MEM_LRDDR3] = "Load-Reduced-DDR3-RAM", 216 [MEM_DDR4] = "Unbuffered-DDR4", 217 [MEM_RDDR4] = "Registered-DDR4", 218 [MEM_NVDIMM] = "Non-volatile-RAM", 219 }; 220 EXPORT_SYMBOL_GPL(edac_mem_types); 221 222 /** 223 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation 224 * @p: pointer to a pointer with the memory offset to be used. At 225 * return, this will be incremented to point to the next offset 226 * @size: Size of the data structure to be reserved 227 * @n_elems: Number of elements that should be reserved 228 * 229 * If 'size' is a constant, the compiler will optimize this whole function 230 * down to either a no-op or the addition of a constant to the value of '*p'. 231 * 232 * The 'p' pointer is absolutely needed to keep the proper advancing 233 * further in memory to the proper offsets when allocating the struct along 234 * with its embedded structs, as edac_device_alloc_ctl_info() does it 235 * above, for example. 236 * 237 * At return, the pointer 'p' will be incremented to be used on a next call 238 * to this function. 239 */ 240 void *edac_align_ptr(void **p, unsigned size, int n_elems) 241 { 242 unsigned align, r; 243 void *ptr = *p; 244 245 *p += size * n_elems; 246 247 /* 248 * 'p' can possibly be an unaligned item X such that sizeof(X) is 249 * 'size'. Adjust 'p' so that its alignment is at least as 250 * stringent as what the compiler would provide for X and return 251 * the aligned result. 252 * Here we assume that the alignment of a "long long" is the most 253 * stringent alignment that the compiler will ever provide by default. 254 * As far as I know, this is a reasonable assumption. 255 */ 256 if (size > sizeof(long)) 257 align = sizeof(long long); 258 else if (size > sizeof(int)) 259 align = sizeof(long); 260 else if (size > sizeof(short)) 261 align = sizeof(int); 262 else if (size > sizeof(char)) 263 align = sizeof(short); 264 else 265 return (char *)ptr; 266 267 r = (unsigned long)p % align; 268 269 if (r == 0) 270 return (char *)ptr; 271 272 *p += align - r; 273 274 return (void *)(((unsigned long)ptr) + align - r); 275 } 276 277 static void _edac_mc_free(struct mem_ctl_info *mci) 278 { 279 int i, chn, row; 280 struct csrow_info *csr; 281 const unsigned int tot_dimms = mci->tot_dimms; 282 const unsigned int tot_channels = mci->num_cschannel; 283 const unsigned int tot_csrows = mci->nr_csrows; 284 285 if (mci->dimms) { 286 for (i = 0; i < tot_dimms; i++) 287 kfree(mci->dimms[i]); 288 kfree(mci->dimms); 289 } 290 if (mci->csrows) { 291 for (row = 0; row < tot_csrows; row++) { 292 csr = mci->csrows[row]; 293 if (csr) { 294 if (csr->channels) { 295 for (chn = 0; chn < tot_channels; chn++) 296 kfree(csr->channels[chn]); 297 kfree(csr->channels); 298 } 299 kfree(csr); 300 } 301 } 302 kfree(mci->csrows); 303 } 304 kfree(mci); 305 } 306 307 struct mem_ctl_info *edac_mc_alloc(unsigned mc_num, 308 unsigned n_layers, 309 struct edac_mc_layer *layers, 310 unsigned sz_pvt) 311 { 312 struct mem_ctl_info *mci; 313 struct edac_mc_layer *layer; 314 struct csrow_info *csr; 315 struct rank_info *chan; 316 struct dimm_info *dimm; 317 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS]; 318 unsigned pos[EDAC_MAX_LAYERS]; 319 unsigned size, tot_dimms = 1, count = 1; 320 unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0; 321 void *pvt, *p, *ptr = NULL; 322 int i, j, row, chn, n, len, off; 323 bool per_rank = false; 324 325 BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0); 326 /* 327 * Calculate the total amount of dimms and csrows/cschannels while 328 * in the old API emulation mode 