xref: /openbmc/linux/drivers/edac/edac_mc.c (revision b625fe69)
1 /*
2  * edac_mc kernel module
3  * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Thayne Harbaugh
8  * Based on work by Dan Hollis <goemon at anime dot net> and others.
9  *	http://www.anime.net/~goemon/linux-ecc/
10  *
11  * Modified by Dave Peterson and Doug Thompson
12  *
13  */
14 
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <linux/uaccess.h>
32 #include <asm/page.h>
33 #include "edac_mc.h"
34 #include "edac_module.h"
35 #include <ras/ras_event.h>
36 
37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB
38 #include <asm/edac.h>
39 #else
40 #define edac_atomic_scrub(va, size) do { } while (0)
41 #endif
42 
43 int edac_op_state = EDAC_OPSTATE_INVAL;
44 EXPORT_SYMBOL_GPL(edac_op_state);
45 
46 /* lock to memory controller's control array */
47 static DEFINE_MUTEX(mem_ctls_mutex);
48 static LIST_HEAD(mc_devices);
49 
50 /*
51  * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
52  *	apei/ghes and i7core_edac to be used at the same time.
53  */
54 static const char *edac_mc_owner;
55 
56 static struct mem_ctl_info *error_desc_to_mci(struct edac_raw_error_desc *e)
57 {
58 	return container_of(e, struct mem_ctl_info, error_desc);
59 }
60 
61 unsigned int edac_dimm_info_location(struct dimm_info *dimm, char *buf,
62 				     unsigned int len)
63 {
64 	struct mem_ctl_info *mci = dimm->mci;
65 	int i, n, count = 0;
66 	char *p = buf;
67 
68 	for (i = 0; i < mci->n_layers; i++) {
69 		n = scnprintf(p, len, "%s %d ",
70 			      edac_layer_name[mci->layers[i].type],
71 			      dimm->location[i]);
72 		p += n;
73 		len -= n;
74 		count += n;
75 	}
76 
77 	return count;
78 }
79 
80 #ifdef CONFIG_EDAC_DEBUG
81 
82 static void edac_mc_dump_channel(struct rank_info *chan)
83 {
84 	edac_dbg(4, "  channel->chan_idx = %d\n", chan->chan_idx);
85 	edac_dbg(4, "    channel = %p\n", chan);
86 	edac_dbg(4, "    channel->csrow = %p\n", chan->csrow);
87 	edac_dbg(4, "    channel->dimm = %p\n", chan->dimm);
88 }
89 
90 static void edac_mc_dump_dimm(struct dimm_info *dimm)
91 {
92 	char location[80];
93 
94 	if (!dimm->nr_pages)
95 		return;
96 
97 	edac_dimm_info_location(dimm, location, sizeof(location));
98 
99 	edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
100 		 dimm->mci->csbased ? "rank" : "dimm",
101 		 dimm->idx, location, dimm->csrow, dimm->cschannel);
102 	edac_dbg(4, "  dimm = %p\n", dimm);
103 	edac_dbg(4, "  dimm->label = '%s'\n", dimm->label);
104 	edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
105 	edac_dbg(4, "  dimm->grain = %d\n", dimm->grain);
106 	edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
107 }
108 
109 static void edac_mc_dump_csrow(struct csrow_info *csrow)
110 {
111 	edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
112 	edac_dbg(4, "  csrow = %p\n", csrow);
113 	edac_dbg(4, "  csrow->first_page = 0x%lx\n", csrow->first_page);
114 	edac_dbg(4, "  csrow->last_page = 0x%lx\n", csrow->last_page);
115 	edac_dbg(4, "  csrow->page_mask = 0x%lx\n", csrow->page_mask);
116 	edac_dbg(4, "  csrow->nr_channels = %d\n", csrow->nr_channels);
117 	edac_dbg(4, "  csrow->channels = %p\n", csrow->channels);
118 	edac_dbg(4, "  csrow->mci = %p\n", csrow->mci);
119 }
120 
121 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
122 {
123 	edac_dbg(3, "\tmci = %p\n", mci);
124 	edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
125 	edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
126 	edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
127 	edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
128 	edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
129 		 mci->nr_csrows, mci->csrows);
130 	edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
131 		 mci->tot_dimms, mci->dimms);
132 	edac_dbg(3, "\tdev = %p\n", mci->pdev);
133 	edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
134 		 mci->mod_name, mci->ctl_name);
135 	edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
136 }
137 
138 #endif				/* CONFIG_EDAC_DEBUG */
139 
140 const char * const edac_mem_types[] = {
