xref: /openbmc/linux/drivers/edac/edac_mc.c (revision a44e4f3a)
1 /*
2  * edac_mc kernel module
3  * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Thayne Harbaugh
8  * Based on work by Dan Hollis <goemon at anime dot net> and others.
9  *	http://www.anime.net/~goemon/linux-ecc/
10  *
11  * Modified by Dave Peterson and Doug Thompson
12  *
13  */
14 
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <linux/uaccess.h>
32 #include <asm/page.h>
33 #include "edac_mc.h"
34 #include "edac_module.h"
35 #include <ras/ras_event.h>
36 
37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB
38 #include <asm/edac.h>
39 #else
40 #define edac_atomic_scrub(va, size) do { } while (0)
41 #endif
42 
43 int edac_op_state = EDAC_OPSTATE_INVAL;
44 EXPORT_SYMBOL_GPL(edac_op_state);
45 
46 static int edac_report = EDAC_REPORTING_ENABLED;
47 
48 /* lock to memory controller's control array */
49 static DEFINE_MUTEX(mem_ctls_mutex);
50 static LIST_HEAD(mc_devices);
51 
52 /*
53  * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
54  *	apei/ghes and i7core_edac to be used at the same time.
55  */
56 static const char *edac_mc_owner;
57 
58 int edac_get_report_status(void)
59 {
60 	return edac_report;
61 }
62 EXPORT_SYMBOL_GPL(edac_get_report_status);
63 
64 void edac_set_report_status(int new)
65 {
66 	if (new == EDAC_REPORTING_ENABLED ||
67 	    new == EDAC_REPORTING_DISABLED ||
68 	    new == EDAC_REPORTING_FORCE)
69 		edac_report = new;
70 }
71 EXPORT_SYMBOL_GPL(edac_set_report_status);
72 
73 static int edac_report_set(const char *str, const struct kernel_param *kp)
74 {
75 	if (!str)
76 		return -EINVAL;
77 
78 	if (!strncmp(str, "on", 2))
79 		edac_report = EDAC_REPORTING_ENABLED;
80 	else if (!strncmp(str, "off", 3))
81 		edac_report = EDAC_REPORTING_DISABLED;
82 	else if (!strncmp(str, "force", 5))
83 		edac_report = EDAC_REPORTING_FORCE;
84 
85 	return 0;
86 }
87 
88 static int edac_report_get(char *buffer, const struct kernel_param *kp)
89 {
90 	int ret = 0;
91 
92 	switch (edac_report) {
93 	case EDAC_REPORTING_ENABLED:
94 		ret = sprintf(buffer, "on");
95 		break;
96 	case EDAC_REPORTING_DISABLED:
97 		ret = sprintf(buffer, "off");
98 		break;
99 	case EDAC_REPORTING_FORCE:
100 		ret = sprintf(buffer, "force");
101 		break;
102 	default:
103 		ret = -EINVAL;
104 		break;
105 	}
106 
107 	return ret;
108 }
109 
110 static const struct kernel_param_ops edac_report_ops = {
111 	.set = edac_report_set,
112 	.get = edac_report_get,
113 };
114 
115 module_param_cb(edac_report, &edac_report_ops, &edac_report, 0644);
116 
117 unsigned int edac_dimm_info_location(struct dimm_info *dimm, char *buf,
118 				     unsigned int len)
119 {
120 	struct mem_ctl_info *mci = dimm->mci;
121 	int i, n, count = 0;
122 	char *p = buf;
123 
124 	for (i = 0; i < mci->n_layers; i++) {
125 		n = snprintf(p, len, "%s %d ",
126 			      edac_layer_name[mci->layers[i].type],
127 			      dimm->location[i]);
128 		p += n;
129 		len -= n;
130 		count += n;
131 		if (!len)
132 			break;
133 	}
134 
135 	return count;
136 }
137 
138 #ifdef CONFIG_EDAC_DEBUG
139 
140 static void edac_mc_dump_channel(struct rank_info *chan)
141 {
142 	edac_dbg(4, "  channel->chan_idx = %d\n", chan->chan_idx);
143 	edac_dbg(4, "    channel = %p\n", chan);
144 	edac_dbg(4, "    channel->csrow = %p\n", chan->csrow);
145 	edac_dbg(4, "    channel->dimm = %p\n", chan->dimm);
146 }
147 
148 static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
149 {
150 	char location[80];
151 
152 	edac_dimm_info_location(dimm, location, sizeof(location));
153 
154 	edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
155 		 dimm->mci->csbased ? "rank" : "dimm",
156 		 number, location, dimm->csrow, dimm->cschannel);
157 	edac_dbg(4, "  dimm = %p\n", dimm);
158 	edac_dbg(4, "  dimm->label = '%s'\n", dimm->label);
159 	edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
