1 /* 2 * edac_mc kernel module 3 * (C) 2005, 2006 Linux Networx (http://lnxi.com) 4 * This file may be distributed under the terms of the 5 * GNU General Public License. 6 * 7 * Written by Thayne Harbaugh 8 * Based on work by Dan Hollis <goemon at anime dot net> and others. 9 * http://www.anime.net/~goemon/linux-ecc/ 10 * 11 * Modified by Dave Peterson and Doug Thompson 12 * 13 */ 14 15 #include <linux/module.h> 16 #include <linux/proc_fs.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/smp.h> 20 #include <linux/init.h> 21 #include <linux/sysctl.h> 22 #include <linux/highmem.h> 23 #include <linux/timer.h> 24 #include <linux/slab.h> 25 #include <linux/jiffies.h> 26 #include <linux/spinlock.h> 27 #include <linux/list.h> 28 #include <linux/ctype.h> 29 #include <linux/edac.h> 30 #include <linux/bitops.h> 31 #include <linux/uaccess.h> 32 #include <asm/page.h> 33 #include "edac_mc.h" 34 #include "edac_module.h" 35 #include <ras/ras_event.h> 36 37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB 38 #include <asm/edac.h> 39 #else 40 #define edac_atomic_scrub(va, size) do { } while (0) 41 #endif 42 43 int edac_op_state = EDAC_OPSTATE_INVAL; 44 EXPORT_SYMBOL_GPL(edac_op_state); 45 46 static int edac_report = EDAC_REPORTING_ENABLED; 47 48 /* lock to memory controller's control array */ 49 static DEFINE_MUTEX(mem_ctls_mutex); 50 static LIST_HEAD(mc_devices); 51 52 /* 53 * Used to lock EDAC MC to just one module, avoiding two drivers e. g. 54 * apei/ghes and i7core_edac to be used at the same time. 55 */ 56 static const char *edac_mc_owner; 57 58 int edac_get_report_status(void) 59 { 60 return edac_report; 61 } 62 EXPORT_SYMBOL_GPL(edac_get_report_status); 63 64 void edac_set_report_status(int new) 65 { 66 if (new == EDAC_REPORTING_ENABLED || 67 new == EDAC_REPORTING_DISABLED || 68 new == EDAC_REPORTING_FORCE) 69 edac_report = new; 70 } 71 EXPORT_SYMBOL_GPL(edac_set_report_status); 72 73 static int edac_report_set(const char *str, const struct kernel_param *kp) 74 { 75 if (!str) 76 return -EINVAL; 77 78 if (!strncmp(str, "on", 2)) 79 edac_report = EDAC_REPORTING_ENABLED; 80 else if (!strncmp(str, "off", 3)) 81 edac_report = EDAC_REPORTING_DISABLED; 82 else if (!strncmp(str, "force", 5)) 83 edac_report = EDAC_REPORTING_FORCE; 84 85 return 0; 86 } 87 88 static int edac_report_get(char *buffer, const struct kernel_param *kp) 89 { 90 int ret = 0; 91 92 switch (edac_report) { 93 case EDAC_REPORTING_ENABLED: 94 ret = sprintf(buffer, "on"); 95 break; 96 case EDAC_REPORTING_DISABLED: 97 ret = sprintf(buffer, "off"); 98 break; 99 case EDAC_REPORTING_FORCE: 100 ret = sprintf(buffer, "force"); 101 break; 102 default: 103 ret = -EINVAL; 104 break; 105 } 106 107 return ret; 108 } 109 110 static const struct kernel_param_ops edac_report_ops = { 111 .set = edac_report_set, 112 .get = edac_report_get, 113 }; 114 115 module_param_cb(edac_report, &edac_report_ops, &edac_report, 0644); 116 117 unsigned int edac_dimm_info_location(struct dimm_info *dimm, char *buf, 118 unsigned int len) 119 { 120 struct mem_ctl_info *mci = dimm->mci; 121 int i, n, count = 0; 122 char *p = buf; 123 124 for (i = 0; i < mci->n_layers; i++) { 125 n = snprintf(p, len, "%s %d ", 126 edac_layer_name[mci->layers[i].type], 127 dimm->location[i]); 128 p += n; 129 len -= n; 130 count += n; 131 if (!len) 132 break; 133 } 134 135 return count; 136 } 137 138 #ifdef CONFIG_EDAC_DEBUG 139 140 static void edac_mc_dump_channel(struct rank_info *chan) 141 { 142 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx); 143 edac_dbg(4, " channel = %p\n", chan); 144 edac_dbg(4, " channel->csrow = %p\n", chan->csrow); 145 edac_dbg(4, " channel->dimm = %p\n", chan->dimm); 146 } 147 148 static void edac_mc_dump_dimm(struct dimm_info *dimm, int number) 149 { 150 char location[80]; 151 152 edac_dimm_info_location(dimm, location, sizeof(location)); 153 154 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n", 155 dimm->mci->csbased ? "rank" : "dimm", 156 number, location, dimm->csrow, dimm->cschannel); 157 edac_dbg(4, " dimm = %p\n", dimm); 158 edac_dbg(4, " dimm->label = '%s'\n", dimm->label); 159 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); 160 edac_dbg(4, " dimm->grain = %d\n", dimm->grain); 161 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); 162 } 163 164 static void edac_mc_dump_csrow(struct