1 /* 2 * edac_mc kernel module 3 * (C) 2005, 2006 Linux Networx (http://lnxi.com) 4 * This file may be distributed under the terms of the 5 * GNU General Public License. 6 * 7 * Written by Thayne Harbaugh 8 * Based on work by Dan Hollis <goemon at anime dot net> and others. 9 * http://www.anime.net/~goemon/linux-ecc/ 10 * 11 * Modified by Dave Peterson and Doug Thompson 12 * 13 */ 14 15 #include <linux/module.h> 16 #include <linux/proc_fs.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/smp.h> 20 #include <linux/init.h> 21 #include <linux/sysctl.h> 22 #include <linux/highmem.h> 23 #include <linux/timer.h> 24 #include <linux/slab.h> 25 #include <linux/jiffies.h> 26 #include <linux/spinlock.h> 27 #include <linux/list.h> 28 #include <linux/ctype.h> 29 #include <linux/edac.h> 30 #include <linux/bitops.h> 31 #include <linux/uaccess.h> 32 #include <asm/page.h> 33 #include "edac_mc.h" 34 #include "edac_module.h" 35 #include <ras/ras_event.h> 36 37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB 38 #include <asm/edac.h> 39 #else 40 #define edac_atomic_scrub(va, size) do { } while (0) 41 #endif 42 43 int edac_op_state = EDAC_OPSTATE_INVAL; 44 EXPORT_SYMBOL_GPL(edac_op_state); 45 46 /* lock to memory controller's control array */ 47 static DEFINE_MUTEX(mem_ctls_mutex); 48 static LIST_HEAD(mc_devices); 49 50 /* 51 * Used to lock EDAC MC to just one module, avoiding two drivers e. g. 52 * apei/ghes and i7core_edac to be used at the same time. 53 */ 54 static const char *edac_mc_owner; 55 56 static struct mem_ctl_info *error_desc_to_mci(struct edac_raw_error_desc *e) 57 { 58 return container_of(e, struct mem_ctl_info, error_desc); 59 } 60 61 unsigned int edac_dimm_info_location(struct dimm_info *dimm, char *buf, 62 unsigned int len) 63 { 64 struct mem_ctl_info *mci = dimm->mci; 65 int i, n, count = 0; 66 char *p = buf; 67 68 for (i = 0; i < mci->n_layers; i++) { 69 n = snprintf(p, len, "%s %d ", 70 edac_layer_name[mci->layers[i].type], 71 dimm->location[i]); 72 p += n; 73 len -= n; 74 count += n; 75 if (!len) 76 break; 77 } 78 79 return count; 80 } 81 82 #ifdef CONFIG_EDAC_DEBUG 83 84 static void edac_mc_dump_channel(struct rank_info *chan) 85 { 86 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx); 87 edac_dbg(4, " channel = %p\n", chan); 88 edac_dbg(4, " channel->csrow = %p\n", chan->csrow); 89 edac_dbg(4, " channel->dimm = %p\n", chan->dimm); 90 } 91 92 static void edac_mc_dump_dimm(struct dimm_info *dimm) 93 { 94 char location[80]; 95 96 if (!dimm->nr_pages) 97 return; 98 99 edac_dimm_info_location(dimm, location, sizeof(location)); 100 101 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n", 102 dimm->mci->csbased ? "rank" : "dimm", 103 dimm->idx, location, dimm->csrow, dimm->cschannel); 104 edac_dbg(4, " dimm = %p\n", dimm); 105 edac_dbg(4, " dimm->label = '%s'\n", dimm->label); 106 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); 107 edac_dbg(4, " dimm->grain = %d\n", dimm->grain); 108 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); 109 } 110 111 static void edac_mc_dump_csrow(struct csrow_info *csrow) 112 { 113 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx); 114 edac_dbg(4, " csrow = %p\n", csrow); 115 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page); 116 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page); 117 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask); 118 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels); 119 edac_dbg(4, " csrow->channels = %p\n", csrow->channels); 120 edac_dbg(4, " csrow->mci = %p\n", csrow->mci); 121 } 122 123 static void edac_mc_dump_mci(struct mem_ctl_info *mci) 124 { 125 edac_dbg(3, "\tmci = %p\n", mci); 126 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap); 127 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap); 128 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap); 129 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check); 130 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n", 