141 	[MEM_EMPTY]	= "Empty",
142 	[MEM_RESERVED]	= "Reserved",
143 	[MEM_UNKNOWN]	= "Unknown",
144 	[MEM_FPM]	= "FPM",
145 	[MEM_EDO]	= "EDO",
146 	[MEM_BEDO]	= "BEDO",
147 	[MEM_SDR]	= "Unbuffered-SDR",
148 	[MEM_RDR]	= "Registered-SDR",
149 	[MEM_DDR]	= "Unbuffered-DDR",
150 	[MEM_RDDR]	= "Registered-DDR",
151 	[MEM_RMBS]	= "RMBS",
152 	[MEM_DDR2]	= "Unbuffered-DDR2",
153 	[MEM_FB_DDR2]	= "FullyBuffered-DDR2",
154 	[MEM_RDDR2]	= "Registered-DDR2",
155 	[MEM_XDR]	= "XDR",
156 	[MEM_DDR3]	= "Unbuffered-DDR3",
157 	[MEM_RDDR3]	= "Registered-DDR3",
158 	[MEM_LRDDR3]	= "Load-Reduced-DDR3-RAM",
159 	[MEM_LPDDR3]	= "Low-Power-DDR3-RAM",
160 	[MEM_DDR4]	= "Unbuffered-DDR4",
161 	[MEM_RDDR4]	= "Registered-DDR4",
162 	[MEM_LPDDR4]	= "Low-Power-DDR4-RAM",
163 	[MEM_LRDDR4]	= "Load-Reduced-DDR4-RAM",
164 	[MEM_DDR5]	= "Unbuffered-DDR5",
165 	[MEM_RDDR5]	= "Registered-DDR5",
166 	[MEM_LRDDR5]	= "Load-Reduced-DDR5-RAM",
167 	[MEM_NVDIMM]	= "Non-volatile-RAM",
168 	[MEM_WIO2]	= "Wide-IO-2",
169 	[MEM_HBM2]	= "High-bandwidth-memory-Gen2",
170 };
171 EXPORT_SYMBOL_GPL(edac_mem_types);
172 
173 /**
174  * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
175  * @p:		pointer to a pointer with the memory offset to be used. At
176  *		return, this will be incremented to point to the next offset
177  * @size:	Size of the data structure to be reserved
178  * @n_elems:	Number of elements that should be reserved
179  *
180  * If 'size' is a constant, the compiler will optimize this whole function
181  * down to either a no-op or the addition of a constant to the value of '*p'.
182  *
183  * The 'p' pointer is absolutely needed to keep the proper advancing
184  * further in memory to the proper offsets when allocating the struct along
185  * with its embedded structs, as edac_device_alloc_ctl_info() does it
186  * above, for example.
187  *
188  * At return, the pointer 'p' will be incremented to be used on a next call
189  * to this function.
190  */
191 void *edac_align_ptr(void **p, unsigned int size, int n_elems)
192 {
193 	unsigned int align, r;
194 	void *ptr = *p;
195 
196 	*p += size * n_elems;
197 
198 	/*
199 	 * 'p' can possibly be an unaligned item X such that sizeof(X) is
200 	 * 'size'.  Adjust 'p' so that its alignment is at least as
201 	 * stringent as what the compiler would provide for X and return
202 	 * the aligned result.
203 	 * Here we assume that the alignment of a "long long" is the most
204 	 * stringent alignment that the compiler will ever provide by default.
205 	 * As far as I know, this is a reasonable assumption.
206 	 */
207 	if (size > sizeof(long))
208 		align = sizeof(long long);
209 	else if (size > sizeof(int))
210 		align = sizeof(long);
211 	else if (size > sizeof(short))
212 		align = sizeof(int);
213 	else if (size > sizeof(char))
214 		align = sizeof(short);
215 	else
216 		return (char *)ptr;
217 
218 	r = (unsigned long)ptr % align;
219 
220 	if (r == 0)
221 		return (char *)ptr;
222 
223 	*p += align - r;
224 
225 	return (void *)(((unsigned long)ptr) + align - r);
226 }
227 
228 static void _edac_mc_free(struct mem_ctl_info *mci)
229 {
230 	put_device(&mci->dev);
231 }
232 
233 static void mci_release(struct device *dev)
234 {
235 	struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
236 	struct csrow_info *csr;
237 	int i, chn, row;
238 
239 	if (mci->dimms) {
240 		for (i = 0; i < mci->tot_dimms; i++)
241 			kfree(mci->dimms[i]);
242 		kfree(mci->dimms);
243 	}
244 
245 	if (mci->csrows) {
246 		for (row = 0; row < mci->nr_csrows; row++) {
247 			csr = mci->csrows[row];
248 			if (!csr)
249 				continue;
250 
251 			if (csr->channels) {
252 				for (chn = 0; chn < mci->num_cschannel; chn++)
253 					kfree(csr->channels[chn]);
254 				kfree(csr->channels);
255 			}
256 			kfree(csr);
257 		}
258 		kfree(mci->csrows);
259 	}
260 	kfree(mci);
261 }
262 
263 static int edac_mc_alloc_csrows(struct mem_ctl_info *mci)
264 {
265 	unsigned int tot_channels = mci->num_cschannel;
266 	unsigned int tot_csrows = mci->nr_csrows;
267 	unsigned int row, chn;
268 
269 	/*