160 	edac_dbg(4, "  dimm->grain = %d\n", dimm->grain);
161 	edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
162 }
163 
164 static void edac_mc_dump_csrow(struct csrow_info *csrow)
165 {
166 	edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
167 	edac_dbg(4, "  csrow = %p\n", csrow);
168 	edac_dbg(4, "  csrow->first_page = 0x%lx\n", csrow->first_page);
169 	edac_dbg(4, "  csrow->last_page = 0x%lx\n", csrow->last_page);
170 	edac_dbg(4, "  csrow->page_mask = 0x%lx\n", csrow->page_mask);
171 	edac_dbg(4, "  csrow->nr_channels = %d\n", csrow->nr_channels);
172 	edac_dbg(4, "  csrow->channels = %p\n", csrow->channels);
173 	edac_dbg(4, "  csrow->mci = %p\n", csrow->mci);
174 }
175 
176 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
177 {
178 	edac_dbg(3, "\tmci = %p\n", mci);
179 	edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
180 	edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
181 	edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
182 	edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
183 	edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
184 		 mci->nr_csrows, mci->csrows);
185 	edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
186 		 mci->tot_dimms, mci->dimms);
187 	edac_dbg(3, "\tdev = %p\n", mci->pdev);
188 	edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
189 		 mci->mod_name, mci->ctl_name);
190 	edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
191 }
192 
193 #endif				/* CONFIG_EDAC_DEBUG */
194 
195 const char * const edac_mem_types[] = {
196 	[MEM_EMPTY]	= "Empty",
197 	[MEM_RESERVED]	= "Reserved",
198 	[MEM_UNKNOWN]	= "Unknown",
199 	[MEM_FPM]	= "FPM",
200 	[MEM_EDO]	= "EDO",
201 	[MEM_BEDO]	= "BEDO",
202 	[MEM_SDR]	= "Unbuffered-SDR",
203 	[MEM_RDR]	= "Registered-SDR",
204 	[MEM_DDR]	= "Unbuffered-DDR",
205 	[MEM_RDDR]	= "Registered-DDR",
206 	[MEM_RMBS]	= "RMBS",
207 	[MEM_DDR2]	= "Unbuffered-DDR2",
208 	[MEM_FB_DDR2]	= "FullyBuffered-DDR2",
209 	[MEM_RDDR2]	= "Registered-DDR2",
210 	[MEM_XDR]	= "XDR",
211 	[MEM_DDR3]	= "Unbuffered-DDR3",
212 	[MEM_RDDR3]	= "Registered-DDR3",
213 	[MEM_LRDDR3]	= "Load-Reduced-DDR3-RAM",
214 	[MEM_DDR4]	= "Unbuffered-DDR4",
215 	[MEM_RDDR4]	= "Registered-DDR4",
216 	[MEM_LRDDR4]	= "Load-Reduced-DDR4-RAM",
217 	[MEM_NVDIMM]	= "Non-volatile-RAM",
218 };
219 EXPORT_SYMBOL_GPL(edac_mem_types);
220 
221 /**
222  * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
223  * @p:		pointer to a pointer with the memory offset to be used. At
224  *		return, this will be incremented to point to the next offset
225  * @size:	Size of the data structure to be reserved
226  * @n_elems:	Number of elements that should be reserved
227  *
228  * If 'size' is a constant, the compiler will optimize this whole function
229  * down to either a no-op or the addition of a constant to the value of '*p'.
230  *
231  * The 'p' pointer is absolutely needed to keep the proper advancing
232  * further in memory to the proper offsets when allocating the struct along
233  * with its embedded structs, as edac_device_alloc_ctl_info() does it
234  * above, for example.
235  *
236  * At return, the pointer 'p' will be incremented to be used on a next call
237  * to this function.
238  */
239 void *edac_align_ptr(void **p, unsigned int size, int n_elems)
240 {
241 	unsigned int align, r;
242 	void *ptr = *p;
243 
244 	*p += size * n_elems;
245 
246 	/*
247 	 * 'p' can possibly be an unaligned item X such that sizeof(X) is
248 	 * 'size'.  Adjust 'p' so that its alignment is at least as
249 	 * stringent as what the compiler would provide for X and return
250 	 * the aligned result.
251 	 * Here we assume that the alignment of a "long long" is the most
252 	 * stringent alignment that the compiler will ever provide by default.
253 	 * As far as I know, this is a reasonable assumption.