131 mci->nr_csrows, mci->csrows); 132 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n", 133 mci->tot_dimms, mci->dimms); 134 edac_dbg(3, "\tdev = %p\n", mci->pdev); 135 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n", 136 mci->mod_name, mci->ctl_name); 137 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info); 138 } 139 140 #endif /* CONFIG_EDAC_DEBUG */ 141 142 const char * const edac_mem_types[] = { 143 [MEM_EMPTY] = "Empty", 144 [MEM_RESERVED] = "Reserved", 145 [MEM_UNKNOWN] = "Unknown", 146 [MEM_FPM] = "FPM", 147 [MEM_EDO] = "EDO", 148 [MEM_BEDO] = "BEDO", 149 [MEM_SDR] = "Unbuffered-SDR", 150 [MEM_RDR] = "Registered-SDR", 151 [MEM_DDR] = "Unbuffered-DDR", 152 [MEM_RDDR] = "Registered-DDR", 153 [MEM_RMBS] = "RMBS", 154 [MEM_DDR2] = "Unbuffered-DDR2", 155 [MEM_FB_DDR2] = "FullyBuffered-DDR2", 156 [MEM_RDDR2] = "Registered-DDR2", 157 [MEM_XDR] = "XDR", 158 [MEM_DDR3] = "Unbuffered-DDR3", 159 [MEM_RDDR3] = "Registered-DDR3", 160 [MEM_LRDDR3] = "Load-Reduced-DDR3-RAM", 161 [MEM_LPDDR3] = "Low-Power-DDR3-RAM", 162 [MEM_DDR4] = "Unbuffered-DDR4", 163 [MEM_RDDR4] = "Registered-DDR4", 164 [MEM_LPDDR4] = "Low-Power-DDR4-RAM", 165 [MEM_LRDDR4] = "Load-Reduced-DDR4-RAM", 166 [MEM_DDR5] = "Unbuffered-DDR5", 167 [MEM_NVDIMM] = "Non-volatile-RAM", 168 [MEM_WIO2] = "Wide-IO-2", 169 }; 170 EXPORT_SYMBOL_GPL(edac_mem_types); 171 172 /** 173 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation 174 * @p: pointer to a pointer with the memory offset to be used. At 175 * return, this will be incremented to point to the next offset 176 * @size: Size of the data structure to be reserved 177 * @n_elems: Number of elements that should be reserved 178 * 179 * If 'size' is a constant, the compiler will optimize this whole function 180 * down to either a no-op or the addition of a constant to the value of '*p'. 181 * 182 * The 'p' pointer is absolutely needed to keep the proper advancing 183 * further in memory to the proper offsets when allocating the struct along 184 * with its embedded structs, as edac_device_alloc_ctl_info() does it 185 * above, for example. 186 * 187 * At return, the pointer 'p' will be incremented to be used on a next call 188 * to this function. 189 */ 190 void *edac_align_ptr(void **p, unsigned int size, int n_elems) 191 { 192 unsigned int align, r; 193 void *ptr = *p; 194 195 *p += size * n_elems; 196 197 /* 198 * 'p' can possibly be an unaligned item X such that sizeof(X) is 199 * 'size'. Adjust 'p' so that its alignment is at least as 200 * stringent as what the compiler would provide for X and return 201 * the aligned result. 202 * Here we assume that the alignment of a "long long" is the most 203 * stringent alignment that the compiler will ever provide by default. 204 * As far as I know, this is a reasonable assumption. 205 */ 206 if (size > sizeof(long)) 207 align = sizeof(long long); 208 else if (size > sizeof(int)) 209 align = sizeof(long); 210 else if (size > sizeof(short)) 211 align = sizeof(int); 212 else if (size > sizeof(char)) 213 align = sizeof(short); 214 else 215 return (char *)ptr; 216 217 r = (unsigned long)p % align; 218 219 if (r == 0) 220 return (char *)ptr; 221 222 *p += align - r; 223 224 return (void *)(((unsigned long)ptr) + align - r); 225 } 226 227 static void _edac_mc_free(struct mem_ctl_info *mci) 228 { 229 put_device(&mci->dev); 230 } 231 232 static void mci_release(struct device *dev) 233 { 234 struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev); 235 struct csrow_info *csr; 236 int i, chn, row; 237 238 if (mci->dimms) { 239 for (i = 0; i < mci->tot_dimms; i++) 240 kfree(mci->dimms[i]); 241 kfree(mci->dimms); 242 } 243 244 if (mci->csrows) { 245 for (row = 0; row < mci->nr_csrows; row++) { 246 csr = mci->csrows[row]; 247 if (!csr) 248 continue; 249 250 if (csr->channels) { 251 for (chn = 0; chn < mci->num_cschannel; chn++) 252 kfree(csr->channels[chn]); 253 kfree(csr->channels); 254 } 255 kfree(csr); 256 } 257 kfree(mci->csrows); 258 } 259 