csrow_info *csrow) 165 { 166 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx); 167 edac_dbg(4, " csrow = %p\n", csrow); 168 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page); 169 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page); 170 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask); 171 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels); 172 edac_dbg(4, " csrow->channels = %p\n", csrow->channels); 173 edac_dbg(4, " csrow->mci = %p\n", csrow->mci); 174 } 175 176 static void edac_mc_dump_mci(struct mem_ctl_info *mci) 177 { 178 edac_dbg(3, "\tmci = %p\n", mci); 179 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap); 180 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap); 181 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap); 182 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check); 183 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n", 184 mci->nr_csrows, mci->csrows); 185 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n", 186 mci->tot_dimms, mci->dimms); 187 edac_dbg(3, "\tdev = %p\n", mci->pdev); 188 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n", 189 mci->mod_name, mci->ctl_name); 190 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info); 191 } 192 193 #endif /* CONFIG_EDAC_DEBUG */ 194 195 const char * const edac_mem_types[] = { 196 [MEM_EMPTY] = "Empty", 197 [MEM_RESERVED] = "Reserved", 198 [MEM_UNKNOWN] = "Unknown", 199 [MEM_FPM] = "FPM", 200 [MEM_EDO] = "EDO", 201 [MEM_BEDO] = "BEDO", 202 [MEM_SDR] = "Unbuffered-SDR", 203 [MEM_RDR] = "Registered-SDR", 204 [MEM_DDR] = "Unbuffered-DDR", 205 [MEM_RDDR] = "Registered-DDR", 206 [MEM_RMBS] = "RMBS", 207 [MEM_DDR2] = "Unbuffered-DDR2", 208 [MEM_FB_DDR2] = "FullyBuffered-DDR2", 209 [MEM_RDDR2] = "Registered-DDR2", 210 [MEM_XDR] = "XDR", 211 [MEM_DDR3] = "Unbuffered-DDR3", 212 [MEM_RDDR3] = "Registered-DDR3", 213 [MEM_LRDDR3] = "Load-Reduced-DDR3-RAM", 214 [MEM_DDR4] = "Unbuffered-DDR4", 215 [MEM_RDDR4] = "Registered-DDR4", 216 [MEM_LRDDR4] = "Load-Reduced-DDR4-RAM", 217 [MEM_NVDIMM] = "Non-volatile-RAM", 218 }; 219 EXPORT_SYMBOL_GPL(edac_mem_types); 220 221 /** 222 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation 223 * @p: pointer to a pointer with the memory offset to be used. At 224 * return, this will be incremented to point to the next offset 225 * @size: Size of the data structure to be reserved 226 * @n_elems: Number of elements that should be reserved 227 * 228 * If 'size' is a constant, the compiler will optimize this whole function 229 * down to either a no-op or the addition of a constant to the value of '*p'. 230 * 231 * The 'p' pointer is absolutely needed to keep the proper advancing 232 * further in memory to the proper offsets when allocating the struct along 233 * with its embedded structs, as edac_device_alloc_ctl_info() does it 234 * above, for example. 235 * 236 * At return, the pointer 'p' will be incremented to be used on a next call 237 * to this function. 238 */ 239 void *edac_align_ptr(void **p, unsigned int size, int n_elems) 240 { 241 unsigned int align, r; 242 void *ptr = *p; 243 244 *p += size * n_elems; 245 246 /* 247 * 'p' can possibly be an unaligned item X such that sizeof(X) is 248 * 'size'. Adjust 'p' so that its alignment is at least as 249 * stringent as what the compiler would provide for X and return 250 * the aligned result. 251 * Here we assume that the alignment of a "long long" is the most 252 * stringent alignment that the compiler will ever provide by default. 253 * As far as I know, this is a reasonable assumption. 254 */ 255 if (size > sizeof(long)) 256 align = sizeof(long long); 257 else if (size > sizeof(int)) 258 align = sizeof(long); 259 else if (size > sizeof(short)) 260 align = sizeof(int); 261 else if (size > sizeof(char)) 262 align = sizeof(short); 263 else 264 return (char *)ptr; 265 266 r = (unsigned long)p % align; 267 268 if (r == 0) 269 return (char *)ptr; 270 271 *p += align - r; 272 273 return (void *)(((unsigned long)ptr) + align - r); 274 } 275 276 static void _edac_mc_free(struct mem_ctl_info *mci) 277 { 278 struct csrow_info *csr; 279 int i, chn, row; 280 281 if (mci->dimms) { 282 for (i = 0; i < mci->tot_dimms; i++) 283 kfree(mci->dimms[i]); 284 kfree(mci->dimms); 285 } 286 287 if (mci->csrows) { 288 for (row = 0; row < mci->nr_csrows; row++) { 