329 */ 330 for (i = 0; i < n_layers; i++) { 331 tot_dimms *= layers[i].size; 332 if (layers[i].is_virt_csrow) 333 tot_csrows *= layers[i].size; 334 else 335 tot_channels *= layers[i].size; 336 337 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT) 338 per_rank = true; 339 } 340 341 /* Figure out the offsets of the various items from the start of an mc 342 * structure. We want the alignment of each item to be at least as 343 * stringent as what the compiler would provide if we could simply 344 * hardcode everything into a single struct. 345 */ 346 mci = edac_align_ptr(&ptr, sizeof(*mci), 1); 347 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers); 348 for (i = 0; i < n_layers; i++) { 349 count *= layers[i].size; 350 edac_dbg(4, "errcount layer %d size %d\n", i, count); 351 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count); 352 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count); 353 tot_errcount += 2 * count; 354 } 355 356 edac_dbg(4, "allocating %d error counters\n", tot_errcount); 357 pvt = edac_align_ptr(&ptr, sz_pvt, 1); 358 size = ((unsigned long)pvt) + sz_pvt; 359 360 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n", 361 size, 362 tot_dimms, 363 per_rank ? "ranks" : "dimms", 364 tot_csrows * tot_channels); 365 366 mci = kzalloc(size, GFP_KERNEL); 367 if (mci == NULL) 368 return NULL; 369 370 /* Adjust pointers so they point within the memory we just allocated 371 * rather than an imaginary chunk of memory located at address 0. 372 */ 373 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer)); 374 for (i = 0; i < n_layers; i++) { 375 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i])); 376 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i])); 377 } 378 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL; 379 380 /* setup index and various internal pointers */ 381 mci->mc_idx = mc_num; 382 mci->tot_dimms = tot_dimms; 383 mci->pvt_info = pvt; 384 mci->n_layers = n_layers; 385 mci->layers = layer; 386 memcpy(mci->layers, layers, sizeof(*layer) * n_layers); 387 mci->nr_csrows = tot_csrows; 388 mci->num_cschannel = tot_channels; 389 mci->csbased = per_rank; 390 391 /* 392 * Alocate and fill the csrow/channels structs 393 */ 394 mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL); 395 if (!mci->csrows) 396 goto error; 397 for (row = 0; row < tot_csrows; row++) { 398 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL); 399 if (!csr) 400 goto error; 401 mci->csrows[row] = csr; 402 csr->csrow_idx = row; 403 csr->mci = mci; 404 csr->nr_channels = tot_channels; 405 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels), 406 GFP_KERNEL); 407 if (!csr->channels) 408 goto error; 409 410 for (chn = 0; chn < tot_channels; chn++) { 411 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL); 412 if (!chan) 413 goto error; 414 csr->channels[chn] = chan; 415 chan->chan_idx = chn; 416 chan->csrow = csr; 417 } 418 } 419 420 /* 421 * Allocate and fill the dimm structs 422 */ 423 mci->dimms = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL); 424 if (!mci->dimms) 425 goto error; 426 427 memset(&pos, 0, sizeof(pos)); 428 row = 0; 429 chn = 0; 430 for (i = 0; i < tot_dimms; i++) { 431 chan = mci->csrows[row]->channels[chn]; 432 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]); 433 if (off < 0 || off >= tot_dimms) { 434 edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n"); 435 goto error; 436 } 437 438 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL); 439 if (!dimm) 440 goto error; 441 mci->dimms[off] = dimm; 442 dimm->mci = mci; 443 444 /* 