kfree(mci); 260 } 261 262 static int edac_mc_alloc_csrows(struct mem_ctl_info *mci) 263 { 264 unsigned int tot_channels = mci->num_cschannel; 265 unsigned int tot_csrows = mci->nr_csrows; 266 unsigned int row, chn; 267 268 /* 269 * Alocate and fill the csrow/channels structs 270 */ 271 mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL); 272 if (!mci->csrows) 273 return -ENOMEM; 274 275 for (row = 0; row < tot_csrows; row++) { 276 struct csrow_info *csr; 277 278 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL); 279 if (!csr) 280 return -ENOMEM; 281 282 mci->csrows[row] = csr; 283 csr->csrow_idx = row; 284 csr->mci = mci; 285 csr->nr_channels = tot_channels; 286 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels), 287 GFP_KERNEL); 288 if (!csr->channels) 289 return -ENOMEM; 290 291 for (chn = 0; chn < tot_channels; chn++) { 292 struct rank_info *chan; 293 294 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL); 295 if (!chan) 296 return -ENOMEM; 297 298 csr->channels[chn] = chan; 299 chan->chan_idx = chn; 300 chan->csrow = csr; 301 } 302 } 303 304 return 0; 305 } 306 307 static int edac_mc_alloc_dimms(struct mem_ctl_info *mci) 308 { 309 unsigned int pos[EDAC_MAX_LAYERS]; 310 unsigned int row, chn, idx; 311 int layer; 312 void *p; 313 314 /* 315 * Allocate and fill the dimm structs 316 */ 317 mci->dimms = kcalloc(mci->tot_dimms, sizeof(*mci->dimms), GFP_KERNEL); 318 if (!mci->dimms) 319 return -ENOMEM; 320 321 memset(&pos, 0, sizeof(pos)); 322 row = 0; 323 chn = 0; 324 for (idx = 0; idx < mci->tot_dimms; idx++) { 325 struct dimm_info *dimm; 326 struct rank_info *chan; 327 int n, len; 328 329 chan = mci->csrows[row]->channels[chn]; 330 331 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL); 332 if (!dimm) 333 return -ENOMEM; 334 mci->dimms[idx] = dimm; 335 dimm->mci = mci; 336 dimm->idx = idx; 337 338 /* 339 * Copy DIMM location and initialize it. 340 */ 341 len = sizeof(dimm->label); 342 p = dimm->label; 343 n = snprintf(p, len, "mc#%u", mci->mc_idx); 344 p += n; 345 len -= n; 346 for (layer = 0; layer < mci->n_layers; layer++) { 347 n = snprintf(p, len, "%s#%u", 348 edac_layer_name[mci->layers[layer].type], 349 pos[layer]); 350 p += n; 351 len -= n; 352 dimm->location[layer] = pos[layer]; 353 354 if (len <= 0) 355 break; 356 } 357 358 /* Link it to the csrows old API data */ 359 chan->dimm = dimm; 360 dimm->csrow = row; 361 dimm->cschannel = chn; 362 363 /* Increment csrow location */ 364 if (mci->layers[0].is_virt_csrow) { 365 chn++; 366 if (chn == mci->num_cschannel) { 367 chn = 0; 368 row++; 369 } 370 } else { 371 row++; 372 if (row == mci->nr_csrows) { 373 row = 0; 374 chn++; 375 } 376 } 377 378 /* Increment dimm location */ 379 for (layer = mci->n_layers - 1; layer >= 0; layer--) { 380 pos[layer]++; 381 if (pos[layer] < mci->layers[layer].size) 382 break; 383 pos[layer] = 0; 384 } 385 } 386 387 return 0; 388 } 389 390 struct mem_ctl_info *edac_mc_alloc(unsigned int mc_num, 391 unsigned int n_layers, 392 struct edac_mc_layer *layers, 393 unsigned int sz_pvt) 394 { 395 struct mem_ctl_info *mci; 396 struct edac_mc_layer *layer; 397 unsigned int idx, size, tot_dimms = 1; 398 unsigned int tot_csrows = 1, tot_channels = 1; 399 void *pvt, *ptr = NULL; 400 bool per_rank = false; 401 402 if (WARN_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0)) 403 return NULL; 404 405 /* 406 * Calculate the total amount of dimms and csrows/cschannels while 407 * in the old API emulation mode 408 */ 409 for (idx = 0; idx < n_layers; idx++) { 410 tot_dimms *= layers[idx].size; 411 412 if (layers[idx].is_virt_csrow) 413 tot_csrows *= layers[idx].size; 414 else 415 tot_channels *= layers[idx].size; 416 417 if (layers[idx].type == EDAC_MC_LAYER_CHIP_SELECT) 418 per_rank = true; 419 } 420 421 /* Figure out the offsets of the various items from the start of an mc 422 * structure. We want the alignment of each item to be at least as 423 * stringent as what the compiler would provide if we could simply 424 * hardcode everything into a single struct. 