289 csr = mci->csrows[row]; 290 if (!csr) 291 continue; 292 293 if (csr->channels) { 294 for (chn = 0; chn < mci->num_cschannel; chn++) 295 kfree(csr->channels[chn]); 296 kfree(csr->channels); 297 } 298 kfree(csr); 299 } 300 kfree(mci->csrows); 301 } 302 kfree(mci); 303 } 304 305 struct mem_ctl_info *edac_mc_alloc(unsigned int mc_num, 306 unsigned int n_layers, 307 struct edac_mc_layer *layers, 308 unsigned int sz_pvt) 309 { 310 struct mem_ctl_info *mci; 311 struct edac_mc_layer *layer; 312 struct csrow_info *csr; 313 struct rank_info *chan; 314 struct dimm_info *dimm; 315 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS]; 316 unsigned int pos[EDAC_MAX_LAYERS]; 317 unsigned int size, tot_dimms = 1, count = 1; 318 unsigned int tot_csrows = 1, tot_channels = 1, tot_errcount = 0; 319 void *pvt, *p, *ptr = NULL; 320 int i, j, row, chn, n, len, off; 321 bool per_rank = false; 322 323 BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0); 324 /* 325 * Calculate the total amount of dimms and csrows/cschannels while 326 * in the old API emulation mode 327 */ 328 for (i = 0; i < n_layers; i++) { 329 tot_dimms *= layers[i].size; 330 if (layers[i].is_virt_csrow) 331 tot_csrows *= layers[i].size; 332 else 333 tot_channels *= layers[i].size; 334 335 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT) 336 per_rank = true; 337 } 338 339 /* Figure out the offsets of the various items from the start of an mc 340 * structure. We want the alignment of each item to be at least as 341 * stringent as what the compiler would provide if we could simply 342 * hardcode everything into a single struct. 343 */ 344 mci = edac_align_ptr(&ptr, sizeof(*mci), 1); 345 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers); 346 for (i = 0; i < n_layers; i++) { 347 count *= layers[i].size; 348 edac_dbg(4, "errcount layer %d size %d\n", i, count); 349 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count); 350 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count); 351 tot_errcount += 2 * count; 352 } 353 354 edac_dbg(4, "allocating %d error counters\n", tot_errcount); 355 pvt = edac_align_ptr(&ptr, sz_pvt, 1); 356 size = ((unsigned long)pvt) + sz_pvt; 357 358 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n", 359 size, 360 tot_dimms, 361 per_rank ? "ranks" : "dimms", 362 tot_csrows * tot_channels); 363 364 mci = kzalloc(size, GFP_KERNEL); 365 if (mci == NULL) 366 return NULL; 367 368 /* Adjust pointers so they point within the memory we just allocated 369 * rather than an imaginary chunk of memory located at address 0. 370 */ 371 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer)); 372 for (i = 0; i < n_layers; i++) { 373 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i])); 374 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i])); 375 } 376 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL; 377 378 /* setup index and various internal pointers */ 379 mci->mc_idx = mc_num; 380 mci->tot_dimms = tot_dimms; 381 mci->pvt_info = pvt; 382 mci->n_layers = n_layers; 383 mci->layers = layer; 384 memcpy(mci->layers, layers, sizeof(*layer) * n_layers); 385 mci->nr_csrows = tot_csrows; 386 mci->num_cschannel = tot_channels; 387 mci->csbased = per_rank; 388 389 /* 390 * Alocate and fill the csrow/channels structs 391 */ 392 mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL); 393 if (!mci->csrows) 394 goto error; 395 for (row = 0; row < tot_csrows; row++) { 396 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL); 397 if (!csr) 398 goto error; 399 mci->csrows[row] = csr; 400 csr->csrow_idx = row; 401 csr->mci = mci; 402 csr->nr_channels = tot_channels; 403 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels), 404 GFP_KERNEL); 405 if (!csr->channels) 406 goto error; 407 408 for (chn = 0; chn < tot_channels; chn++) { 409 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL); 410 if (!chan) 411 goto error; 412 csr->channels[chn] = chan; 413 chan->chan_idx = chn; 414 chan->csrow = csr; 415 } 416 } 417 418 /* 419 * Allocate and fill the dimm structs 420 */ 421 mci->dimms = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL); 422 if (!mci->dimms) 423 goto error; 424 425 memset(&pos, 0, sizeof(pos)); 426 row = 0; 427 chn = 0; 428 for (i = 0; i < tot_dimms; i++) { 429 chan = mci->csrows[row]->channels[chn]; 430 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]); 