270 	 * Alocate and fill the csrow/channels structs
271 	 */
272 	mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
273 	if (!mci->csrows)
274 		return -ENOMEM;
275 
276 	for (row = 0; row < tot_csrows; row++) {
277 		struct csrow_info *csr;
278 
279 		csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
280 		if (!csr)
281 			return -ENOMEM;
282 
283 		mci->csrows[row] = csr;
284 		csr->csrow_idx = row;
285 		csr->mci = mci;
286 		csr->nr_channels = tot_channels;
287 		csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
288 					GFP_KERNEL);
289 		if (!csr->channels)
290 			return -ENOMEM;
291 
292 		for (chn = 0; chn < tot_channels; chn++) {
293 			struct rank_info *chan;
294 
295 			chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
296 			if (!chan)
297 				return -ENOMEM;
298 
299 			csr->channels[chn] = chan;
300 			chan->chan_idx = chn;
301 			chan->csrow = csr;
302 		}
303 	}
304 
305 	return 0;
306 }
307 
308 static int edac_mc_alloc_dimms(struct mem_ctl_info *mci)
309 {
310 	unsigned int pos[EDAC_MAX_LAYERS];
311 	unsigned int row, chn, idx;
312 	int layer;
313 	void *p;
314 
315 	/*
316 	 * Allocate and fill the dimm structs
317 	 */
318 	mci->dimms  = kcalloc(mci->tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
319 	if (!mci->dimms)
320 		return -ENOMEM;
321 
322 	memset(&pos, 0, sizeof(pos));
323 	row = 0;
324 	chn = 0;
325 	for (idx = 0; idx < mci->tot_dimms; idx++) {
326 		struct dimm_info *dimm;
327 		struct rank_info *chan;
328 		int n, len;
329 
330 		chan = mci->csrows[row]->channels[chn];
331 
332 		dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
333 		if (!dimm)
334 			return -ENOMEM;
335 		mci->dimms[idx] = dimm;
336 		dimm->mci = mci;
337 		dimm->idx = idx;
338 
339 		/*
340 		 * Copy DIMM location and initialize it.
341 		 */
342 		len = sizeof(dimm->label);
343 		p = dimm->label;
344 		n = scnprintf(p, len, "mc#%u", mci->mc_idx);
345 		p += n;
346 		len -= n;
347 		for (layer = 0; layer < mci->n_layers; layer++) {
348 			n = scnprintf(p, len, "%s#%u",
349 				      edac_layer_name[mci->layers[layer].type],
350 				      pos[layer]);
351 			p += n;
352 			len -= n;
353 			dimm->location[layer] = pos[layer];
354 		}
355 
356 		/* Link it to the csrows old API data */
357 		chan->dimm = dimm;
358 		dimm->csrow = row;
359 		dimm->cschannel = chn;
360 
361 		/* Increment csrow location */
362 		if (mci->layers[0].is_virt_csrow) {
363 			chn++;
364 			if (chn == mci->num_cschannel) {
365 				chn = 0;
366 				row++;
367 			}
368 		} else {
369 			row++;
370 			if (row == mci->nr_csrows) {
371 				row = 0;
372 				chn++;
373 			}
374 		}
375 
376 		/* Increment dimm location */
377 		for (layer = mci->n_layers - 1; layer >= 0; layer--) {
378 			pos[layer]++;
379 			if (pos[layer] < mci->layers[layer].size)
380 				break;
381 			pos[layer] = 0;
382 		}
383 	}
384 
385 	return 0;
386 }
387 
388 struct mem_ctl_info *edac_mc_alloc(unsigned int mc_num,
389 				   unsigned int n_layers,
390 				   struct edac_mc_layer *layers,
391 				   unsigned int sz_pvt)
392 {
393 	struct mem_ctl_info *mci;
394 	struct edac_mc_layer *layer;
395 	unsigned int idx, size, tot_dimms = 1;
396 	unsigned int tot_csrows = 1, tot_channels = 1;
397 	void *pvt, *ptr = NULL;
398 	bool per_rank = false;
399 
400 	if (WARN_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0))
401 		return NULL;
402 
403 	/*
404 	 * Calculate the total amount of dimms and csrows/cschannels while
405 	 * in the old API emulation mode
406 	 */
407 	for (idx = 0; idx < n_layers; idx++) {
408 		tot_dimms *= layers[idx].size;
409 
410 		if (layers[idx].is_virt_csrow)
411 			tot_csrows *= layers[idx].size;
412 		else
413 			tot_channels *= layers[idx].size;
414 
415 		if (layers[idx].type == EDAC_MC_LAYER_CHIP_SELECT)
416 			per_rank = true;
417 	}
418 
419 	/* Figure out the offsets of the various items from the start of an mc
420 	 * structure.  We want the alignment of each item to be at least as
421 	 * stringent as what the compiler would provide if we could simply
422 	 * hardcode everything into a single struct.