425 */ 426 mci = edac_align_ptr(&ptr, sizeof(*mci), 1); 427 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers); 428 pvt = edac_align_ptr(&ptr, sz_pvt, 1); 429 size = ((unsigned long)pvt) + sz_pvt; 430 431 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n", 432 size, 433 tot_dimms, 434 per_rank ? "ranks" : "dimms", 435 tot_csrows * tot_channels); 436 437 mci = kzalloc(size, GFP_KERNEL); 438 if (mci == NULL) 439 return NULL; 440 441 mci->dev.release = mci_release; 442 device_initialize(&mci->dev); 443 444 /* Adjust pointers so they point within the memory we just allocated 445 * rather than an imaginary chunk of memory located at address 0. 446 */ 447 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer)); 448 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL; 449 450 /* setup index and various internal pointers */ 451 mci->mc_idx = mc_num; 452 mci->tot_dimms = tot_dimms; 453 mci->pvt_info = pvt; 454 mci->n_layers = n_layers; 455 mci->layers = layer; 456 memcpy(mci->layers, layers, sizeof(*layer) * n_layers); 457 mci->nr_csrows = tot_csrows; 458 mci->num_cschannel = tot_channels; 459 mci->csbased = per_rank; 460 461 if (edac_mc_alloc_csrows(mci)) 462 goto error; 463 464 if (edac_mc_alloc_dimms(mci)) 465 goto error; 466 467 mci->op_state = OP_ALLOC; 468 469 return mci; 470 471 error: 472 _edac_mc_free(mci); 473 474 return NULL; 475 } 476 EXPORT_SYMBOL_GPL(edac_mc_alloc); 477 478 void edac_mc_free(struct mem_ctl_info *mci) 479 { 480 edac_dbg(1, "\n"); 481 482 _edac_mc_free(mci); 483 } 484 EXPORT_SYMBOL_GPL(edac_mc_free); 485 486 bool edac_has_mcs(void) 487 { 488 bool ret; 489 490 mutex_lock(&mem_ctls_mutex); 491 492 ret = list_empty(&mc_devices); 493 494 mutex_unlock(&mem_ctls_mutex); 495 496 return !ret; 497 } 498 EXPORT_SYMBOL_GPL(edac_has_mcs); 499 500 /* Caller must hold mem_ctls_mutex */ 501 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev) 502 { 503 struct mem_ctl_info *mci; 504 struct list_head *item; 505 506 edac_dbg(3, "\n"); 507 508 list_for_each(item, &mc_devices) { 509 mci = list_entry(item, struct mem_ctl_info, link); 510 511 if (mci->pdev == dev) 512 return mci; 513 } 514 515 return NULL; 516 } 517 518 /** 519 * find_mci_by_dev 520 * 521 * scan list of controllers looking for the one that manages 522 * the 'dev' device 523 * @dev: pointer to a struct device related with the MCI 524 */ 525 struct mem_ctl_info *find_mci_by_dev(struct device *dev) 526 { 527 struct mem_ctl_info *ret; 528 529 mutex_lock(&mem_ctls_mutex); 530 ret = __find_mci_by_dev(dev); 531 mutex_unlock(&mem_ctls_mutex); 532 533 return ret; 534 } 535 EXPORT_SYMBOL_GPL(find_mci_by_dev); 536 537 /* 538 * edac_mc_workq_function 539 * performs the operation scheduled by a workq request 540 */ 541 static void edac_mc_workq_function(struct work_struct *work_req) 542 { 543 struct delayed_work *d_work = to_delayed_work(work_req); 544 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work); 545 546 mutex_lock(&mem_ctls_mutex); 547 548 if (mci->op_state != OP_RUNNING_POLL) { 549 mutex_unlock(&mem_ctls_mutex); 550 return; 551 } 552 553 if (edac_op_state == EDAC_OPSTATE_POLL) 554 mci->edac_check(mci); 555 556 mutex_unlock(&mem_ctls_mutex); 557 558 /* Queue ourselves again. */ 559 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec())); 560 } 561 562 /* 563 * edac_mc_reset_delay_period(unsigned long value) 564 * 565 * user space has updated our poll period value, need to 566 * reset our workq delays 567 */ 568 void edac_mc_reset_delay_period(unsigned long value) 569 { 570 struct mem_ctl_info *mci; 571 struct list_head *item; 572 573 mutex_lock(&mem_ctls_mutex); 574 575 list_for_each(item, &mc_devices) { 576 mci = list_entry(item, struct mem_ctl_info, link); 577 578 if (mci->op_state == OP_RUNNING_POLL) 579 edac_mod_work(&mci->work, value); 580 } 581 mutex_unlock(&mem_ctls_mutex); 582 } 583 584 585 586 /* Return 0 on success, 1 on failure. 