254 	 */
255 	if (size > sizeof(long))
256 		align = sizeof(long long);
257 	else if (size > sizeof(int))
258 		align = sizeof(long);
259 	else if (size > sizeof(short))
260 		align = sizeof(int);
261 	else if (size > sizeof(char))
262 		align = sizeof(short);
263 	else
264 		return (char *)ptr;
265 
266 	r = (unsigned long)p % align;
267 
268 	if (r == 0)
269 		return (char *)ptr;
270 
271 	*p += align - r;
272 
273 	return (void *)(((unsigned long)ptr) + align - r);
274 }
275 
276 static void _edac_mc_free(struct mem_ctl_info *mci)
277 {
278 	struct csrow_info *csr;
279 	int i, chn, row;
280 
281 	if (mci->dimms) {
282 		for (i = 0; i < mci->tot_dimms; i++)
283 			kfree(mci->dimms[i]);
284 		kfree(mci->dimms);
285 	}
286 
287 	if (mci->csrows) {
288 		for (row = 0; row < mci->nr_csrows; row++) {
289 			csr = mci->csrows[row];
290 			if (!csr)
291 				continue;
292 
293 			if (csr->channels) {
294 				for (chn = 0; chn < mci->num_cschannel; chn++)
295 					kfree(csr->channels[chn]);
296 				kfree(csr->channels);
297 			}
298 			kfree(csr);
299 		}
300 		kfree(mci->csrows);
301 	}
302 	kfree(mci);
303 }
304 
305 struct mem_ctl_info *edac_mc_alloc(unsigned int mc_num,
306 				   unsigned int n_layers,
307 				   struct edac_mc_layer *layers,
308 				   unsigned int sz_pvt)
309 {
310 	struct mem_ctl_info *mci;
311 	struct edac_mc_layer *layer;
312 	struct csrow_info *csr;
313 	struct rank_info *chan;
314 	struct dimm_info *dimm;
315 	u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
316 	unsigned int pos[EDAC_MAX_LAYERS];
317 	unsigned int size, tot_dimms = 1, count = 1;
318 	unsigned int tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
319 	void *pvt, *p, *ptr = NULL;
320 	int i, j, row, chn, n, len, off;
321 	bool per_rank = false;
322 
323 	BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
324 	/*
325 	 * Calculate the total amount of dimms and csrows/cschannels while
326 	 * in the old API emulation mode
327 	 */
328 	for (i = 0; i < n_layers; i++) {
329 		tot_dimms *= layers[i].size;
330 		if (layers[i].is_virt_csrow)
331 			tot_csrows *= layers[i].size;
332 		else
333 			tot_channels *= layers[i].size;
334 
335 		if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
336 			per_rank = true;
337 	}
338 
339 	/* Figure out the offsets of the various items from the start of an mc
340 	 * structure.  We want the alignment of each item to be at least as
341 	 * stringent as what the compiler would provide if we could simply
342 	 * hardcode everything into a single struct.
343 	 */
344 	mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
345 	layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
346 	for (i = 0; i < n_layers; i++) {
347 		count *= layers[i].size;
348 		edac_dbg(4, "errcount layer %d size %d\n", i, count);
349 		ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
350 		ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
351 		tot_errcount += 2 * count;
352 	}
353 
354 	edac_dbg(4, "allocating %d error counters\n", tot_errcount);
355 	pvt = edac_align_ptr(&ptr, sz_pvt, 1);
356 	size = ((unsigned long)pvt) + sz_pvt;
357 
358 	edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
359 		 size,
360 		 tot_dimms,
361 		 per_rank ? "ranks" : "dimms",
362 		 tot_csrows * tot_channels);
363 
364 	mci = kzalloc(size, GFP_KERNEL);
365 	if (mci == NULL)
366 		return NULL;
367 
368 	/* Adjust pointers so they point within the memory we just allocated
369 	 * rather than an imaginary chunk of memory located at address 0.
370 	 */
371 	layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
372 	for (i = 0; i < n_layers; i++) {
373 		mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
374 		mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
375 	}
376 	pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
377 
378 	/* setup index and various internal pointers */
379 	mci->mc_idx = mc_num;
380 	mci->tot_dimms = tot_dimms;
381 	mci->pvt_info = pvt;
382 	mci->n_layers = n_layers;
383 	mci->layers = layer;
384 	memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
385 	mci->nr_csrows = tot_csrows;
386 	mci->num_cschannel = tot_channels;
387 	mci->csbased = per_rank;
388 
389 	/*
390 	 * Alocate and fill the csrow/channels structs
391 	 */
392 	mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
393 	if (!mci->csrows)
394 		goto error;
395 	for (row = 0; row < tot_csrows; row++) {
396 		csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
397 		if (!csr)
398 			goto error;
399 		mci->csrows[row] = csr;
400 		csr->csrow_idx = row;
401 		csr->mci = mci;
402 		csr->nr_channels = tot_channels;
403 		csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
404 					GFP_KERNEL);
405 		if (!csr->channels)
406 			goto error;
407 
408 		for (chn = 0; chn < tot_channels; chn++) {
409 			chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
410 			if (!chan)
411 				goto error;
412 			csr->channels[chn] = chan;
413 			chan->chan_idx = chn;
414 			chan->csrow = csr;
415 		}
416 	}
417 
418 	/*
419 	 * Allocate and fill the dimm structs
420 	 */
421 	mci->dimms  = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
422 	if (!mci->dimms)
423 		goto error;
424 
425 	memset(&pos, 0, sizeof(pos));
426 	row = 0;
427 	chn = 0;
428 	for (i = 0; i < tot_dimms; i++) {
429 		chan = mci->csrows[row]->channels[chn];
430 		off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
431 		if (off < 0 || off >= tot_dimms) {
432 			edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
433 			goto error;
434 		}
435 
436 		dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
437 		if (!dimm)
438 			goto error;
439 		mci->dimms[off] = dimm;
440 		dimm->mci = mci;
441 
442 		/*
443 		 * Copy DIMM location and initialize it.