423 	 */
424 	mci	= edac_align_ptr(&ptr, sizeof(*mci), 1);
425 	layer	= edac_align_ptr(&ptr, sizeof(*layer), n_layers);
426 	pvt	= edac_align_ptr(&ptr, sz_pvt, 1);
427 	size	= ((unsigned long)pvt) + sz_pvt;
428 
429 	edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
430 		 size,
431 		 tot_dimms,
432 		 per_rank ? "ranks" : "dimms",
433 		 tot_csrows * tot_channels);
434 
435 	mci = kzalloc(size, GFP_KERNEL);
436 	if (mci == NULL)
437 		return NULL;
438 
439 	mci->dev.release = mci_release;
440 	device_initialize(&mci->dev);
441 
442 	/* Adjust pointers so they point within the memory we just allocated
443 	 * rather than an imaginary chunk of memory located at address 0.
444 	 */
445 	layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
446 	pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
447 
448 	/* setup index and various internal pointers */
449 	mci->mc_idx = mc_num;
450 	mci->tot_dimms = tot_dimms;
451 	mci->pvt_info = pvt;
452 	mci->n_layers = n_layers;
453 	mci->layers = layer;
454 	memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
455 	mci->nr_csrows = tot_csrows;
456 	mci->num_cschannel = tot_channels;
457 	mci->csbased = per_rank;
458 
459 	if (edac_mc_alloc_csrows(mci))
460 		goto error;
461 
462 	if (edac_mc_alloc_dimms(mci))
463 		goto error;
464 
465 	mci->op_state = OP_ALLOC;
466 
467 	return mci;
468 
469 error:
470 	_edac_mc_free(mci);
471 
472 	return NULL;
473 }
474 EXPORT_SYMBOL_GPL(edac_mc_alloc);
475 
476 void edac_mc_free(struct mem_ctl_info *mci)
477 {
478 	edac_dbg(1, "\n");
479 
480 	_edac_mc_free(mci);
481 }
482 EXPORT_SYMBOL_GPL(edac_mc_free);
483 
484 bool edac_has_mcs(void)
485 {
486 	bool ret;
487 
488 	mutex_lock(&mem_ctls_mutex);
489 
490 	ret = list_empty(&mc_devices);
491 
492 	mutex_unlock(&mem_ctls_mutex);
493 
494 	return !ret;
495 }
496 EXPORT_SYMBOL_GPL(edac_has_mcs);
497 
498 /* Caller must hold mem_ctls_mutex */
499 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
500 {
501 	struct mem_ctl_info *mci;
502 	struct list_head *item;
503 
504 	edac_dbg(3, "\n");
505 
506 	list_for_each(item, &mc_devices) {
507 		mci = list_entry(item, struct mem_ctl_info, link);
508 
509 		if (mci->pdev == dev)
510 			return mci;
511 	}
512 
513 	return NULL;
514 }
515 
516 /**
517  * find_mci_by_dev
518  *
519  *	scan list of controllers looking for the one that manages
520  *	the 'dev' device
521  * @dev: pointer to a struct device related with the MCI
522  */
523 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
524 {
525 	struct mem_ctl_info *ret;
526 
527 	mutex_lock(&mem_ctls_mutex);
528 	ret = __find_mci_by_dev(dev);
529 	mutex_unlock(&mem_ctls_mutex);
530 
531 	return ret;
532 }
533 EXPORT_SYMBOL_GPL(find_mci_by_dev);
534 
535 /*
536  * edac_mc_workq_function
537  *	performs the operation scheduled by a workq request
538  */
539 static void edac_mc_workq_function(struct work_struct *work_req)
540 {
541 	struct delayed_work *d_work = to_delayed_work(work_req);
542 	struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
543 
544 	mutex_lock(&mem_ctls_mutex);
545 
546 	if (mci->op_state != OP_RUNNING_POLL) {
547 		mutex_unlock(&mem_ctls_mutex);
548 		return;
549 	}
550 
551 	if (edac_op_state == EDAC_OPSTATE_POLL)
552 		mci->edac_check(mci);
553 
554 	mutex_unlock(&mem_ctls_mutex);
555 
556 	/* Queue ourselves again. */
557 	edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
558 }
559 
560 /*
561  * edac_mc_reset_delay_period(unsigned long value)
562  *
563  *	user space has updated our poll period value, need to
564  *	reset our workq delays
565  */
566 void edac_mc_reset_delay_period(unsigned long value)
567 {
568 	struct mem_ctl_info *mci;
569 	struct list_head *item;
570 
571 	mutex_lock(&mem_ctls_mutex);
572 
573 	list_for_each(item, &mc_devices) {
574 		mci = list_entry(item, struct mem_ctl_info, link);
575 
576 		if (mci->op_state == OP_RUNNING_POLL)
577 			edac_mod_work(&mci->work, value);
578 	}
579 	mutex_unlock(&mem_ctls_mutex);
580 }
581 
582 
583 
584 /* Return 0 on success, 1 on failure.
585  * Before calling this function, caller must
586  * assign a unique value to mci->mc_idx.