431 if (off < 0 || off >= tot_dimms) { 432 edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n"); 433 goto error; 434 } 435 436 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL); 437 if (!dimm) 438 goto error; 439 mci->dimms[off] = dimm; 440 dimm->mci = mci; 441 442 /* 443 * Copy DIMM location and initialize it. 444 */ 445 len = sizeof(dimm->label); 446 p = dimm->label; 447 n = snprintf(p, len, "mc#%u", mc_num); 448 p += n; 449 len -= n; 450 for (j = 0; j < n_layers; j++) { 451 n = snprintf(p, len, "%s#%u", 452 edac_layer_name[layers[j].type], 453 pos[j]); 454 p += n; 455 len -= n; 456 dimm->location[j] = pos[j]; 457 458 if (len <= 0) 459 break; 460 } 461 462 /* Link it to the csrows old API data */ 463 chan->dimm = dimm; 464 dimm->csrow = row; 465 dimm->cschannel = chn; 466 467 /* Increment csrow location */ 468 if (layers[0].is_virt_csrow) { 469 chn++; 470 if (chn == tot_channels) { 471 chn = 0; 472 row++; 473 } 474 } else { 475 row++; 476 if (row == tot_csrows) { 477 row = 0; 478 chn++; 479 } 480 } 481 482 /* Increment dimm location */ 483 for (j = n_layers - 1; j >= 0; j--) { 484 pos[j]++; 485 if (pos[j] < layers[j].size) 486 break; 487 pos[j] = 0; 488 } 489 } 490 491 mci->op_state = OP_ALLOC; 492 493 return mci; 494 495 error: 496 _edac_mc_free(mci); 497 498 return NULL; 499 } 500 EXPORT_SYMBOL_GPL(edac_mc_alloc); 501 502 void edac_mc_free(struct mem_ctl_info *mci) 503 { 504 edac_dbg(1, "\n"); 505 506 /* If we're not yet registered with sysfs free only what was allocated 507 * in edac_mc_alloc(). 508 */ 509 if (!device_is_registered(&mci->dev)) { 510 _edac_mc_free(mci); 511 return; 512 } 513 514 /* the mci instance is freed here, when the sysfs object is dropped */ 515 edac_unregister_sysfs(mci); 516 } 517 EXPORT_SYMBOL_GPL(edac_mc_free); 518 519 bool edac_has_mcs(void) 520 { 521 bool ret; 522 523 mutex_lock(&mem_ctls_mutex); 524 525 ret = list_empty(&mc_devices); 526 527 mutex_unlock(&mem_ctls_mutex); 528 529 return !ret; 530 } 531 EXPORT_SYMBOL_GPL(edac_has_mcs); 532 533 /* Caller must hold mem_ctls_mutex */ 534 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev) 535 { 536 struct mem_ctl_info *mci; 537 struct list_head *item; 538 539 edac_dbg(3, "\n"); 540 541 list_for_each(item, &mc_devices) { 542 mci = list_entry(item, struct mem_ctl_info, link); 543 544 if (mci->pdev == dev) 545 return mci; 546 } 547 548 return NULL; 549 } 550 551 /** 552 * find_mci_by_dev 553 * 554 * scan list of controllers looking for the one that manages 555 * the 'dev' device 556 * @dev: pointer to a struct device related with the MCI 557 */ 558 struct mem_ctl_info *find_mci_by_dev(struct device *dev) 559 { 560 struct mem_ctl_info *ret; 561 562 mutex_lock(&mem_ctls_mutex); 563 ret = __find_mci_by_dev(dev); 564 mutex_unlock(&mem_ctls_mutex); 565 566 return ret; 567 } 568 EXPORT_SYMBOL_GPL(find_mci_by_dev); 569 570 /* 571 * edac_mc_workq_function 572 * performs the operation scheduled by a workq request 573 */ 574 static void edac_mc_workq_function(struct work_struct *work_req) 575 { 576 struct delayed_work *d_work = to_delayed_work(work_req); 577 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work); 578 579 mutex_lock(&mem_ctls_mutex); 580 581 if (mci->op_state != OP_RUNNING_POLL) { 582 mutex_unlock(&mem_ctls_mutex); 583 return; 584 } 585 586 if (edac_op_state == EDAC_OPSTATE_POLL) 587 mci->edac_check(mci); 588 589 mutex_unlock(&mem_ctls_mutex); 590 591 /* Queue ourselves again. */ 592 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec())); 593 } 594 595 /* 596 * edac_mc_reset_delay_period(unsigned long value) 597 * 598 * user space has updated our poll period value, need to 599 * reset our workq delays 600 */ 601 void edac_mc_reset_delay_period(unsigned long value) 602 { 603 struct mem_ctl_info *mci; 604 struct list_head *item; 605 606 mutex_lock(&mem_ctls_mutex); 607 608 list_for_each(item, &mc_devices) { 609 mci = list_entry(item, struct mem_ctl_info, link); 610 611 if (mci->op_state == OP_RUNNING_POLL) 612 edac_mod_work(&mci->work, value); 613 } 614 mutex_unlock(&mem_ctls_mutex); 615 } 616 617 618 619 /* Return 0 on success, 1 on failure. 