445 * Copy DIMM location and initialize it. 446 */ 447 len = sizeof(dimm->label); 448 p = dimm->label; 449 n = snprintf(p, len, "mc#%u", mc_num); 450 p += n; 451 len -= n; 452 for (j = 0; j < n_layers; j++) { 453 n = snprintf(p, len, "%s#%u", 454 edac_layer_name[layers[j].type], 455 pos[j]); 456 p += n; 457 len -= n; 458 dimm->location[j] = pos[j]; 459 460 if (len <= 0) 461 break; 462 } 463 464 /* Link it to the csrows old API data */ 465 chan->dimm = dimm; 466 dimm->csrow = row; 467 dimm->cschannel = chn; 468 469 /* Increment csrow location */ 470 if (layers[0].is_virt_csrow) { 471 chn++; 472 if (chn == tot_channels) { 473 chn = 0; 474 row++; 475 } 476 } else { 477 row++; 478 if (row == tot_csrows) { 479 row = 0; 480 chn++; 481 } 482 } 483 484 /* Increment dimm location */ 485 for (j = n_layers - 1; j >= 0; j--) { 486 pos[j]++; 487 if (pos[j] < layers[j].size) 488 break; 489 pos[j] = 0; 490 } 491 } 492 493 mci->op_state = OP_ALLOC; 494 495 return mci; 496 497 error: 498 _edac_mc_free(mci); 499 500 return NULL; 501 } 502 EXPORT_SYMBOL_GPL(edac_mc_alloc); 503 504 void edac_mc_free(struct mem_ctl_info *mci) 505 { 506 edac_dbg(1, "\n"); 507 508 /* If we're not yet registered with sysfs free only what was allocated 509 * in edac_mc_alloc(). 510 */ 511 if (!device_is_registered(&mci->dev)) { 512 _edac_mc_free(mci); 513 return; 514 } 515 516 /* the mci instance is freed here, when the sysfs object is dropped */ 517 edac_unregister_sysfs(mci); 518 } 519 EXPORT_SYMBOL_GPL(edac_mc_free); 520 521 bool edac_has_mcs(void) 522 { 523 bool ret; 524 525 mutex_lock(&mem_ctls_mutex); 526 527 ret = list_empty(&mc_devices); 528 529 mutex_unlock(&mem_ctls_mutex); 530 531 return !ret; 532 } 533 EXPORT_SYMBOL_GPL(edac_has_mcs); 534 535 /* Caller must hold mem_ctls_mutex */ 536 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev) 537 { 538 struct mem_ctl_info *mci; 539 struct list_head *item; 540 541 edac_dbg(3, "\n"); 542 543 list_for_each(item, &mc_devices) { 544 mci = list_entry(item, struct mem_ctl_info, link); 545 546 if (mci->pdev == dev) 547 return mci; 548 } 549 550 return NULL; 551 } 552 553 /** 554 * find_mci_by_dev 555 * 556 * scan list of controllers looking for the one that manages 557 * the 'dev' device 558 * @dev: pointer to a struct device related with the MCI 559 */ 560 struct mem_ctl_info *find_mci_by_dev(struct device *dev) 561 { 562 struct mem_ctl_info *ret; 563 564 mutex_lock(&mem_ctls_mutex); 565 ret = __find_mci_by_dev(dev); 566 mutex_unlock(&mem_ctls_mutex); 567 568 return ret; 569 } 570 EXPORT_SYMBOL_GPL(find_mci_by_dev); 571 572 /* 573 * edac_mc_workq_function 574 * performs the operation scheduled by a workq request 575 */ 576 static void edac_mc_workq_function(struct work_struct *work_req) 577 { 578 struct delayed_work *d_work = to_delayed_work(work_req); 579 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work); 580 581 mutex_lock(&mem_ctls_mutex); 582 583 if (mci->op_state != OP_RUNNING_POLL) { 584 mutex_unlock(&mem_ctls_mutex); 585 return; 586 } 587 588 if (edac_op_state == EDAC_OPSTATE_POLL) 589 mci->edac_check(mci); 590 591 mutex_unlock(&mem_ctls_mutex); 592 593 /* Queue ourselves again. */ 594 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec())); 595 } 596 597 /* 598 * edac_mc_reset_delay_period(unsigned long value) 599 * 600 * user space has updated our poll period value, need to 601 * reset our workq delays 602 */ 603 void edac_mc_reset_delay_period(unsigned long value) 604 { 605 struct mem_ctl_info *mci; 606 struct list_head *item; 607 608 mutex_lock(&mem_ctls_mutex); 609 610 list_for_each(item, &mc_devices) { 611 mci = list_entry(item, struct mem_ctl_info, link); 612 613 if (mci->op_state == OP_RUNNING_POLL) 614 edac_mod_work(&mci->work, value); 615 } 616 mutex_unlock(&mem_ctls_mutex); 617 } 618 619 620 621 /* Return 0 on success, 1 on failure. 