444 		 */
445 		len = sizeof(dimm->label);
446 		p = dimm->label;
447 		n = snprintf(p, len, "mc#%u", mc_num);
448 		p += n;
449 		len -= n;
450 		for (j = 0; j < n_layers; j++) {
451 			n = snprintf(p, len, "%s#%u",
452 				     edac_layer_name[layers[j].type],
453 				     pos[j]);
454 			p += n;
455 			len -= n;
456 			dimm->location[j] = pos[j];
457 
458 			if (len <= 0)
459 				break;
460 		}
461 
462 		/* Link it to the csrows old API data */
463 		chan->dimm = dimm;
464 		dimm->csrow = row;
465 		dimm->cschannel = chn;
466 
467 		/* Increment csrow location */
468 		if (layers[0].is_virt_csrow) {
469 			chn++;
470 			if (chn == tot_channels) {
471 				chn = 0;
472 				row++;
473 			}
474 		} else {
475 			row++;
476 			if (row == tot_csrows) {
477 				row = 0;
478 				chn++;
479 			}
480 		}
481 
482 		/* Increment dimm location */
483 		for (j = n_layers - 1; j >= 0; j--) {
484 			pos[j]++;
485 			if (pos[j] < layers[j].size)
486 				break;
487 			pos[j] = 0;
488 		}
489 	}
490 
491 	mci->op_state = OP_ALLOC;
492 
493 	return mci;
494 
495 error:
496 	_edac_mc_free(mci);
497 
498 	return NULL;
499 }
500 EXPORT_SYMBOL_GPL(edac_mc_alloc);
501 
502 void edac_mc_free(struct mem_ctl_info *mci)
503 {
504 	edac_dbg(1, "\n");
505 
506 	/* If we're not yet registered with sysfs free only what was allocated
507 	 * in edac_mc_alloc().
508 	 */
509 	if (!device_is_registered(&mci->dev)) {
510 		_edac_mc_free(mci);
511 		return;
512 	}
513 
514 	/* the mci instance is freed here, when the sysfs object is dropped */
515 	edac_unregister_sysfs(mci);
516 }
517 EXPORT_SYMBOL_GPL(edac_mc_free);
518 
519 bool edac_has_mcs(void)
520 {
521 	bool ret;
522 
523 	mutex_lock(&mem_ctls_mutex);
524 
525 	ret = list_empty(&mc_devices);
526 
527 	mutex_unlock(&mem_ctls_mutex);
528 
529 	return !ret;
530 }
531 EXPORT_SYMBOL_GPL(edac_has_mcs);
532 
533 /* Caller must hold mem_ctls_mutex */
534 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
535 {
536 	struct mem_ctl_info *mci;
537 	struct list_head *item;
538 
539 	edac_dbg(3, "\n");
540 
541 	list_for_each(item, &mc_devices) {
542 		mci = list_entry(item, struct mem_ctl_info, link);
543 
544 		if (mci->pdev == dev)
545 			return mci;
546 	}
547 
548 	return NULL;
549 }
550 
551 /**
552  * find_mci_by_dev
553  *
554  *	scan list of controllers looking for the one that manages
555  *	the 'dev' device
556  * @dev: pointer to a struct device related with the MCI
557  */
558 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
559 {
560 	struct mem_ctl_info *ret;
561 
562 	mutex_lock(&mem_ctls_mutex);
563 	ret = __find_mci_by_dev(dev);
564 	mutex_unlock(&mem_ctls_mutex);
565 
566 	return ret;
567 }
568 EXPORT_SYMBOL_GPL(find_mci_by_dev);
569 
570 /*
571  * edac_mc_workq_function
572  *	performs the operation scheduled by a workq request
573  */
574 static void edac_mc_workq_function(struct work_struct *work_req)
575 {
576 	struct delayed_work *d_work = to_delayed_work(work_req);
577 	struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
578 
579 	mutex_lock(&mem_ctls_mutex);
580 
581 	if (mci->op_state != OP_RUNNING_POLL) {
582 		mutex_unlock(&mem_ctls_mutex);
583 		return;
584 	}
585 
586 	if (edac_op_state == EDAC_OPSTATE_POLL)
587 		mci->edac_check(mci);
588 
589 	mutex_unlock(&mem_ctls_mutex);
590 
591 	/* Queue ourselves again. */
592 	edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
593 }
594 
595 /*
596  * edac_mc_reset_delay_period(unsigned long value)
597  *
598  *	user space has updated our poll period value, need to
599  *	reset our workq delays
600  */
601 void edac_mc_reset_delay_period(unsigned long value)
602 {
603 	struct mem_ctl_info *mci;
604 	struct list_head *item;
605 
606 	mutex_lock(&mem_ctls_mutex);
607 
608 	list_for_each(item, &mc_devices) {
609 		mci = list_entry(item, struct mem_ctl_info, link);
610 
611 		if (mci->op_state == OP_RUNNING_POLL)
612 			edac_mod_work(&mci->work, value);
613 	}
614 	mutex_unlock(&mem_ctls_mutex);
615 }
616 
617 
618 
619 /* Return 0 on success, 1 on failure.
620  * Before calling this function, caller must
621  * assign a unique value to mci->mc_idx.