587  *
588  *	locking model:
589  *
590  *		called with the mem_ctls_mutex lock held
591  */
592 static int add_mc_to_global_list(struct mem_ctl_info *mci)
593 {
594 	struct list_head *item, *insert_before;
595 	struct mem_ctl_info *p;
596 
597 	insert_before = &mc_devices;
598 
599 	p = __find_mci_by_dev(mci->pdev);
600 	if (unlikely(p != NULL))
601 		goto fail0;
602 
603 	list_for_each(item, &mc_devices) {
604 		p = list_entry(item, struct mem_ctl_info, link);
605 
606 		if (p->mc_idx >= mci->mc_idx) {
607 			if (unlikely(p->mc_idx == mci->mc_idx))
608 				goto fail1;
609 
610 			insert_before = item;
611 			break;
612 		}
613 	}
614 
615 	list_add_tail_rcu(&mci->link, insert_before);
616 	return 0;
617 
618 fail0:
619 	edac_printk(KERN_WARNING, EDAC_MC,
620 		"%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
621 		edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
622 	return 1;
623 
624 fail1:
625 	edac_printk(KERN_WARNING, EDAC_MC,
626 		"bug in low-level driver: attempt to assign\n"
627 		"    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
628 	return 1;
629 }
630 
631 static int del_mc_from_global_list(struct mem_ctl_info *mci)
632 {
633 	list_del_rcu(&mci->link);
634 
635 	/* these are for safe removal of devices from global list while
636 	 * NMI handlers may be traversing list
637 	 */
638 	synchronize_rcu();
639 	INIT_LIST_HEAD(&mci->link);
640 
641 	return list_empty(&mc_devices);
642 }
643 
644 struct mem_ctl_info *edac_mc_find(int idx)
645 {
646 	struct mem_ctl_info *mci;
647 	struct list_head *item;
648 
649 	mutex_lock(&mem_ctls_mutex);
650 
651 	list_for_each(item, &mc_devices) {
652 		mci = list_entry(item, struct mem_ctl_info, link);
653 		if (mci->mc_idx == idx)
654 			goto unlock;
655 	}
656 
657 	mci = NULL;
658 unlock:
659 	mutex_unlock(&mem_ctls_mutex);
660 	return mci;
661 }
662 EXPORT_SYMBOL(edac_mc_find);
663 
664 const char *edac_get_owner(void)
665 {
666 	return edac_mc_owner;
667 }
668 EXPORT_SYMBOL_GPL(edac_get_owner);
669 
670 /* FIXME - should a warning be printed if no error detection? correction? */
671 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
672 			       const struct attribute_group **groups)
673 {
674 	int ret = -EINVAL;
675 	edac_dbg(0, "\n");
676 
677 #ifdef CONFIG_EDAC_DEBUG
678 	if (edac_debug_level >= 3)
679 		edac_mc_dump_mci(mci);
680 
681 	if (edac_debug_level >= 4) {
682 		struct dimm_info *dimm;
683 		int i;
684 
685 		for (i = 0; i < mci->nr_csrows; i++) {
686 			struct csrow_info *csrow = mci->csrows[i];
687 			u32 nr_pages = 0;
688 			int j;
689 
690 			for (j = 0; j < csrow->nr_channels; j++)
691 				nr_pages += csrow->channels[j]->dimm->nr_pages;
692 			if (!nr_pages)
693 				continue;
694 			edac_mc_dump_csrow(csrow);
695 			for (j = 0; j < csrow->nr_channels; j++)
696 				if (csrow->channels[j]->dimm->nr_pages)
697 					edac_mc_dump_channel(csrow->channels[j]);
698 		}
699 
700 		mci_for_each_dimm(mci, dimm)
701 			edac_mc_dump_dimm(dimm);
702 	}
703 #endif
704 	mutex_lock(&mem_ctls_mutex);
705 
706 	if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
707 		ret = -EPERM;
708 		goto fail0;
709 	}
710 
711 	if (add_mc_to_global_list(mci))
712 		goto fail0;
713 
714 	/* set load time so that error rate can be tracked */
715 	mci->start_time = jiffies;
716 
717 	mci->bus = edac_get_sysfs_subsys();
718 
719 	if (edac_create_sysfs_mci_device(mci, groups)) {
720 		edac_mc_printk(mci, KERN_WARNING,
721 			"failed to create sysfs device\n");
722 		goto fail1;
723 	}
724 
725 	if (mci->edac_check) {
726 		mci->op_state = OP_RUNNING_POLL;
727 
728 		INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
729 		edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
730 
731 	} else {
732 		mci->op_state = OP_RUNNING_INTERRUPT;
733 	}
734 
735 	/* Report action taken */
736 	edac_mc_printk(mci, KERN_INFO,
737 		"Giving out device to module %s controller %s: DEV %s (%s)\n",
738 		mci->mod_name, mci->ctl_name, mci->dev_name,
739 		edac_op_state_to_string(mci->op_state));
740 
741 	edac_mc_owner = mci->mod_name;
742 
743 	mutex_unlock(&mem_ctls_mutex);
744 	return 0;
745 
746 fail1:
747 	del_mc_from_global_list(mci);
748 
749 fail0:
750 	mutex_unlock(&mem_ctls_mutex);
751 	return ret;
752 }
753 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
754 
755 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
756 {
757 	struct mem_ctl_info *mci;
758 
759 	edac_dbg(0, "\n");
760 
761 	mutex_lock(&mem_ctls_mutex);
762 
763 	/* find the requested mci struct in the global list */