622 * Before calling this function, caller must 623 * assign a unique value to mci->mc_idx. 624 * 625 * locking model: 626 * 627 * called with the mem_ctls_mutex lock held 628 */ 629 static int add_mc_to_global_list(struct mem_ctl_info *mci) 630 { 631 struct list_head *item, *insert_before; 632 struct mem_ctl_info *p; 633 634 insert_before = &mc_devices; 635 636 p = __find_mci_by_dev(mci->pdev); 637 if (unlikely(p != NULL)) 638 goto fail0; 639 640 list_for_each(item, &mc_devices) { 641 p = list_entry(item, struct mem_ctl_info, link); 642 643 if (p->mc_idx >= mci->mc_idx) { 644 if (unlikely(p->mc_idx == mci->mc_idx)) 645 goto fail1; 646 647 insert_before = item; 648 break; 649 } 650 } 651 652 list_add_tail_rcu(&mci->link, insert_before); 653 return 0; 654 655 fail0: 656 edac_printk(KERN_WARNING, EDAC_MC, 657 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev), 658 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx); 659 return 1; 660 661 fail1: 662 edac_printk(KERN_WARNING, EDAC_MC, 663 "bug in low-level driver: attempt to assign\n" 664 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__); 665 return 1; 666 } 667 668 static int del_mc_from_global_list(struct mem_ctl_info *mci) 669 { 670 list_del_rcu(&mci->link); 671 672 /* these are for safe removal of devices from global list while 673 * NMI handlers may be traversing list 674 */ 675 synchronize_rcu(); 676 INIT_LIST_HEAD(&mci->link); 677 678 return list_empty(&mc_devices); 679 } 680 681 struct mem_ctl_info *edac_mc_find(int idx) 682 { 683 struct mem_ctl_info *mci = NULL; 684 struct list_head *item; 685 686 mutex_lock(&mem_ctls_mutex); 687 688 list_for_each(item, &mc_devices) { 689 mci = list_entry(item, struct mem_ctl_info, link); 690 691 if (mci->mc_idx >= idx) { 692 if (mci->mc_idx == idx) { 693 goto unlock; 694 } 695 break; 696 } 697 } 698 699 unlock: 700 mutex_unlock(&mem_ctls_mutex); 701 return mci; 702 } 703 EXPORT_SYMBOL(edac_mc_find); 704 705 const char *edac_get_owner(void) 706 { 707 return edac_mc_owner; 708 } 709 EXPORT_SYMBOL_GPL(edac_get_owner); 710 711 /* FIXME - should a warning be printed if no error detection? correction? */ 712 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci, 713 const struct attribute_group **groups) 714 { 715 int ret = -EINVAL; 716 edac_dbg(0, "\n"); 717 718 if (mci->mc_idx >= EDAC_MAX_MCS) { 719 pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx); 720 return -ENODEV; 721 } 722 723 #ifdef CONFIG_EDAC_DEBUG 724 if (edac_debug_level >= 3) 725 edac_mc_dump_mci(mci); 726 727 if (edac_debug_level >= 4) { 728 int i; 729 730 for (i = 0; i < mci->nr_csrows; i++) { 731 struct csrow_info *csrow = mci->csrows[i]; 732 u32 nr_pages = 0; 733 int j; 734 735 for (j = 0; j < csrow->nr_channels; j++) 736 nr_pages += csrow->channels[j]->dimm->nr_pages; 737 if (!nr_pages) 738 continue; 739 edac_mc_dump_csrow(csrow); 740 for (j = 0; j < csrow->nr_channels; j++) 741 if (csrow->channels[j]->dimm->nr_pages) 742 edac_mc_dump_channel(csrow->channels[j]); 743 } 744 for (i = 0; i < mci->tot_dimms; i++) 745 if (mci->dimms[i]->nr_pages) 746 edac_mc_dump_dimm(mci->dimms[i], i); 747 } 748 #endif 749 mutex_lock(&mem_ctls_mutex); 750 751 if (edac_mc_owner && edac_mc_owner != mci->mod_name) { 752 ret = -EPERM; 753 goto fail0; 754 } 755 756 if (add_mc_to_global_list(mci)) 