587 * Before calling this function, caller must 588 * assign a unique value to mci->mc_idx. 589 * 590 * locking model: 591 * 592 * called with the mem_ctls_mutex lock held 593 */ 594 static int add_mc_to_global_list(struct mem_ctl_info *mci) 595 { 596 struct list_head *item, *insert_before; 597 struct mem_ctl_info *p; 598 599 insert_before = &mc_devices; 600 601 p = __find_mci_by_dev(mci->pdev); 602 if (unlikely(p != NULL)) 603 goto fail0; 604 605 list_for_each(item, &mc_devices) { 606 p = list_entry(item, struct mem_ctl_info, link); 607 608 if (p->mc_idx >= mci->mc_idx) { 609 if (unlikely(p->mc_idx == mci->mc_idx)) 610 goto fail1; 611 612 insert_before = item; 613 break; 614 } 615 } 616 617 list_add_tail_rcu(&mci->link, insert_before); 618 return 0; 619 620 fail0: 621 edac_printk(KERN_WARNING, EDAC_MC, 622 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev), 623 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx); 624 return 1; 625 626 fail1: 627 edac_printk(KERN_WARNING, EDAC_MC, 628 "bug in low-level driver: attempt to assign\n" 629 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__); 630 return 1; 631 } 632 633 static int del_mc_from_global_list(struct mem_ctl_info *mci) 634 { 635 list_del_rcu(&mci->link); 636 637 /* these are for safe removal of devices from global list while 638 * NMI handlers may be traversing list 639 */ 640 synchronize_rcu(); 641 INIT_LIST_HEAD(&mci->link); 642 643 return list_empty(&mc_devices); 644 } 645 646 struct mem_ctl_info *edac_mc_find(int idx) 647 { 648 struct mem_ctl_info *mci; 649 struct list_head *item; 650 651 mutex_lock(&mem_ctls_mutex); 652 653 list_for_each(item, &mc_devices) { 654 mci = list_entry(item, struct mem_ctl_info, link); 655 if (mci->mc_idx == idx) 656 goto unlock; 657 } 658 659 mci = NULL; 660 unlock: 661 mutex_unlock(&mem_ctls_mutex); 662 return mci; 663 } 664 EXPORT_SYMBOL(edac_mc_find); 665 666 const char *edac_get_owner(void) 667 { 668 return edac_mc_owner; 669 } 670 EXPORT_SYMBOL_GPL(edac_get_owner); 671 672 /* FIXME - should a warning be printed if no error detection? correction? */ 673 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci, 674 const struct attribute_group **groups) 675 { 676 int ret = -EINVAL; 677 edac_dbg(0, "\n"); 678 679 #ifdef CONFIG_EDAC_DEBUG 680 if (edac_debug_level >= 3) 681 edac_mc_dump_mci(mci); 682 683 if (edac_debug_level >= 4) { 684 struct dimm_info *dimm; 685 int i; 686 687 for (i = 0; i < mci->nr_csrows; i++) { 688 struct csrow_info *csrow = mci->csrows[i]; 689 u32 nr_pages = 0; 690 int j; 691 692 for (j = 0; j < csrow->nr_channels; j++) 693 nr_pages += csrow->channels[j]->dimm->nr_pages; 694 if (!nr_pages) 695 continue; 696 edac_mc_dump_csrow(csrow); 697 for (j = 0; j < csrow->nr_channels; j++) 698 if (csrow->channels[j]->dimm->nr_pages) 699 edac_mc_dump_channel(csrow->channels[j]); 700 } 701 702 mci_for_each_dimm(mci, dimm) 703 edac_mc_dump_dimm(dimm); 704 } 705 #endif 706 mutex_lock(&mem_ctls_mutex); 707 708 if (edac_mc_owner && edac_mc_owner != mci->mod_name) { 709 ret = -EPERM; 710 goto fail0; 711 } 712 713 if (add_mc_to_global_list(mci)) 714 goto fail0; 715 716 /* set load time so that error rate can be tracked */ 717 mci->start_time = jiffies; 718 719 mci->bus = edac_get_sysfs_subsys(); 720 721 if (edac_create_sysfs_mci_device(mci, groups)) { 722 edac_mc_printk(mci, KERN_WARNING, 723 "failed to create sysfs device\n"); 724 goto fail1; 725 } 726 727 if (mci->edac_check) { 728 mci->op_state = OP_RUNNING_POLL; 729 730 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function); 731 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec())); 732 733 } else { 734 mci->op_state = OP_RUNNING_INTERRUPT; 735 } 736 737 /* Report action taken */ 738 edac_mc_printk(mci, KERN_INFO, 739 "Giving out device to module %s controller %s: DEV %s (%s)\n", 740 mci->mod_name, mci->ctl_name, mci->dev_name, 741 edac_op_state_to_string(mci->op_state)); 742 743 edac_mc_owner = mci->mod_name; 744 745 mutex_unlock(&mem_ctls_mutex); 746 return 0; 