764 	mci = __find_mci_by_dev(dev);
765 	if (mci == NULL) {
766 		mutex_unlock(&mem_ctls_mutex);
767 		return NULL;
768 	}
769 
770 	/* mark MCI offline: */
771 	mci->op_state = OP_OFFLINE;
772 
773 	if (del_mc_from_global_list(mci))
774 		edac_mc_owner = NULL;
775 
776 	mutex_unlock(&mem_ctls_mutex);
777 
778 	if (mci->edac_check)
779 		edac_stop_work(&mci->work);
780 
781 	/* remove from sysfs */
782 	edac_remove_sysfs_mci_device(mci);
783 
784 	edac_printk(KERN_INFO, EDAC_MC,
785 		"Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
786 		mci->mod_name, mci->ctl_name, edac_dev_name(mci));
787 
788 	return mci;
789 }
790 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
791 
792 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
793 				u32 size)
794 {
795 	struct page *pg;
796 	void *virt_addr;
797 	unsigned long flags = 0;
798 
799 	edac_dbg(3, "\n");
800 
801 	/* ECC error page was not in our memory. Ignore it. */
802 	if (!pfn_valid(page))
803 		return;
804 
805 	/* Find the actual page structure then map it and fix */
806 	pg = pfn_to_page(page);
807 
808 	if (PageHighMem(pg))
809 		local_irq_save(flags);
810 
811 	virt_addr = kmap_atomic(pg);
812 
813 	/* Perform architecture specific atomic scrub operation */
814 	edac_atomic_scrub(virt_addr + offset, size);
815 
816 	/* Unmap and complete */
817 	kunmap_atomic(virt_addr);
818 
819 	if (PageHighMem(pg))
820 		local_irq_restore(flags);
821 }
822 
823 /* FIXME - should return -1 */
824 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
825 {
826 	struct csrow_info **csrows = mci->csrows;
827 	int row, i, j, n;
828 
829 	edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
830 	row = -1;
831 
832 	for (i = 0; i < mci->nr_csrows; i++) {
833 		struct csrow_info *csrow = csrows[i];
834 		n = 0;
835 		for (j = 0; j < csrow->nr_channels; j++) {
836 			struct dimm_info *dimm = csrow->channels[j]->dimm;
837 			n += dimm->nr_pages;
838 		}
839 		if (n == 0)
840 			continue;
841 
842 		edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
843 			 mci->mc_idx,
844 			 csrow->first_page, page, csrow->last_page,
845 			 csrow->page_mask);
846 
847 		if ((page >= csrow->first_page) &&
848 		    (page <= csrow->last_page) &&
849 		    ((page & csrow->page_mask) ==
850 		     (csrow->first_page & csrow->page_mask))) {
851 			row = i;
852 			break;
853 		}
854 	}
855 
856 	if (row == -1)
857 		edac_mc_printk(mci, KERN_ERR,
858 			"could not look up page error address %lx\n",
859 			(unsigned long)page);
860 
861 	return row;
862 }
863 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
864 
865 const char *edac_layer_name[] = {
866 	[EDAC_MC_LAYER_BRANCH] = "branch",
867 	[EDAC_MC_LAYER_CHANNEL] = "channel",
868 	[EDAC_MC_LAYER_SLOT] = "slot",
869 	[EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
870 	[EDAC_MC_LAYER_ALL_MEM] = "memory",
871 };
872 EXPORT_SYMBOL_GPL(edac_layer_name);
873 
874 static void edac_inc_ce_error(struct edac_raw_error_desc *e)
875 {
876 	int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
877 	struct mem_ctl_info *mci = error_desc_to_mci(e);
878 	struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]);
879 
880 	mci->ce_mc += e->error_count;
881 
882 	if (dimm)
883 		dimm->ce_count += e->error_count;
884 	else
885 		mci->ce_noinfo_count += e->error_count;
886 }
887 
888 static void edac_inc_ue_error(struct edac_raw_error_desc *e)
889 {
890 	int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
891 	struct mem_ctl_info *mci = error_desc_to_mci(e);
892 	struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]);
893 
894 	mci->ue_mc += e->error_count;
895 
896 	if (dimm)
897 		dimm->ue_count += e->error_count;
898 	else
899 		mci->ue_noinfo_count += e->error_count;
900 }
901 
902 static void edac_ce_error(struct edac_raw_error_desc *e)
903 {
904 	struct mem_ctl_info *mci = error_desc_to_mci(e);
905 	unsigned long remapped_page;
906 
907 	if (edac_mc_get_log_ce()) {
908 		edac_mc_printk(mci, KERN_WARNING,
909 			"%d CE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx%s%s)\n",
910 			e->error_count, e->msg,
911 			*e->msg ? " " : "",
912 			e->label, e->location, e->page_frame_number, e->offset_in_page,
913 			e->grain, e->syndrome,
914 			*e->other_detail ? " - " : "",
915 			e->other_detail);
916 	}
917 
918 	edac_inc_ce_error(e);
919 
920 	if (mci->scrub_mode == SCRUB_SW_SRC) {
921 		/*
922 			* Some memory controllers (called MCs below) can remap
923 			* memory so that it is still available at a different
924 			* address when PCI devices map into memory.