622  *
623  *	locking model:
624  *
625  *		called with the mem_ctls_mutex lock held
626  */
627 static int add_mc_to_global_list(struct mem_ctl_info *mci)
628 {
629 	struct list_head *item, *insert_before;
630 	struct mem_ctl_info *p;
631 
632 	insert_before = &mc_devices;
633 
634 	p = __find_mci_by_dev(mci->pdev);
635 	if (unlikely(p != NULL))
636 		goto fail0;
637 
638 	list_for_each(item, &mc_devices) {
639 		p = list_entry(item, struct mem_ctl_info, link);
640 
641 		if (p->mc_idx >= mci->mc_idx) {
642 			if (unlikely(p->mc_idx == mci->mc_idx))
643 				goto fail1;
644 
645 			insert_before = item;
646 			break;
647 		}
648 	}
649 
650 	list_add_tail_rcu(&mci->link, insert_before);
651 	return 0;
652 
653 fail0:
654 	edac_printk(KERN_WARNING, EDAC_MC,
655 		"%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
656 		edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
657 	return 1;
658 
659 fail1:
660 	edac_printk(KERN_WARNING, EDAC_MC,
661 		"bug in low-level driver: attempt to assign\n"
662 		"    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
663 	return 1;
664 }
665 
666 static int del_mc_from_global_list(struct mem_ctl_info *mci)
667 {
668 	list_del_rcu(&mci->link);
669 
670 	/* these are for safe removal of devices from global list while
671 	 * NMI handlers may be traversing list
672 	 */
673 	synchronize_rcu();
674 	INIT_LIST_HEAD(&mci->link);
675 
676 	return list_empty(&mc_devices);
677 }
678 
679 struct mem_ctl_info *edac_mc_find(int idx)
680 {
681 	struct mem_ctl_info *mci;
682 	struct list_head *item;
683 
684 	mutex_lock(&mem_ctls_mutex);
685 
686 	list_for_each(item, &mc_devices) {
687 		mci = list_entry(item, struct mem_ctl_info, link);
688 		if (mci->mc_idx == idx)
689 			goto unlock;
690 	}
691 
692 	mci = NULL;
693 unlock:
694 	mutex_unlock(&mem_ctls_mutex);
695 	return mci;
696 }
697 EXPORT_SYMBOL(edac_mc_find);
698 
699 const char *edac_get_owner(void)
700 {
701 	return edac_mc_owner;
702 }
703 EXPORT_SYMBOL_GPL(edac_get_owner);
704 
705 /* FIXME - should a warning be printed if no error detection? correction? */
706 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
707 			       const struct attribute_group **groups)
708 {
709 	int ret = -EINVAL;
710 	edac_dbg(0, "\n");
711 
712 #ifdef CONFIG_EDAC_DEBUG
713 	if (edac_debug_level >= 3)
714 		edac_mc_dump_mci(mci);
715 
716 	if (edac_debug_level >= 4) {
717 		int i;
718 
719 		for (i = 0; i < mci->nr_csrows; i++) {
720 			struct csrow_info *csrow = mci->csrows[i];
721 			u32 nr_pages = 0;
722 			int j;
723 
724 			for (j = 0; j < csrow->nr_channels; j++)
725 				nr_pages += csrow->channels[j]->dimm->nr_pages;
726 			if (!nr_pages)
727 				continue;
728 			edac_mc_dump_csrow(csrow);
729 			for (j = 0; j < csrow->nr_channels; j++)
730 				if (csrow->channels[j]->dimm->nr_pages)
731 					edac_mc_dump_channel(csrow->channels[j]);
732 		}
733 		for (i = 0; i < mci->tot_dimms; i++)
734 			if (mci->dimms[i]->nr_pages)
735 				edac_mc_dump_dimm(mci->dimms[i], i);
736 	}
737 #endif
738 	mutex_lock(&mem_ctls_mutex);
739 
740 	if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
741 		ret = -EPERM;
742 		goto fail0;
743 	}
744 
745 	if (add_mc_to_global_list(mci))
746 		goto fail0;
747 
748 	/* set load time so that error rate can be tracked */
749 	mci->start_time = jiffies;
750 
751 	mci->bus = edac_get_sysfs_subsys();
752 
753 	if (edac_create_sysfs_mci_device(mci, groups)) {
754 		edac_mc_printk(mci, KERN_WARNING,
755 			"failed to create sysfs device\n");
756 		goto fail1;
757 	}
758 
759 	if (mci->edac_check) {
760 		mci->op_state = OP_RUNNING_POLL;
761 
762 		INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
763 		edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
764 
765 	} else {
766 		mci->op_state = OP_RUNNING_INTERRUPT;
767 	}
768 
769 	/* Report action taken */
770 	edac_mc_printk(mci, KERN_INFO,
771 		"Giving out device to module %s controller %s: DEV %s (%s)\n",
772 		mci->mod_name, mci->ctl_name, mci->dev_name,
773 		edac_op_state_to_string(mci->op_state));
774 
775 	edac_mc_owner = mci->mod_name;
776 
777 	mutex_unlock(&mem_ctls_mutex);
778 	return 0;
779 
780 fail1:
781 	del_mc_from_global_list(mci);
782 
783 fail0:
784 	mutex_unlock(&mem_ctls_mutex);
785 	return ret;
786 }
787 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
788 
789 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
790 {
791 	struct mem_ctl_info *mci;
792 
793 	edac_dbg(0, "\n");
794 
795 	mutex_lock(&mem_ctls_mutex);
796 
797 	/* find the requested mci struct in the global list */
798 	mci = __find_mci_by_dev(dev);
799 	if (mci == NULL) {
800 		mutex_unlock(&mem_ctls_mutex);
801 		return NULL;
802 	}
803 
804 	/* mark MCI offline: */
805 	mci->op_state = OP_OFFLINE;
806 
807 	if (del_mc_from_global_list(mci))
808 		edac_mc_owner = NULL;
809 
810 	mutex_unlock(&mem_ctls_mutex);
811 
812 	if (mci->edac_check)
813 		edac_stop_work(&mci->work);
814 
815 	/* remove from sysfs */