620 * Before calling this function, caller must 621 * assign a unique value to mci->mc_idx. 622 * 623 * locking model: 624 * 625 * called with the mem_ctls_mutex lock held 626 */ 627 static int add_mc_to_global_list(struct mem_ctl_info *mci) 628 { 629 struct list_head *item, *insert_before; 630 struct mem_ctl_info *p; 631 632 insert_before = &mc_devices; 633 634 p = __find_mci_by_dev(mci->pdev); 635 if (unlikely(p != NULL)) 636 goto fail0; 637 638 list_for_each(item, &mc_devices) { 639 p = list_entry(item, struct mem_ctl_info, link); 640 641 if (p->mc_idx >= mci->mc_idx) { 642 if (unlikely(p->mc_idx == mci->mc_idx)) 643 goto fail1; 644 645 insert_before = item; 646 break; 647 } 648 } 649 650 list_add_tail_rcu(&mci->link, insert_before); 651 return 0; 652 653 fail0: 654 edac_printk(KERN_WARNING, EDAC_MC, 655 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev), 656 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx); 657 return 1; 658 659 fail1: 660 edac_printk(KERN_WARNING, EDAC_MC, 661 "bug in low-level driver: attempt to assign\n" 662 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__); 663 return 1; 664 } 665 666 static int del_mc_from_global_list(struct mem_ctl_info *mci) 667 { 668 list_del_rcu(&mci->link); 669 670 /* these are for safe removal of devices from global list while 671 * NMI handlers may be traversing list 672 */ 673 synchronize_rcu(); 674 INIT_LIST_HEAD(&mci->link); 675 676 return list_empty(&mc_devices); 677 } 678 679 struct mem_ctl_info *edac_mc_find(int idx) 680 { 681 struct mem_ctl_info *mci; 682 struct list_head *item; 683 684 mutex_lock(&mem_ctls_mutex); 685 686 list_for_each(item, &mc_devices) { 687 mci = list_entry(item, struct mem_ctl_info, link); 688 if (mci->mc_idx == idx) 689 goto unlock; 690 } 691 692 mci = NULL; 693 unlock: 694 mutex_unlock(&mem_ctls_mutex); 695 return mci; 696 } 697 EXPORT_SYMBOL(edac_mc_find); 698 699 const char *edac_get_owner(void) 700 { 701 return edac_mc_owner; 702 } 703 EXPORT_SYMBOL_GPL(edac_get_owner); 704 705 /* FIXME - should a warning be printed if no error detection? correction? */ 706 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci, 707 const struct attribute_group **groups) 708 { 709 int ret = -EINVAL; 710 edac_dbg(0, "\n"); 711 712 #ifdef CONFIG_EDAC_DEBUG 713 if (edac_debug_level >= 3) 714 edac_mc_dump_mci(mci); 715 716 if (edac_debug_level >= 4) { 717 int i; 718 719 for (i = 0; i < mci->nr_csrows; i++) { 720 struct csrow_info *csrow = mci->csrows[i]; 721 u32 nr_pages = 0; 722 int j; 723 724 for (j = 0; j < csrow->nr_channels; j++) 725 nr_pages += csrow->channels[j]->dimm->nr_pages; 726 if (!nr_pages) 727 continue; 728 edac_mc_dump_csrow(csrow); 729 for (j = 0; j < csrow->nr_channels; j++) 730 if (csrow->channels[j]->dimm->nr_pages) 731 edac_mc_dump_channel(csrow->channels[j]); 732 } 733 for (i = 0; i < mci->tot_dimms; i++) 734 if (mci->dimms[i]->nr_pages) 735 edac_mc_dump_dimm(mci->dimms[i], i); 736 } 737 #endif 738 mutex_lock(&mem_ctls_mutex); 739 740 if (edac_mc_owner && edac_mc_owner != mci->mod_name) { 741 ret = -EPERM; 742 goto fail0; 743 } 744 745 if (add_mc_to_global_list(mci)) 746 goto fail0; 747 748 /* set load time so that error rate can be tracked */ 749 mci->start_time = jiffies; 750 751 mci->bus = edac_get_sysfs_subsys(); 752 753 if (edac_create_sysfs_mci_device(mci, groups)) { 754 edac_mc_printk(mci, KERN_WARNING, 755 "failed to create sysfs device\n"); 756 goto fail1; 757 } 758 759 if (mci->edac_check) { 760 mci->op_state = OP_RUNNING_POLL; 761 762 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function); 763 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec())); 764 765 } else { 766 mci->op_state = OP_RUNNING_INTERRUPT; 767 } 768 769 /* Report action taken */ 770 edac_mc_printk(mci, KERN_INFO, 771 "Giving out device to module %s controller %s: DEV %s (%s)\n", 772 mci->mod_name, mci->ctl_name, mci->dev_name, 773 edac_op_state_to_string(mci->op_state)); 774 775 edac_mc_owner = mci->mod_name; 776 777 mutex_unlock(&mem_ctls_mutex); 778 return 0; 779 780 fail1: 781 del_mc_from_global_list(mci); 782 783 fail0: 784 mutex_unlock(&mem_ctls_mutex); 785 return ret; 786 } 787 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups); 788 789 struct mem_ctl_info *edac_mc_del_mc(struct device *dev) 790 { 791 struct mem_ctl_info *mci; 792 793 edac_dbg(0, "\n"); 794 795 mutex_lock(&mem_ctls_mutex); 796 797 /* find the requested mci struct in the global list */ 798 mci = __find_mci_by_dev(dev); 799 if (mci == NULL) { 800 mutex_unlock(&mem_ctls_mutex); 