925 			* MC's that can't do this, lose the memory where PCI
926 			* devices are mapped. This mapping is MC-dependent
927 			* and so we call back into the MC driver for it to
928 			* map the MC page to a physical (CPU) page which can
929 			* then be mapped to a virtual page - which can then
930 			* be scrubbed.
931 			*/
932 		remapped_page = mci->ctl_page_to_phys ?
933 			mci->ctl_page_to_phys(mci, e->page_frame_number) :
934 			e->page_frame_number;
935 
936 		edac_mc_scrub_block(remapped_page, e->offset_in_page, e->grain);
937 	}
938 }
939 
940 static void edac_ue_error(struct edac_raw_error_desc *e)
941 {
942 	struct mem_ctl_info *mci = error_desc_to_mci(e);
943 
944 	if (edac_mc_get_log_ue()) {
945 		edac_mc_printk(mci, KERN_WARNING,
946 			"%d UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n",
947 			e->error_count, e->msg,
948 			*e->msg ? " " : "",
949 			e->label, e->location, e->page_frame_number, e->offset_in_page,
950 			e->grain,
951 			*e->other_detail ? " - " : "",
952 			e->other_detail);
953 	}
954 
955 	edac_inc_ue_error(e);
956 
957 	if (edac_mc_get_panic_on_ue()) {
958 		panic("UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n",
959 			e->msg,
960 			*e->msg ? " " : "",
961 			e->label, e->location, e->page_frame_number, e->offset_in_page,
962 			e->grain,
963 			*e->other_detail ? " - " : "",
964 			e->other_detail);
965 	}
966 }
967 
968 static void edac_inc_csrow(struct edac_raw_error_desc *e, int row, int chan)
969 {
970 	struct mem_ctl_info *mci = error_desc_to_mci(e);
971 	enum hw_event_mc_err_type type = e->type;
972 	u16 count = e->error_count;
973 
974 	if (row < 0)
975 		return;
976 
977 	edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
978 
979 	if (type == HW_EVENT_ERR_CORRECTED) {
980 		mci->csrows[row]->ce_count += count;
981 		if (chan >= 0)
982 			mci->csrows[row]->channels[chan]->ce_count += count;
983 	} else {
984 		mci->csrows[row]->ue_count += count;
985 	}
986 }
987 
988 void edac_raw_mc_handle_error(struct edac_raw_error_desc *e)
989 {
990 	struct mem_ctl_info *mci = error_desc_to_mci(e);
991 	u8 grain_bits;
992 
993 	/* Sanity-check driver-supplied grain value. */
994 	if (WARN_ON_ONCE(!e->grain))
995 		e->grain = 1;
996 
997 	grain_bits = fls_long(e->grain - 1);
998 
999 	/* Report the error via the trace interface */
1000 	if (IS_ENABLED(CONFIG_RAS))
1001 		trace_mc_event(e->type, e->msg, e->label, e->error_count,
1002 			       mci->mc_idx, e->top_layer, e->mid_layer,
1003 			       e->low_layer,
1004 			       (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
1005 			       grain_bits, e->syndrome, e->other_detail);
1006 
1007 	if (e->type == HW_EVENT_ERR_CORRECTED)
1008 		edac_ce_error(e);
1009 	else
1010 		edac_ue_error(e);
1011 }
1012 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1013 
1014 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1015 			  struct mem_ctl_info *mci,
1016 			  const u16 error_count,
1017 			  const unsigned long page_frame_number,
1018 			  const unsigned long offset_in_page,
1019 			  const unsigned long syndrome,
1020 			  const int top_layer,
1021 			  const int mid_layer,
1022 			  const int low_layer,
1023 			  const char *msg,
1024 			  const char *other_detail)
1025 {
1026 	struct dimm_info *dimm;
1027 	char *p, *end;
1028 	int row = -1, chan = -1;
1029 	int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1030 	int i, n_labels = 0;
1031 	struct edac_raw_error_desc *e = &mci->error_desc;
1032 	bool any_memory = true;
1033 	const char *prefix;
1034 
1035 	edac_dbg(3, "MC%d\n", mci->mc_idx);
1036 
1037 	/* Fills the error report buffer */
1038 	memset(e, 0, sizeof (*e));
1039 	e->error_count = error_count;
1040 	e->type = type;
1041 	e->top_layer = top_layer;
1042 	e->mid_layer = mid_layer;
1043 	e->low_layer = low_layer;
1044 	e->page_frame_number = page_frame_number;
1045 	e->offset_in_page = offset_in_page;
1046 	e->syndrome = syndrome;
1047 	/* need valid strings here for both: */
1048 	e->msg = msg ?: "";
1049 	e->other_detail = other_detail ?: "";
1050 
1051 	/*
1052 	 * Check if the event report is consistent and if the memory location is
1053 	 * known. If it is, the DIMM(s) label info will be filled and the DIMM's
1054 	 * error counters will be incremented.