816 	edac_remove_sysfs_mci_device(mci);
817 
818 	edac_printk(KERN_INFO, EDAC_MC,
819 		"Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
820 		mci->mod_name, mci->ctl_name, edac_dev_name(mci));
821 
822 	return mci;
823 }
824 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
825 
826 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
827 				u32 size)
828 {
829 	struct page *pg;
830 	void *virt_addr;
831 	unsigned long flags = 0;
832 
833 	edac_dbg(3, "\n");
834 
835 	/* ECC error page was not in our memory. Ignore it. */
836 	if (!pfn_valid(page))
837 		return;
838 
839 	/* Find the actual page structure then map it and fix */
840 	pg = pfn_to_page(page);
841 
842 	if (PageHighMem(pg))
843 		local_irq_save(flags);
844 
845 	virt_addr = kmap_atomic(pg);
846 
847 	/* Perform architecture specific atomic scrub operation */
848 	edac_atomic_scrub(virt_addr + offset, size);
849 
850 	/* Unmap and complete */
851 	kunmap_atomic(virt_addr);
852 
853 	if (PageHighMem(pg))
854 		local_irq_restore(flags);
855 }
856 
857 /* FIXME - should return -1 */
858 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
859 {
860 	struct csrow_info **csrows = mci->csrows;
861 	int row, i, j, n;
862 
863 	edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
864 	row = -1;
865 
866 	for (i = 0; i < mci->nr_csrows; i++) {
867 		struct csrow_info *csrow = csrows[i];
868 		n = 0;
869 		for (j = 0; j < csrow->nr_channels; j++) {
870 			struct dimm_info *dimm = csrow->channels[j]->dimm;
871 			n += dimm->nr_pages;
872 		}
873 		if (n == 0)
874 			continue;
875 
876 		edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
877 			 mci->mc_idx,
878 			 csrow->first_page, page, csrow->last_page,
879 			 csrow->page_mask);
880 
881 		if ((page >= csrow->first_page) &&
882 		    (page <= csrow->last_page) &&
883 		    ((page & csrow->page_mask) ==
884 		     (csrow->first_page & csrow->page_mask))) {
885 			row = i;
886 			break;
887 		}
888 	}
889 
890 	if (row == -1)
891 		edac_mc_printk(mci, KERN_ERR,
892 			"could not look up page error address %lx\n",
893 			(unsigned long)page);
894 
895 	return row;
896 }
897 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
898 
899 const char *edac_layer_name[] = {
900 	[EDAC_MC_LAYER_BRANCH] = "branch",
901 	[EDAC_MC_LAYER_CHANNEL] = "channel",
902 	[EDAC_MC_LAYER_SLOT] = "slot",
903 	[EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
904 	[EDAC_MC_LAYER_ALL_MEM] = "memory",
905 };
906 EXPORT_SYMBOL_GPL(edac_layer_name);
907 
908 static void edac_inc_ce_error(struct mem_ctl_info *mci,
909 			      bool enable_per_layer_report,
910 			      const int pos[EDAC_MAX_LAYERS],
911 			      const u16 count)
912 {
913 	int i, index = 0;
914 
915 	mci->ce_mc += count;
916 
917 	if (!enable_per_layer_report) {
918 		mci->ce_noinfo_count += count;
919 		return;
920 	}
921 
922 	for (i = 0; i < mci->n_layers; i++) {
923 		if (pos[i] < 0)
924 			break;
925 		index += pos[i];
926 		mci->ce_per_layer[i][index] += count;
927 
928 		if (i < mci->n_layers - 1)
929 			index *= mci->layers[i + 1].size;
930 	}
931 }
932 
933 static void edac_inc_ue_error(struct mem_ctl_info *mci,
934 				    bool enable_per_layer_report,
935 				    const int pos[EDAC_MAX_LAYERS],
936 				    const u16 count)
937 {
938 	int i, index = 0;
939 
940 	mci->ue_mc += count;
941 
942 	if (!enable_per_layer_report) {
943 		mci->ue_noinfo_count += count;
944 		return;
945 	}
946 
947 	for (i = 0; i < mci->n_layers; i++) {
948 		if (pos[i] < 0)
949 			break;
950 		index += pos[i];
951 		mci->ue_per_layer[i][index] += count;
952 
953 		if (i < mci->n_layers - 1)
954 			index *= mci->layers[i + 1].size;
955 	}
956 }
957 
958 static void edac_ce_error(struct mem_ctl_info *mci,
959 			  const u16 error_count,
960 			  const int pos[EDAC_MAX_LAYERS],
961 			  const char *msg,
962 			  const char *location,
963 			  const char *label,
964 			  const char *detail,
965 			  const char *other_detail,
966 			  const bool enable_per_layer_report,
967 			  const unsigned long page_frame_number,
968 			  const unsigned long offset_in_page,
969 			  long grain)
970 {
971 	unsigned long remapped_page;
972 	char *msg_aux = "";
973 
974 	if (*msg)
975 		msg_aux = " ";
976 
977 	if (edac_mc_get_log_ce()) {
978 		if (other_detail && *other_detail)
979 			edac_mc_printk(mci, KERN_WARNING,
980 				       "%d CE %s%son %s (%s %s - %s)\n",
981 				       error_count, msg, msg_aux, label,
982 				       location, detail, other_detail);
983 		else
984 			edac_mc_printk(mci, KERN_WARNING,
985 				       "%d CE %s%son %s (%s %s)\n",
986 				       error_count, msg, msg_aux, label,
987 				       location, detail);
988 	}
989 	edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
990 
991 	if (mci->scrub_mode == SCRUB_SW_SRC) {
992 		/*
993 			* Some memory controllers (called MCs below) can remap
994 			* memory so that it is still available at a different
995 			* address when PCI devices map into memory.