801 return NULL; 802 } 803 804 /* mark MCI offline: */ 805 mci->op_state = OP_OFFLINE; 806 807 if (del_mc_from_global_list(mci)) 808 edac_mc_owner = NULL; 809 810 mutex_unlock(&mem_ctls_mutex); 811 812 if (mci->edac_check) 813 edac_stop_work(&mci->work); 814 815 /* remove from sysfs */ 816 edac_remove_sysfs_mci_device(mci); 817 818 edac_printk(KERN_INFO, EDAC_MC, 819 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx, 820 mci->mod_name, mci->ctl_name, edac_dev_name(mci)); 821 822 return mci; 823 } 824 EXPORT_SYMBOL_GPL(edac_mc_del_mc); 825 826 static void edac_mc_scrub_block(unsigned long page, unsigned long offset, 827 u32 size) 828 { 829 struct page *pg; 830 void *virt_addr; 831 unsigned long flags = 0; 832 833 edac_dbg(3, "\n"); 834 835 /* ECC error page was not in our memory. Ignore it. */ 836 if (!pfn_valid(page)) 837 return; 838 839 /* Find the actual page structure then map it and fix */ 840 pg = pfn_to_page(page); 841 842 if (PageHighMem(pg)) 843 local_irq_save(flags); 844 845 virt_addr = kmap_atomic(pg); 846 847 /* Perform architecture specific atomic scrub operation */ 848 edac_atomic_scrub(virt_addr + offset, size); 849 850 /* Unmap and complete */ 851 kunmap_atomic(virt_addr); 852 853 if (PageHighMem(pg)) 854 local_irq_restore(flags); 855 } 856 857 /* FIXME - should return -1 */ 858 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page) 859 { 860 struct csrow_info **csrows = mci->csrows; 861 int row, i, j, n; 862 863 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page); 864 row = -1; 865 866 for (i = 0; i < mci->nr_csrows; i++) { 867 struct csrow_info *csrow = csrows[i]; 868 n = 0; 869 for (j = 0; j < csrow->nr_channels; j++) { 870 struct dimm_info *dimm = csrow->channels[j]->dimm; 871 n += dimm->nr_pages; 872 } 873 if (n == 0) 874 continue; 875 876 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n", 877 mci->mc_idx, 878 csrow->first_page, page, csrow->last_page, 879 csrow->page_mask); 880 881 if ((page >= csrow->first_page) && 882 (page <= csrow->last_page) && 883 ((page & csrow->page_mask) == 884 (csrow->first_page & csrow->page_mask))) { 885 row = i; 886 break; 887 } 888 } 889 890 if (row == -1) 891 edac_mc_printk(mci, KERN_ERR, 892 "could not look up page error address %lx\n", 893 (unsigned long)page); 894 895 return row; 896 } 897 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page); 898 899 const char *edac_layer_name[] = { 900 [EDAC_MC_LAYER_BRANCH] = "branch", 901 [EDAC_MC_LAYER_CHANNEL] = "channel", 902 [EDAC_MC_LAYER_SLOT] = "slot", 903 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow", 904 [EDAC_MC_LAYER_ALL_MEM] = "memory", 905 }; 906 EXPORT_SYMBOL_GPL(edac_layer_name); 907 908 static void edac_inc_ce_error(struct mem_ctl_info *mci, 909 bool enable_per_layer_report, 910 const int pos[EDAC_MAX_LAYERS], 911 const u16 count) 912 { 913 int i, index = 0; 914 915 mci->ce_mc += count; 916 917 if (!enable_per_layer_report) { 918 mci->ce_noinfo_count += count; 919 return; 920 } 921 922 for (i = 0; i < mci->n_layers; i++) { 923 if (pos[i] < 0) 924 break; 925 index += pos[i]; 926 mci->ce_per_layer[i][index] += count; 927 928 if (i < mci->n_layers - 1) 929 index *= mci->layers[i + 1].size; 930 } 931 } 932 933 static void edac_inc_ue_error(struct mem_ctl_info *mci, 934 bool enable_per_layer_report, 935 const int pos[EDAC_MAX_LAYERS], 936 const u16 count) 937 { 938 int i, index = 0; 939 940 mci->ue_mc += count; 941 942 if (!enable_per_layer_report) { 943 mci->ue_noinfo_count += count; 944 return; 945 } 946 947 for (i = 0; i < mci->n_layers; i++) { 948 if (pos[i] < 0) 949 break; 950 index += pos[i]; 951 mci->ue_per_layer[i][index] += count; 952 953 if (i < mci->n_layers - 1) 954 index *= mci->layers[i + 1].size; 955 } 956 } 957 958 static void edac_ce_error(struct mem_ctl_info *mci, 959 const u16 error_count, 960 const int pos[EDAC_MAX_LAYERS], 961 const char *msg, 962 const char *location, 963 const char *label, 964 const char *detail, 965 const char *other_detail, 966 const bool enable_per_layer_report, 967 const unsigned long page_frame_number, 968 const unsigned long offset_in_page, 969 long grain) 970 { 971 unsigned long remapped_page; 972 char *msg_aux = ""; 973 974 if (*msg) 975 msg_aux = " "; 976 977 if (edac_mc_get_log_ce()) { 978 if (other_detail && *other_detail) 979 edac_mc_printk(mci, KERN_WARNING, 980 "%d CE %s%son %s (%s %s - %s)\n", 981 error_count, msg, msg_aux, label, 982 location, detail, other_detail); 983 else 984 edac_mc_printk(mci, KERN_WARNING, 985 "%d CE %s%son %s (%s %s)\n", 986 error_count, msg, msg_aux, label, 987 location, detail); 988 } 989 edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count); 990 991 if (mci->scrub_mode == SCRUB_SW_SRC) { 992 /* 993 * Some memory controllers (called MCs below) can remap 994 * memory so that it is still available at a different 995 * address when PCI devices map into memory. 