747 748 fail1: 749 del_mc_from_global_list(mci); 750 751 fail0: 752 mutex_unlock(&mem_ctls_mutex); 753 return ret; 754 } 755 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups); 756 757 struct mem_ctl_info *edac_mc_del_mc(struct device *dev) 758 { 759 struct mem_ctl_info *mci; 760 761 edac_dbg(0, "\n"); 762 763 mutex_lock(&mem_ctls_mutex); 764 765 /* find the requested mci struct in the global list */ 766 mci = __find_mci_by_dev(dev); 767 if (mci == NULL) { 768 mutex_unlock(&mem_ctls_mutex); 769 return NULL; 770 } 771 772 /* mark MCI offline: */ 773 mci->op_state = OP_OFFLINE; 774 775 if (del_mc_from_global_list(mci)) 776 edac_mc_owner = NULL; 777 778 mutex_unlock(&mem_ctls_mutex); 779 780 if (mci->edac_check) 781 edac_stop_work(&mci->work); 782 783 /* remove from sysfs */ 784 edac_remove_sysfs_mci_device(mci); 785 786 edac_printk(KERN_INFO, EDAC_MC, 787 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx, 788 mci->mod_name, mci->ctl_name, edac_dev_name(mci)); 789 790 return mci; 791 } 792 EXPORT_SYMBOL_GPL(edac_mc_del_mc); 793 794 static void edac_mc_scrub_block(unsigned long page, unsigned long offset, 795 u32 size) 796 { 797 struct page *pg; 798 void *virt_addr; 799 unsigned long flags = 0; 800 801 edac_dbg(3, "\n"); 802 803 /* ECC error page was not in our memory. Ignore it. */ 804 if (!pfn_valid(page)) 805 return; 806 807 /* Find the actual page structure then map it and fix */ 808 pg = pfn_to_page(page); 809 810 if (PageHighMem(pg)) 811 local_irq_save(flags); 812 813 virt_addr = kmap_atomic(pg); 814 815 /* Perform architecture specific atomic scrub operation */ 816 edac_atomic_scrub(virt_addr + offset, size); 817 818 /* Unmap and complete */ 819 kunmap_atomic(virt_addr); 820 821 if (PageHighMem(pg)) 822 local_irq_restore(flags); 823 } 824 825 /* FIXME - should return -1 */ 826 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page) 827 { 828 struct csrow_info **csrows = mci->csrows; 829 int row, i, j, n; 830 831 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page); 832 row = -1; 833 834 for (i = 0; i < mci->nr_csrows; i++) { 835 struct csrow_info *csrow = csrows[i]; 836 n = 0; 837 for (j = 0; j < csrow->nr_channels; j++) { 838 struct dimm_info *dimm = csrow->channels[j]->dimm; 839 n += dimm->nr_pages; 840 } 841 if (n == 0) 842 continue; 843 844 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n", 845 mci->mc_idx, 846 csrow->first_page, page, csrow->last_page, 847 csrow->page_mask); 848 849 if ((page >= csrow->first_page) && 850 (page <= csrow->last_page) && 851 ((page & csrow->page_mask) == 852 (csrow->first_page & csrow->page_mask))) { 853 row = i; 854 break; 855 } 856 } 857 858 if (row == -1) 859 edac_mc_printk(mci, KERN_ERR, 860 "could not look up page error address %lx\n", 861 (unsigned long)page); 862 863 return row; 864 } 865 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page); 866 867 const char *edac_layer_name[] = { 868 [EDAC_MC_LAYER_BRANCH] = "branch", 869 [EDAC_MC_LAYER_CHANNEL] = "channel", 870 [EDAC_MC_LAYER_SLOT] = "slot", 871 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow", 872 [EDAC_MC_LAYER_ALL_MEM] = "memory", 873 }; 874 EXPORT_SYMBOL_GPL(edac_layer_name); 875 876 static void edac_inc_ce_error(struct edac_raw_error_desc *e) 877 { 878 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer }; 879 struct mem_ctl_info *mci = error_desc_to_mci(e); 880 struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]); 881 882 mci->ce_mc += e->error_count; 883 884 if (dimm) 885 dimm->ce_count += e->error_count; 886 else 887 mci->ce_noinfo_count += e->error_count; 888 } 889 890 static void edac_inc_ue_error(struct edac_raw_error_desc *e) 891 { 892 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer }; 893 struct mem_ctl_info *mci = error_desc_to_mci(e); 894 struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]); 895 896 mci->ue_mc += e->error_count; 897 898 if (dimm) 899 dimm->ue_count += e->error_count; 900 else 901 mci->ue_noinfo_count += e->error_count; 