996 			* MC's that can't do this, lose the memory where PCI
997 			* devices are mapped. This mapping is MC-dependent
998 			* and so we call back into the MC driver for it to
999 			* map the MC page to a physical (CPU) page which can
1000 			* then be mapped to a virtual page - which can then
1001 			* be scrubbed.
1002 			*/
1003 		remapped_page = mci->ctl_page_to_phys ?
1004 			mci->ctl_page_to_phys(mci, page_frame_number) :
1005 			page_frame_number;
1006 
1007 		edac_mc_scrub_block(remapped_page,
1008 					offset_in_page, grain);
1009 	}
1010 }
1011 
1012 static void edac_ue_error(struct mem_ctl_info *mci,
1013 			  const u16 error_count,
1014 			  const int pos[EDAC_MAX_LAYERS],
1015 			  const char *msg,
1016 			  const char *location,
1017 			  const char *label,
1018 			  const char *detail,
1019 			  const char *other_detail,
1020 			  const bool enable_per_layer_report)
1021 {
1022 	char *msg_aux = "";
1023 
1024 	if (*msg)
1025 		msg_aux = " ";
1026 
1027 	if (edac_mc_get_log_ue()) {
1028 		if (other_detail && *other_detail)
1029 			edac_mc_printk(mci, KERN_WARNING,
1030 				       "%d UE %s%son %s (%s %s - %s)\n",
1031 				       error_count, msg, msg_aux, label,
1032 				       location, detail, other_detail);
1033 		else
1034 			edac_mc_printk(mci, KERN_WARNING,
1035 				       "%d UE %s%son %s (%s %s)\n",
1036 				       error_count, msg, msg_aux, label,
1037 				       location, detail);
1038 	}
1039 
1040 	if (edac_mc_get_panic_on_ue()) {
1041 		if (other_detail && *other_detail)
1042 			panic("UE %s%son %s (%s%s - %s)\n",
1043 			      msg, msg_aux, label, location, detail, other_detail);
1044 		else
1045 			panic("UE %s%son %s (%s%s)\n",
1046 			      msg, msg_aux, label, location, detail);
1047 	}
1048 
1049 	edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
1050 }
1051 
1052 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
1053 			      struct mem_ctl_info *mci,
1054 			      struct edac_raw_error_desc *e)
1055 {
1056 	char detail[80];
1057 	int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
1058 
1059 	/* Memory type dependent details about the error */
1060 	if (type == HW_EVENT_ERR_CORRECTED) {
1061 		snprintf(detail, sizeof(detail),
1062 			"page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1063 			e->page_frame_number, e->offset_in_page,
1064 			e->grain, e->syndrome);
1065 		edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1066 			      detail, e->other_detail, e->enable_per_layer_report,
1067 			      e->page_frame_number, e->offset_in_page, e->grain);
1068 	} else {
1069 		snprintf(detail, sizeof(detail),
1070 			"page:0x%lx offset:0x%lx grain:%ld",
1071 			e->page_frame_number, e->offset_in_page, e->grain);
1072 
1073 		edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1074 			      detail, e->other_detail, e->enable_per_layer_report);
1075 	}
1076 
1077 
1078 }
1079 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1080 
1081 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1082 			  struct mem_ctl_info *mci,
1083 			  const u16 error_count,
1084 			  const unsigned long page_frame_number,
1085 			  const unsigned long offset_in_page,
1086 			  const unsigned long syndrome,
1087 			  const int top_layer,
1088 			  const int mid_layer,
1089 			  const int low_layer,
1090 			  const char *msg,
1091 			  const char *other_detail)
1092 {
1093 	char *p;
1094 	int row = -1, chan = -1;
1095 	int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1096 	int i, n_labels = 0;
1097 	u8 grain_bits;
1098 	struct edac_raw_error_desc *e = &mci->error_desc;
1099 
1100 	edac_dbg(3, "MC%d\n", mci->mc_idx);
1101 
1102 	/* Fills the error report buffer */
1103 	memset(e, 0, sizeof (*e));
1104 	e->error_count = error_count;
1105 	e->top_layer = top_layer;
1106 	e->mid_layer = mid_layer;
1107 	e->low_layer = low_layer;
1108 	e->page_frame_number = page_frame_number;
1109 	e->offset_in_page = offset_in_page;
1110 	e->syndrome = syndrome;
1111 	e->msg = msg;
1112 	e->other_detail = other_detail;
1113 
1114 	/*
1115 	 * Check if the event report is consistent and if the memory
1116 	 * location is known. If it is known, enable_per_layer_report will be
1117 	 * true, the DIMM(s) label info will be filled and the per-layer
1118 	 * error counters will be incremented.