757 goto fail0; 758 759 /* set load time so that error rate can be tracked */ 760 mci->start_time = jiffies; 761 762 mci->bus = &mc_bus[mci->mc_idx]; 763 764 if (edac_create_sysfs_mci_device(mci, groups)) { 765 edac_mc_printk(mci, KERN_WARNING, 766 "failed to create sysfs device\n"); 767 goto fail1; 768 } 769 770 if (mci->edac_check) { 771 mci->op_state = OP_RUNNING_POLL; 772 773 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function); 774 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec())); 775 776 } else { 777 mci->op_state = OP_RUNNING_INTERRUPT; 778 } 779 780 /* Report action taken */ 781 edac_mc_printk(mci, KERN_INFO, 782 "Giving out device to module %s controller %s: DEV %s (%s)\n", 783 mci->mod_name, mci->ctl_name, mci->dev_name, 784 edac_op_state_to_string(mci->op_state)); 785 786 edac_mc_owner = mci->mod_name; 787 788 mutex_unlock(&mem_ctls_mutex); 789 return 0; 790 791 fail1: 792 del_mc_from_global_list(mci); 793 794 fail0: 795 mutex_unlock(&mem_ctls_mutex); 796 return ret; 797 } 798 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups); 799 800 struct mem_ctl_info *edac_mc_del_mc(struct device *dev) 801 { 802 struct mem_ctl_info *mci; 803 804 edac_dbg(0, "\n"); 805 806 mutex_lock(&mem_ctls_mutex); 807 808 /* find the requested mci struct in the global list */ 809 mci = __find_mci_by_dev(dev); 810 if (mci == NULL) { 811 mutex_unlock(&mem_ctls_mutex); 812 return NULL; 813 } 814 815 /* mark MCI offline: */ 816 mci->op_state = OP_OFFLINE; 817 818 if (del_mc_from_global_list(mci)) 819 edac_mc_owner = NULL; 820 821 mutex_unlock(&mem_ctls_mutex); 822 823 if (mci->edac_check) 824 edac_stop_work(&mci->work); 825 826 /* remove from sysfs */ 827 edac_remove_sysfs_mci_device(mci); 828 829 edac_printk(KERN_INFO, EDAC_MC, 830 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx, 831 mci->mod_name, mci->ctl_name, edac_dev_name(mci)); 832 833 return mci; 834 } 835 EXPORT_SYMBOL_GPL(edac_mc_del_mc); 836 837 static void edac_mc_scrub_block(unsigned long page, unsigned long offset, 838 u32 size) 839 { 840 struct page *pg; 841 void *virt_addr; 842 unsigned long flags = 0; 843 844 edac_dbg(3, "\n"); 845 846 /* ECC error page was not in our memory. Ignore it. */ 847 if (!pfn_valid(page)) 848 return; 849 850 /* Find the actual page structure then map it and fix */ 851 pg = pfn_to_page(page); 852 853 if (PageHighMem(pg)) 854 local_irq_save(flags); 855 856 virt_addr = kmap_atomic(pg); 857 858 /* Perform architecture specific atomic scrub operation */ 859 edac_atomic_scrub(virt_addr + offset, size); 860 861 /* Unmap and complete */ 862 kunmap_atomic(virt_addr); 863 864 if (PageHighMem(pg)) 865 local_irq_restore(flags); 866 } 867 868 /* FIXME - should return -1 */ 869 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page) 870 { 871 struct csrow_info **csrows = mci->csrows; 872 int row, i, j, n; 873 874 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page); 875 row = -1; 876 877 for (i = 0; i < mci->nr_csrows; i++) { 878 struct csrow_info *csrow = csrows[i]; 879 n = 0; 880 for (j = 0; j < csrow->nr_channels; j++) { 881 struct dimm_info *dimm = csrow->channels[j]->dimm; 882 n += dimm->nr_pages; 883 } 884 if (n == 0) 885 continue; 886 887 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n", 888 mci->mc_idx, 889 csrow->first_page, page, csrow->last_page, 890 csrow->page_mask); 891 892 if ((page >= csrow->first_page) && 893 (page <= csrow->last_page) && 894 ((page & csrow->page_mask) == 895 (csrow->first_page & csrow->page_mask))) { 896 row = i; 897 break; 898 } 899 } 900 901 if (row == -1) 