902 } 903 904 static void edac_ce_error(struct edac_raw_error_desc *e) 905 { 906 struct mem_ctl_info *mci = error_desc_to_mci(e); 907 unsigned long remapped_page; 908 909 if (edac_mc_get_log_ce()) { 910 edac_mc_printk(mci, KERN_WARNING, 911 "%d CE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx%s%s)\n", 912 e->error_count, e->msg, 913 *e->msg ? " " : "", 914 e->label, e->location, e->page_frame_number, e->offset_in_page, 915 e->grain, e->syndrome, 916 *e->other_detail ? " - " : "", 917 e->other_detail); 918 } 919 920 edac_inc_ce_error(e); 921 922 if (mci->scrub_mode == SCRUB_SW_SRC) { 923 /* 924 * Some memory controllers (called MCs below) can remap 925 * memory so that it is still available at a different 926 * address when PCI devices map into memory. 927 * MC's that can't do this, lose the memory where PCI 928 * devices are mapped. This mapping is MC-dependent 929 * and so we call back into the MC driver for it to 930 * map the MC page to a physical (CPU) page which can 931 * then be mapped to a virtual page - which can then 932 * be scrubbed. 933 */ 934 remapped_page = mci->ctl_page_to_phys ? 935 mci->ctl_page_to_phys(mci, e->page_frame_number) : 936 e->page_frame_number; 937 938 edac_mc_scrub_block(remapped_page, e->offset_in_page, e->grain); 939 } 940 } 941 942 static void edac_ue_error(struct edac_raw_error_desc *e) 943 { 944 struct mem_ctl_info *mci = error_desc_to_mci(e); 945 946 if (edac_mc_get_log_ue()) { 947 edac_mc_printk(mci, KERN_WARNING, 948 "%d UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n", 949 e->error_count, e->msg, 950 *e->msg ? " " : "", 951 e->label, e->location, e->page_frame_number, e->offset_in_page, 952 e->grain, 953 *e->other_detail ? " - " : "", 954 e->other_detail); 955 } 956 957 edac_inc_ue_error(e); 958 959 if (edac_mc_get_panic_on_ue()) { 960 panic("UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n", 961 e->msg, 962 *e->msg ? " " : "", 963 e->label, e->location, e->page_frame_number, e->offset_in_page, 964 e->grain, 965 *e->other_detail ? " - " : "", 966 e->other_detail); 967 } 968 } 969 970 static void edac_inc_csrow(struct edac_raw_error_desc *e, int row, int chan) 971 { 972 struct mem_ctl_info *mci = error_desc_to_mci(e); 973 enum hw_event_mc_err_type type = e->type; 974 u16 count = e->error_count; 975 976 if (row < 0) 977 return; 978 979 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan); 980 981 if (type == HW_EVENT_ERR_CORRECTED) { 982 mci->csrows[row]->ce_count += count; 983 if (chan >= 0) 984 mci->csrows[row]->channels[chan]->ce_count += count; 985 } else { 986 mci->csrows[row]->ue_count += count; 987 } 988 } 989 990 void edac_raw_mc_handle_error(struct edac_raw_error_desc *e) 991 { 992 struct mem_ctl_info *mci = error_desc_to_mci(e); 993 u8 grain_bits; 994 995 /* Sanity-check driver-supplied grain value. */ 996 if (WARN_ON_ONCE(!e->grain)) 997 e->grain = 1; 998 999 grain_bits = fls_long(e->grain - 1); 1000 1001 /* Report the error via the trace interface */ 1002 if (IS_ENABLED(CONFIG_RAS)) 1003 trace_mc_event(e->type, e->msg, e->label, e->error_count, 1004 mci->mc_idx, e->top_layer, e->mid_layer, 1005 e->low_layer, 1006 (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page, 1007 grain_bits, e->syndrome, e->other_detail); 1008 1009 if (e->type == HW_EVENT_ERR_CORRECTED) 1010 edac_ce_error(e); 1011 else 1012 edac_ue_error(e); 1013 } 1014 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error); 1015 1016 void edac_mc_handle_error(const enum hw_event_mc_err_type type, 1017 struct mem_ctl_info *mci, 1018 const u16 error_count, 1019 const unsigned long page_frame_number, 1020 const unsigned long offset_in_page, 1021 const unsigned long syndrome, 1022 const int top_layer, 1023 const int mid_layer, 1024 const int low_layer, 1025 const char *msg, 1026 const char *other_detail) 1027 { 1028 struct dimm_info *dimm; 1029 char *p; 1030 int row = -1, chan = -1; 1031 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer }; 1032 int i, n_labels = 0; 1033 struct edac_raw_error_desc *e = &mci->error_desc; 1034 bool any_memory = true; 1035 1036 edac_dbg(3, "MC%d\n", mci->mc_idx); 1037 1038 /* Fills the error report buffer */ 1039 memset(e, 0, sizeof (*e)); 1040 e->error_count = error_count; 1041 e->type = type; 1042 e->top_layer = top_layer; 1043 e->mid_layer = mid_layer; 1044 e->low_layer = low_layer; 1045 e->page_frame_number = page_frame_number; 1046 e->offset_in_page = offset_in_page; 1047 e->syndrome = syndrome; 1048 /* need valid strings here for both: */ 1049 e->msg = msg ?: ""; 1050 e->other_detail = other_detail ?: ""; 1051 1052 /* 1053 * Check if the event report is consistent and if the memory location is 1054 * known. If it is, the DIMM(s) label info will be filled and the DIMM's 1055 * error counters will be incremented. 1056 */ 1057 for (i = 0; i < mci->n_layers; i++) { 1058 if (pos[i] >= (int)mci->layers[i].size) { 1059 1060 edac_mc_printk(mci, KERN_ERR, 1061 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n", 1062 edac_layer_name[mci->layers[i].type], 1063 pos[i], mci->layers[i].size); 1064 /* 1065 * Instead of just returning it, let's use what's 1066 * known about the error. The increment routines and 1067 * the DIMM filter logic will do the right thing by 1068 * pointing the likely damaged DIMMs. 1069 */ 1070 pos[i] = -1; 1071 } 1072 if (pos[i] >= 0) 1073 any_memory = false; 1074 } 1075 1076 /* 1077 * Get the dimm label/grain that applies to the match criteria. 1078 * As the error algorithm may not be able to point to just one memory 1079 * stick, the logic here will get all possible labels that could 1080 * pottentially be affected by the error. 1081 * On FB-DIMM memory controllers, for uncorrected errors, it is common 1082 * to have only the MC channel and the MC dimm (also called "branch") 1083 * but the channel is not known, as the memory is arranged in pairs, 1084 * where each memory belongs to a separate channel within the same 1085 * branch. 1086 */ 1087 p = e->label; 1088 *p = '\0'; 1089 1090 mci_for_each_dimm(mci, dimm) { 1091 if (top_layer >= 0 && top_layer != dimm->location[0]) 1092 continue; 1093 if (mid_layer >= 0 && mid_layer != dimm->location[1]) 1094 continue; 1095 if (low_layer >= 0 && low_layer != dimm->location[2]) 1096 continue; 1097 1098 /* get the max grain, over the error match range */ 1099 if (dimm->grain > e->grain) 1100 e->grain = dimm->grain; 1101 1102 /* 1103 * If the error is memory-controller wide, there's no need to 1104 * seek for the affected DIMMs because the whole channel/memory 1105 * controller/... may be affected. Also, don't show errors for 1106 * empty DIMM slots. 1107 */ 1108 if (!dimm->nr_pages) 1109 continue; 1110 1111 n_labels++; 1112 if (n_labels > EDAC_MAX_LABELS) { 1113 p = e->label; 1114 *p = '\0'; 1115 } else { 1116 if (p != e->label) { 1117 strcpy(p, OTHER_LABEL); 1118 p += strlen(OTHER_LABEL); 1119 } 1120 strcpy(p, dimm->label); 1121 p += strlen(p); 1122 } 1123 1124 /* 1125 * get csrow/channel of the DIMM, in order to allow 1126 * incrementing the compat API counters 1127 */ 1128 edac_dbg(4, "%s csrows map: (%d,%d)\n", 1129 mci->csbased ? "rank" : "dimm", 1130 dimm->csrow, dimm->cschannel); 1131 if (row == -1) 1132 row = dimm->csrow; 1133 else if (row >= 0 && row != dimm->csrow) 1134 row = -2; 1135 1136 if (chan == -1) 1137 chan = dimm->cschannel; 1138 else if (chan >= 0 && chan != dimm->cschannel) 1139 chan = -2; 1140 } 1141 1142 if (any_memory) 1143 strcpy(e->label, "any memory"); 1144 else if (!*e->label) 1145 strcpy(e->label, "unknown memory"); 1146 1147 edac_inc_csrow(e, row, chan); 1148 1149 /* Fill the RAM location data */ 1150 p = e->location; 1151 1152 for (i = 0; i < mci->n_layers; i++) { 1153 if (pos[i] < 0) 1154 continue; 1155 1156 p += sprintf(p, "%s:%d ", 1157 edac_layer_name[mci->layers[i].type], 1158 pos[i]); 1159 } 1160 if (p > e->location) 1161 *(p - 1) = '\0'; 1162 1163 edac_raw_mc_handle_error(e); 1164 } 1165 EXPORT_SYMBOL_GPL(edac_mc_handle_error); 1166