996 * MC's that can't do this, lose the memory where PCI 997 * devices are mapped. This mapping is MC-dependent 998 * and so we call back into the MC driver for it to 999 * map the MC page to a physical (CPU) page which can 1000 * then be mapped to a virtual page - which can then 1001 * be scrubbed. 1002 */ 1003 remapped_page = mci->ctl_page_to_phys ? 1004 mci->ctl_page_to_phys(mci, page_frame_number) : 1005 page_frame_number; 1006 1007 edac_mc_scrub_block(remapped_page, 1008 offset_in_page, grain); 1009 } 1010 } 1011 1012 static void edac_ue_error(struct mem_ctl_info *mci, 1013 const u16 error_count, 1014 const int pos[EDAC_MAX_LAYERS], 1015 const char *msg, 1016 const char *location, 1017 const char *label, 1018 const char *detail, 1019 const char *other_detail, 1020 const bool enable_per_layer_report) 1021 { 1022 char *msg_aux = ""; 1023 1024 if (*msg) 1025 msg_aux = " "; 1026 1027 if (edac_mc_get_log_ue()) { 1028 if (other_detail && *other_detail) 1029 edac_mc_printk(mci, KERN_WARNING, 1030 "%d UE %s%son %s (%s %s - %s)\n", 1031 error_count, msg, msg_aux, label, 1032 location, detail, other_detail); 1033 else 1034 edac_mc_printk(mci, KERN_WARNING, 1035 "%d UE %s%son %s (%s %s)\n", 1036 error_count, msg, msg_aux, label, 1037 location, detail); 1038 } 1039 1040 if (edac_mc_get_panic_on_ue()) { 1041 if (other_detail && *other_detail) 1042 panic("UE %s%son %s (%s%s - %s)\n", 1043 msg, msg_aux, label, location, detail, other_detail); 1044 else 1045 panic("UE %s%son %s (%s%s)\n", 1046 msg, msg_aux, label, location, detail); 1047 } 1048 1049 edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count); 1050 } 1051 1052 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type, 1053 struct mem_ctl_info *mci, 1054 struct edac_raw_error_desc *e) 1055 { 1056 char detail[80]; 1057 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer }; 1058 1059 /* Memory type dependent details about the error */ 1060 if (type == HW_EVENT_ERR_CORRECTED) { 1061 snprintf(detail, sizeof(detail), 1062 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx", 1063 e->page_frame_number, e->offset_in_page, 1064 e->grain, e->syndrome); 1065 edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label, 1066 detail, e->other_detail, e->enable_per_layer_report, 1067 e->page_frame_number, e->offset_in_page, e->grain); 1068 } else { 1069 snprintf(detail, sizeof(detail), 1070 "page:0x%lx offset:0x%lx grain:%ld", 1071 e->page_frame_number, e->offset_in_page, e->grain); 1072 1073 edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label, 1074 detail, e->other_detail, e->enable_per_layer_report); 1075 } 1076 1077 1078 } 1079 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error); 1080 1081 void edac_mc_handle_error(const enum hw_event_mc_err_type type, 1082 struct mem_ctl_info *mci, 1083 const u16 error_count, 1084 const unsigned long page_frame_number, 1085 const unsigned long offset_in_page, 1086 const unsigned long syndrome, 1087 const int top_layer, 1088 const int mid_layer, 1089 const int low_layer, 1090 const char *msg, 1091 const char *other_detail) 1092 { 1093 char *p; 1094 int row = -1, chan = -1; 1095 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer }; 1096 int i, n_labels = 0; 1097 u8 grain_bits; 1098 struct edac_raw_error_desc *e = &mci->error_desc; 1099 1100 edac_dbg(3, "MC%d\n", mci->mc_idx); 1101 1102 /* Fills the error report buffer */ 1103 memset(e, 0, sizeof (*e)); 1104 e->error_count = error_count; 1105 e->top_layer = top_layer; 1106 e->mid_layer = mid_layer; 1107 e->low_layer = low_layer; 1108 e->page_frame_number = page_frame_number; 1109 e->offset_in_page = offset_in_page; 1110 e->syndrome = syndrome; 1111 e->msg = msg; 1112 e->other_detail = other_detail; 1113 1114 /* 1115 * Check if the event report is consistent and if the memory 1116 * location is known. If it is known, enable_per_layer_report will be 1117 * true, the DIMM(s) label info will be filled and the per-layer 1118 * error counters will be incremented. 