1055 	 */
1056 	for (i = 0; i < mci->n_layers; i++) {
1057 		if (pos[i] >= (int)mci->layers[i].size) {
1058 
1059 			edac_mc_printk(mci, KERN_ERR,
1060 				       "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1061 				       edac_layer_name[mci->layers[i].type],
1062 				       pos[i], mci->layers[i].size);
1063 			/*
1064 			 * Instead of just returning it, let's use what's
1065 			 * known about the error. The increment routines and
1066 			 * the DIMM filter logic will do the right thing by
1067 			 * pointing the likely damaged DIMMs.
1068 			 */
1069 			pos[i] = -1;
1070 		}
1071 		if (pos[i] >= 0)
1072 			any_memory = false;
1073 	}
1074 
1075 	/*
1076 	 * Get the dimm label/grain that applies to the match criteria.
1077 	 * As the error algorithm may not be able to point to just one memory
1078 	 * stick, the logic here will get all possible labels that could
1079 	 * pottentially be affected by the error.
1080 	 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1081 	 * to have only the MC channel and the MC dimm (also called "branch")
1082 	 * but the channel is not known, as the memory is arranged in pairs,
1083 	 * where each memory belongs to a separate channel within the same
1084 	 * branch.
1085 	 */
1086 	p = e->label;
1087 	*p = '\0';
1088 	end = p + sizeof(e->label);
1089 	prefix = "";
1090 
1091 	mci_for_each_dimm(mci, dimm) {
1092 		if (top_layer >= 0 && top_layer != dimm->location[0])
1093 			continue;
1094 		if (mid_layer >= 0 && mid_layer != dimm->location[1])
1095 			continue;
1096 		if (low_layer >= 0 && low_layer != dimm->location[2])
1097 			continue;
1098 
1099 		/* get the max grain, over the error match range */
1100 		if (dimm->grain > e->grain)
1101 			e->grain = dimm->grain;
1102 
1103 		/*
1104 		 * If the error is memory-controller wide, there's no need to
1105 		 * seek for the affected DIMMs because the whole channel/memory
1106 		 * controller/... may be affected. Also, don't show errors for
1107 		 * empty DIMM slots.
1108 		 */
1109 		if (!dimm->nr_pages)
1110 			continue;
1111 
1112 		n_labels++;
1113 		if (n_labels > EDAC_MAX_LABELS) {
1114 			p = e->label;
1115 			*p = '\0';
1116 		} else {
1117 			p += scnprintf(p, end - p, "%s%s", prefix, dimm->label);
1118 			prefix = OTHER_LABEL;
1119 		}
1120 
1121 		/*
1122 		 * get csrow/channel of the DIMM, in order to allow
1123 		 * incrementing the compat API counters
1124 		 */
1125 		edac_dbg(4, "%s csrows map: (%d,%d)\n",
1126 			mci->csbased ? "rank" : "dimm",
1127 			dimm->csrow, dimm->cschannel);
1128 		if (row == -1)
1129 			row = dimm->csrow;
1130 		else if (row >= 0 && row != dimm->csrow)
1131 			row = -2;
1132 
1133 		if (chan == -1)
1134 			chan = dimm->cschannel;
1135 		else if (chan >= 0 && chan != dimm->cschannel)
1136 			chan = -2;
1137 	}
1138 
1139 	if (any_memory)
1140 		strscpy(e->label, "any memory", sizeof(e->label));
1141 	else if (!*e->label)
1142 		strscpy(e->label, "unknown memory", sizeof(e->label));
1143 
1144 	edac_inc_csrow(e, row, chan);
1145 
1146 	/* Fill the RAM location data */
1147 	p = e->location;
1148 	end = p + sizeof(e->location);
1149 	prefix = "";
1150 
1151 	for (i = 0; i < mci->n_layers; i++) {
1152 		if (pos[i] < 0)
1153 			continue;
1154 
1155 		p += scnprintf(p, end - p, "%s%s:%d", prefix,
1156 			       edac_layer_name[mci->layers[i].type], pos[i]);
1157 		prefix = " ";
1158 	}
1159 
1160 	edac_raw_mc_handle_error(e);
1161 }
1162 EXPORT_SYMBOL_GPL(edac_mc_handle_error);
1163