902 edac_mc_printk(mci, KERN_ERR, 903 "could not look up page error address %lx\n", 904 (unsigned long)page); 905 906 return row; 907 } 908 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page); 909 910 const char *edac_layer_name[] = { 911 [EDAC_MC_LAYER_BRANCH] = "branch", 912 [EDAC_MC_LAYER_CHANNEL] = "channel", 913 [EDAC_MC_LAYER_SLOT] = "slot", 914 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow", 915 [EDAC_MC_LAYER_ALL_MEM] = "memory", 916 }; 917 EXPORT_SYMBOL_GPL(edac_layer_name); 918 919 static void edac_inc_ce_error(struct mem_ctl_info *mci, 920 bool enable_per_layer_report, 921 const int pos[EDAC_MAX_LAYERS], 922 const u16 count) 923 { 924 int i, index = 0; 925 926 mci->ce_mc += count; 927 928 if (!enable_per_layer_report) { 929 mci->ce_noinfo_count += count; 930 return; 931 } 932 933 for (i = 0; i < mci->n_layers; i++) { 934 if (pos[i] < 0) 935 break; 936 index += pos[i]; 937 mci->ce_per_layer[i][index] += count; 938 939 if (i < mci->n_layers - 1) 940 index *= mci->layers[i + 1].size; 941 } 942 } 943 944 static void edac_inc_ue_error(struct mem_ctl_info *mci, 945 bool enable_per_layer_report, 946 const int pos[EDAC_MAX_LAYERS], 947 const u16 count) 948 { 949 int i, index = 0; 950 951 mci->ue_mc += count; 952 953 if (!enable_per_layer_report) { 954 mci->ue_noinfo_count += count; 955 return; 956 } 957 958 for (i = 0; i < mci->n_layers; i++) { 959 if (pos[i] < 0) 960 break; 961 index += pos[i]; 962 mci->ue_per_layer[i][index] += count; 963 964 if (i < mci->n_layers - 1) 965 index *= mci->layers[i + 1].size; 966 } 967 } 968 969 static void edac_ce_error(struct mem_ctl_info *mci, 970 const u16 error_count, 971 const int pos[EDAC_MAX_LAYERS], 972 const char *msg, 973 const char *location, 974 const char *label, 975 const char *detail, 976 const char *other_detail, 977 const bool enable_per_layer_report, 978 const unsigned long page_frame_number, 979 const unsigned long offset_in_page, 980 long grain) 981 { 982 unsigned long remapped_page; 983 char *msg_aux = ""; 984 985 if (*msg) 986 msg_aux = " "; 987 988 if (edac_mc_get_log_ce()) { 989 if (other_detail && *other_detail) 990 edac_mc_printk(mci, KERN_WARNING, 991 "%d CE %s%son %s (%s %s - %s)\n", 992 error_count, msg, msg_aux, label, 993 location, detail, other_detail); 994 else 995 edac_mc_printk(mci, KERN_WARNING, 996 "%d CE %s%son %s (%s %s)\n", 997 error_count, msg, msg_aux, label, 998 location, detail); 999 } 1000 edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count); 1001 1002 if (mci->scrub_mode == SCRUB_SW_SRC) { 1003 /* 1004 * Some memory controllers (called MCs below) can remap 1005 * memory so that it is still available at a different 1006 * address when PCI devices map into memory. 1007 * MC's that can't do this, lose the memory where PCI 1008 * devices are mapped. This mapping is MC-dependent 1009 * and so we call back into the MC driver for it to 1010 * map the MC page to a physical (CPU) page which can 1011 * then be mapped to a virtual page - which can then 1012 * be scrubbed. 1013 */ 1014 remapped_page = mci->ctl_page_to_phys ? 