1119 	 */
1120 	for (i = 0; i < mci->n_layers; i++) {
1121 		if (pos[i] >= (int)mci->layers[i].size) {
1122 
1123 			edac_mc_printk(mci, KERN_ERR,
1124 				       "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1125 				       edac_layer_name[mci->layers[i].type],
1126 				       pos[i], mci->layers[i].size);
1127 			/*
1128 			 * Instead of just returning it, let's use what's
1129 			 * known about the error. The increment routines and
1130 			 * the DIMM filter logic will do the right thing by
1131 			 * pointing the likely damaged DIMMs.
1132 			 */
1133 			pos[i] = -1;
1134 		}
1135 		if (pos[i] >= 0)
1136 			e->enable_per_layer_report = true;
1137 	}
1138 
1139 	/*
1140 	 * Get the dimm label/grain that applies to the match criteria.
1141 	 * As the error algorithm may not be able to point to just one memory
1142 	 * stick, the logic here will get all possible labels that could
1143 	 * pottentially be affected by the error.
1144 	 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1145 	 * to have only the MC channel and the MC dimm (also called "branch")
1146 	 * but the channel is not known, as the memory is arranged in pairs,
1147 	 * where each memory belongs to a separate channel within the same
1148 	 * branch.
1149 	 */
1150 	p = e->label;
1151 	*p = '\0';
1152 
1153 	for (i = 0; i < mci->tot_dimms; i++) {
1154 		struct dimm_info *dimm = mci->dimms[i];
1155 
1156 		if (top_layer >= 0 && top_layer != dimm->location[0])
1157 			continue;
1158 		if (mid_layer >= 0 && mid_layer != dimm->location[1])
1159 			continue;
1160 		if (low_layer >= 0 && low_layer != dimm->location[2])
1161 			continue;
1162 
1163 		/* get the max grain, over the error match range */
1164 		if (dimm->grain > e->grain)
1165 			e->grain = dimm->grain;
1166 
1167 		/*
1168 		 * If the error is memory-controller wide, there's no need to
1169 		 * seek for the affected DIMMs because the whole
1170 		 * channel/memory controller/...  may be affected.
1171 		 * Also, don't show errors for empty DIMM slots.
1172 		 */
1173 		if (e->enable_per_layer_report && dimm->nr_pages) {
1174 			if (n_labels >= EDAC_MAX_LABELS) {
1175 				e->enable_per_layer_report = false;
1176 				break;
1177 			}
1178 			n_labels++;
1179 			if (p != e->label) {
1180 				strcpy(p, OTHER_LABEL);
1181 				p += strlen(OTHER_LABEL);
1182 			}
1183 			strcpy(p, dimm->label);
1184 			p += strlen(p);
1185 			*p = '\0';
1186 
1187 			/*
1188 			 * get csrow/channel of the DIMM, in order to allow
1189 			 * incrementing the compat API counters
1190 			 */
1191 			edac_dbg(4, "%s csrows map: (%d,%d)\n",
1192 				 mci->csbased ? "rank" : "dimm",
1193 				 dimm->csrow, dimm->cschannel);
1194 			if (row == -1)
1195 				row = dimm->csrow;
1196 			else if (row >= 0 && row != dimm->csrow)
1197 				row = -2;
1198 
1199 			if (chan == -1)
1200 				chan = dimm->cschannel;
1201 			else if (chan >= 0 && chan != dimm->cschannel)
1202 				chan = -2;
1203 		}
1204 	}
1205 
1206 	if (!e->enable_per_layer_report) {
1207 		strcpy(e->label, "any memory");
1208 	} else {
1209 		edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
1210 		if (p == e->label)
1211 			strcpy(e->label, "unknown memory");
1212 		if (type == HW_EVENT_ERR_CORRECTED) {
1213 			if (row >= 0) {
1214 				mci->csrows[row]->ce_count += error_count;
1215 				if (chan >= 0)
1216 					mci->csrows[row]->channels[chan]->ce_count += error_count;
1217 			}
1218 		} else
1219 			if (row >= 0)
1220 				mci->csrows[row]->ue_count += error_count;
1221 	}
1222 
1223 	/* Fill the RAM location data */
1224 	p = e->location;
1225 
1226 	for (i = 0; i < mci->n_layers; i++) {
1227 		if (pos[i] < 0)
1228 			continue;
1229 
1230 		p += sprintf(p, "%s:%d ",
1231 			     edac_layer_name[mci->layers[i].type],
1232 			     pos[i]);
1233 	}
1234 	if (p > e->location)
1235 		*(p - 1) = '\0';
1236 
1237 	/* Sanity-check driver-supplied grain value. */
1238 	if (WARN_ON_ONCE(!e->grain))
1239 		e->grain = 1;
1240 
1241 	grain_bits = fls_long(e->grain - 1);
1242 
1243 	/* Report the error via the trace interface */
1244 	if (IS_ENABLED(CONFIG_RAS))
1245 		trace_mc_event(type, e->msg, e->label, e->error_count,
1246 			       mci->mc_idx, e->top_layer, e->mid_layer,
1247 			       e->low_layer,
1248 			       (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
1249 			       grain_bits, e->syndrome, e->other_detail);
1250 
1251 	edac_raw_mc_handle_error(type, mci, e);
1252 }
1253 EXPORT_SYMBOL_GPL(edac_mc_handle_error);
1254