1119 */ 1120 for (i = 0; i < mci->n_layers; i++) { 1121 if (pos[i] >= (int)mci->layers[i].size) { 1122 1123 edac_mc_printk(mci, KERN_ERR, 1124 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n", 1125 edac_layer_name[mci->layers[i].type], 1126 pos[i], mci->layers[i].size); 1127 /* 1128 * Instead of just returning it, let's use what's 1129 * known about the error. The increment routines and 1130 * the DIMM filter logic will do the right thing by 1131 * pointing the likely damaged DIMMs. 1132 */ 1133 pos[i] = -1; 1134 } 1135 if (pos[i] >= 0) 1136 e->enable_per_layer_report = true; 1137 } 1138 1139 /* 1140 * Get the dimm label/grain that applies to the match criteria. 1141 * As the error algorithm may not be able to point to just one memory 1142 * stick, the logic here will get all possible labels that could 1143 * pottentially be affected by the error. 1144 * On FB-DIMM memory controllers, for uncorrected errors, it is common 1145 * to have only the MC channel and the MC dimm (also called "branch") 1146 * but the channel is not known, as the memory is arranged in pairs, 1147 * where each memory belongs to a separate channel within the same 1148 * branch. 1149 */ 1150 p = e->label; 1151 *p = '\0'; 1152 1153 for (i = 0; i < mci->tot_dimms; i++) { 1154 struct dimm_info *dimm = mci->dimms[i]; 1155 1156 if (top_layer >= 0 && top_layer != dimm->location[0]) 1157 continue; 1158 if (mid_layer >= 0 && mid_layer != dimm->location[1]) 1159 continue; 1160 if (low_layer >= 0 && low_layer != dimm->location[2]) 1161 continue; 1162 1163 /* get the max grain, over the error match range */ 1164 if (dimm->grain > e->grain) 1165 e->grain = dimm->grain; 1166 1167 /* 1168 * If the error is memory-controller wide, there's no need to 1169 * seek for the affected DIMMs because the whole 1170 * channel/memory controller/... may be affected. 1171 * Also, don't show errors for empty DIMM slots. 1172 */ 1173 if (e->enable_per_layer_report && dimm->nr_pages) { 1174 if (n_labels >= EDAC_MAX_LABELS) { 1175 e->enable_per_layer_report = false; 1176 break; 1177 } 1178 n_labels++; 1179 if (p != e->label) { 1180 strcpy(p, OTHER_LABEL); 1181 p += strlen(OTHER_LABEL); 1182 } 1183 strcpy(p, dimm->label); 1184 p += strlen(p); 1185 *p = '\0'; 1186 1187 /* 1188 * get csrow/channel of the DIMM, in order to allow 1189 * incrementing the compat API counters 1190 */ 1191 edac_dbg(4, "%s csrows map: (%d,%d)\n", 1192 mci->csbased ? "rank" : "dimm", 1193 dimm->csrow, dimm->cschannel); 1194 if (row == -1) 1195 row = dimm->csrow; 1196 else if (row >= 0 && row != dimm->csrow) 1197 row = -2; 1198 1199 if (chan == -1) 1200 chan = dimm->cschannel; 1201 else if (chan >= 0 && chan != dimm->cschannel) 1202 chan = -2; 1203 } 1204 } 1205 1206 if (!e->enable_per_layer_report) { 1207 strcpy(e->label, "any memory"); 1208 } else { 1209 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan); 1210 if (p == e->label) 1211 strcpy(e->label, "unknown memory"); 1212 if (type == HW_EVENT_ERR_CORRECTED) { 1213 if (row >= 0) { 1214 mci->csrows[row]->ce_count += error_count; 1215 if (chan >= 0) 1216 mci->csrows[row]->channels[chan]->ce_count += error_count; 1217 } 1218 } else 1219 if (row >= 0) 1220 mci->csrows[row]->ue_count += error_count; 1221 } 1222 1223 /* Fill the RAM location data */ 1224 p = e->location; 1225 1226 for (i = 0; i < mci->n_layers; i++) { 1227 if (pos[i] < 0) 1228 continue; 1229 1230 p += sprintf(p, "%s:%d ", 1231 edac_layer_name[mci->layers[i].type], 1232 pos[i]); 1233 } 1234 if (p > e->location) 1235 *(p - 1) = '\0'; 1236 1237 /* Sanity-check driver-supplied grain value. */ 1238 if (WARN_ON_ONCE(!e->grain)) 1239 e->grain = 1; 1240 1241 grain_bits = fls_long(e->grain - 1); 1242 1243 /* Report the error via the trace interface */ 1244 if (IS_ENABLED(CONFIG_RAS)) 1245 trace_mc_event(type, e->msg, e->label, e->error_count, 1246 mci->mc_idx, e->top_layer, e->mid_layer, 1247 e->low_layer, 1248 (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page, 1249 grain_bits, e->syndrome, e->other_detail); 1250 1251 edac_raw_mc_handle_error(type, mci, e); 1252 } 1253 EXPORT_SYMBOL_GPL(edac_mc_handle_error); 1254