1015 mci->ctl_page_to_phys(mci, page_frame_number) : 1016 page_frame_number; 1017 1018 edac_mc_scrub_block(remapped_page, 1019 offset_in_page, grain); 1020 } 1021 } 1022 1023 static void edac_ue_error(struct mem_ctl_info *mci, 1024 const u16 error_count, 1025 const int pos[EDAC_MAX_LAYERS], 1026 const char *msg, 1027 const char *location, 1028 const char *label, 1029 const char *detail, 1030 const char *other_detail, 1031 const bool enable_per_layer_report) 1032 { 1033 char *msg_aux = ""; 1034 1035 if (*msg) 1036 msg_aux = " "; 1037 1038 if (edac_mc_get_log_ue()) { 1039 if (other_detail && *other_detail) 1040 edac_mc_printk(mci, KERN_WARNING, 1041 "%d UE %s%son %s (%s %s - %s)\n", 1042 error_count, msg, msg_aux, label, 1043 location, detail, other_detail); 1044 else 1045 edac_mc_printk(mci, KERN_WARNING, 1046 "%d UE %s%son %s (%s %s)\n", 1047 error_count, msg, msg_aux, label, 1048 location, detail); 1049 } 1050 1051 if (edac_mc_get_panic_on_ue()) { 1052 if (other_detail && *other_detail) 1053 panic("UE %s%son %s (%s%s - %s)\n", 1054 msg, msg_aux, label, location, detail, other_detail); 1055 else 1056 panic("UE %s%son %s (%s%s)\n", 1057 msg, msg_aux, label, location, detail); 1058 } 1059 1060 edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count); 1061 } 1062 1063 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type, 1064 struct mem_ctl_info *mci, 1065 struct edac_raw_error_desc *e) 1066 { 1067 char detail[80]; 1068 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer }; 1069 1070 /* Memory type dependent details about the error */ 1071 if (type == HW_EVENT_ERR_CORRECTED) { 1072 snprintf(detail, sizeof(detail), 1073 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx", 1074 e->page_frame_number, e->offset_in_page, 1075 e->grain, e->syndrome); 1076 edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label, 1077 detail, e->other_detail, e->enable_per_layer_report, 1078 e->page_frame_number, e->offset_in_page, e->grain); 1079 } else { 1080 snprintf(detail, sizeof(detail), 1081 "page:0x%lx offset:0x%lx grain:%ld", 1082 e->page_frame_number, e->offset_in_page, e->grain); 1083 1084 edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label, 1085 detail, e->other_detail, e->enable_per_layer_report); 1086 } 1087 1088 1089 } 1090 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error); 1091 1092 void edac_mc_handle_error(const enum hw_event_mc_err_type type, 1093 struct mem_ctl_info *mci, 1094 const u16 error_count, 1095 const unsigned long page_frame_number, 1096 const unsigned long offset_in_page, 1097 const unsigned long syndrome, 1098 const int top_layer, 1099 const int mid_layer, 1100 const int low_layer, 1101 const char *msg, 1102 const char *other_detail) 1103 { 1104 char *p; 1105 int row = -1, chan = -1; 1106 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer }; 1107 int i, n_labels = 0; 1108 u8 grain_bits; 1109 struct edac_raw_error_desc *e = &mci->error_desc; 1110 1111 edac_dbg(3, "MC%d\n", mci->mc_idx); 1112 1113 /* Fills the error report buffer */ 1114 memset(e, 0, sizeof (*e)); 1115 e->error_count = error_count; 1116 e->top_layer = top_layer; 1117 e->mid_layer = mid_layer; 1118 e->low_layer = low_layer; 1119 e->page_frame_number = page_frame_number; 1120 e->offset_in_page = offset_in_page; 1121 e->syndrome = syndrome; 1122 e->msg = msg; 1123 e->other_detail = other_detail; 1124 1125 /* 1126 * Check if the event report is consistent and if the memory 1127 * location is known. If it is known, enable_per_layer_report will be 1128 * true, the DIMM(s) label info will be filled and the per-layer 1129 * error counters will be incremented. 1130 */ 1131 for (i = 0; i < mci->n_layers; i++) { 1132 if (pos[i] >= (int)mci->layers[i].size) { 1133 1134 edac_mc_printk(mci, KERN_ERR, 1135 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n", 1136 edac_layer_name[mci->layers[i].type], 1137 pos[i], mci->layers[i].size); 1138 /* 1139 * Instead of just returning it, let's use what's 1140 * known about the error. The increment routines and 1141 * the DIMM filter logic will do the right thing by 1142 * pointing the likely damaged DIMMs. 1143 */ 1144 pos[i] = -1; 1145 } 1146 if (pos[i] >= 0) 1147 e->enable_per_layer_report = true; 1148 } 1149 1150 /* 1151 * Get the dimm label/grain that applies to the match criteria. 1152 * As the error algorithm may not be able to point to just one memory 1153 * stick, the logic here will get all possible labels that could 1154 * pottentially be affected by the error. 1155 * On FB-DIMM memory controllers, for uncorrected errors, it is common 1156 * to have only the MC channel and the MC dimm (also called "branch") 1157 * but the channel is not known, as the memory is arranged in pairs, 1158 * where each memory belongs to a separate channel within the same 1159 * branch. 1160 */ 1161 p = e->label; 1162 *p = '\0'; 1163 1164 for (i = 0; i < mci->tot_dimms; i++) { 1165 struct dimm_info *dimm = mci->dimms[i]; 1166 1167 if (top_layer >= 0 && top_layer != dimm->location[0]) 1168 continue; 1169 if (mid_layer >= 0 && mid_layer != dimm->location[1]) 1170 continue; 1171 if (low_layer >= 0 && low_layer != dimm->location[2]) 1172 continue; 1173 1174 /* get the max grain, over the error match range */ 1175 if (dimm->grain > e->grain) 1176 e->grain = dimm->grain; 1177 1178 /* 1179 * If the error is memory-controller wide, there's no need to 1180 * seek for the affected DIMMs because the whole 1181 * channel/memory controller/... may be affected. 1182 * Also, don't show errors for empty DIMM slots. 1183 */ 1184 if (e->enable_per_layer_report && dimm->nr_pages) { 1185 if (n_labels >= EDAC_MAX_LABELS) { 1186 e->enable_per_layer_report = false; 1187 break; 1188 } 1189 n_labels++; 1190 if (p != e->label) { 1191 strcpy(p, OTHER_LABEL); 1192 p += strlen(OTHER_LABEL); 1193 } 1194 strcpy(p, dimm->label); 1195 p += strlen(p); 1196 *p = '\0'; 1197 1198 /* 1199 * get csrow/channel of the DIMM, in order to allow 1200 * incrementing the compat API counters 1201 */ 1202 edac_dbg(4, "%s csrows map: (%d,%d)\n", 1203 mci->csbased ? "rank" : "dimm", 1204 dimm->csrow, dimm->cschannel); 1205 if (row == -1) 1206 row = dimm->csrow; 1207 else if (row >= 0 && row != dimm->csrow) 1208 row = -2; 1209 1210 if (chan == -1) 1211 chan = dimm->cschannel; 1212 else if (chan >= 0 && chan != dimm->cschannel) 1213 chan = -2; 1214 } 1215 } 1216 1217 if (!e->enable_per_layer_report) { 1218 strcpy(e->label, "any memory"); 1219 } else { 1220 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan); 1221 if (p == e->label) 1222 strcpy(e->label, "unknown memory"); 1223 if (type == HW_EVENT_ERR_CORRECTED) { 1224 if (row >= 0) { 1225 mci->csrows[row]->ce_count += error_count; 1226 if (chan >= 0) 1227 mci->csrows[row]->channels[chan]->ce_count += error_count; 1228 } 1229 } else 1230 if (row >= 0) 1231 mci->csrows[row]->ue_count += error_count; 1232 } 1233 1234 /* Fill the RAM location data */ 1235 p = e->location; 1236 1237 for (i = 0; i < mci->n_layers; i++) { 1238 if (pos[i] < 0) 1239 continue; 1240 1241 p += sprintf(p, "%s:%d ", 1242 edac_layer_name[mci->layers[i].type], 1243 pos[i]); 1244 } 1245 if (p > e->location) 1246 *(p - 1) = '\0'; 1247 1248 /* Report the error via the trace interface */ 1249 grain_bits = fls_long(e->grain) + 1; 1250 1251 if (IS_ENABLED(CONFIG_RAS)) 1252 trace_mc_event(type, e->msg, e->label, e->error_count, 1253 mci->mc_idx, e->top_layer, e->mid_layer, 1254 e->low_layer, 1255 (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page, 1256 grain_bits, e->syndrome, e->other_detail); 1257 1258 edac_raw_mc_handle_error(type, mci, e); 1259 } 1260 EXPORT_SYMBOL_GPL(edac_mc_handle_error); 1261