xref: /openbmc/linux/drivers/edac/edac_mc.c (revision 80ecbd24)
1 /*
2  * edac_mc kernel module
3  * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Thayne Harbaugh
8  * Based on work by Dan Hollis <goemon at anime dot net> and others.
9  *	http://www.anime.net/~goemon/linux-ecc/
10  *
11  * Modified by Dave Peterson and Doug Thompson
12  *
13  */
14 
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <asm/uaccess.h>
32 #include <asm/page.h>
33 #include <asm/edac.h>
34 #include "edac_core.h"
35 #include "edac_module.h"
36 
37 #define CREATE_TRACE_POINTS
38 #define TRACE_INCLUDE_PATH ../../include/ras
39 #include <ras/ras_event.h>
40 
41 /* lock to memory controller's control array */
42 static DEFINE_MUTEX(mem_ctls_mutex);
43 static LIST_HEAD(mc_devices);
44 
45 /*
46  * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
47  *	apei/ghes and i7core_edac to be used at the same time.
48  */
49 static void const *edac_mc_owner;
50 
51 static struct bus_type mc_bus[EDAC_MAX_MCS];
52 
53 unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
54 			         unsigned len)
55 {
56 	struct mem_ctl_info *mci = dimm->mci;
57 	int i, n, count = 0;
58 	char *p = buf;
59 
60 	for (i = 0; i < mci->n_layers; i++) {
61 		n = snprintf(p, len, "%s %d ",
62 			      edac_layer_name[mci->layers[i].type],
63 			      dimm->location[i]);
64 		p += n;
65 		len -= n;
66 		count += n;
67 		if (!len)
68 			break;
69 	}
70 
71 	return count;
72 }
73 
74 #ifdef CONFIG_EDAC_DEBUG
75 
76 static void edac_mc_dump_channel(struct rank_info *chan)
77 {
78 	edac_dbg(4, "  channel->chan_idx = %d\n", chan->chan_idx);
79 	edac_dbg(4, "    channel = %p\n", chan);
80 	edac_dbg(4, "    channel->csrow = %p\n", chan->csrow);
81 	edac_dbg(4, "    channel->dimm = %p\n", chan->dimm);
82 }
83 
84 static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
85 {
86 	char location[80];
87 
88 	edac_dimm_info_location(dimm, location, sizeof(location));
89 
90 	edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
91 		 dimm->mci->csbased ? "rank" : "dimm",
92 		 number, location, dimm->csrow, dimm->cschannel);
93 	edac_dbg(4, "  dimm = %p\n", dimm);
94 	edac_dbg(4, "  dimm->label = '%s'\n", dimm->label);
95 	edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
96 	edac_dbg(4, "  dimm->grain = %d\n", dimm->grain);
97 	edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
98 }
99 
100 static void edac_mc_dump_csrow(struct csrow_info *csrow)
101 {
102 	edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
103 	edac_dbg(4, "  csrow = %p\n", csrow);
104 	edac_dbg(4, "  csrow->first_page = 0x%lx\n", csrow->first_page);
105 	edac_dbg(4, "  csrow->last_page = 0x%lx\n", csrow->last_page);
106 	edac_dbg(4, "  csrow->page_mask = 0x%lx\n", csrow->page_mask);
107 	edac_dbg(4, "  csrow->nr_channels = %d\n", csrow->nr_channels);
108 	edac_dbg(4, "  csrow->channels = %p\n", csrow->channels);
109 	edac_dbg(4, "  csrow->mci = %p\n", csrow->mci);
110 }
111 
112 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
113 {
114 	edac_dbg(3, "\tmci = %p\n", mci);
115 	edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
116 	edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
117 	edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
118 	edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
119 	edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
120 		 mci->nr_csrows, mci->csrows);
121 	edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
122 		 mci->tot_dimms, mci->dimms);
123 	edac_dbg(3, "\tdev = %p\n", mci->pdev);
124 	edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
125 		 mci->mod_name, mci->ctl_name);
126 	edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
127 }
128 
129 #endif				/* CONFIG_EDAC_DEBUG */
130 
131 /*
132  * keep those in sync with the enum mem_type
133  */
134 const char *edac_mem_types[] = {
135 	"Empty csrow",
136 	"Reserved csrow type",
137 	"Unknown csrow type",
138 	"Fast page mode RAM",
139 	"Extended data out RAM",
140 	"Burst Extended data out RAM",
141 	"Single data rate SDRAM",
142 	"Registered single data rate SDRAM",
143 	"Double data rate SDRAM",
144 	"Registered Double data rate SDRAM",
145 	"Rambus DRAM",
146 	"Unbuffered DDR2 RAM",
147 	"Fully buffered DDR2",
148 	"Registered DDR2 RAM",
149 	"Rambus XDR",
150 	"Unbuffered DDR3 RAM",
151 	"Registered DDR3 RAM",
152 };
153 EXPORT_SYMBOL_GPL(edac_mem_types);
154 
155 /**
156  * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
157  * @p:		pointer to a pointer with the memory offset to be used. At
158  *		return, this will be incremented to point to the next offset
159  * @size:	Size of the data structure to be reserved
160  * @n_elems:	Number of elements that should be reserved
161  *
162  * If 'size' is a constant, the compiler will optimize this whole function
163  * down to either a no-op or the addition of a constant to the value of '*p'.
164  *
165  * The 'p' pointer is absolutely needed to keep the proper advancing
166  * further in memory to the proper offsets when allocating the struct along
167  * with its embedded structs, as edac_device_alloc_ctl_info() does it
168  * above, for example.
169  *
170  * At return, the pointer 'p' will be incremented to be used on a next call
171  * to this function.
172  */
173 void *edac_align_ptr(void **p, unsigned size, int n_elems)
174 {
175 	unsigned align, r;
176 	void *ptr = *p;
177 
178 	*p += size * n_elems;
179 
180 	/*
181 	 * 'p' can possibly be an unaligned item X such that sizeof(X) is
182 	 * 'size'.  Adjust 'p' so that its alignment is at least as
183 	 * stringent as what the compiler would provide for X and return
184 	 * the aligned result.
185 	 * Here we assume that the alignment of a "long long" is the most
186 	 * stringent alignment that the compiler will ever provide by default.
187 	 * As far as I know, this is a reasonable assumption.
188 	 */
189 	if (size > sizeof(long))
190 		align = sizeof(long long);
191 	else if (size > sizeof(int))
192 		align = sizeof(long);
193 	else if (size > sizeof(short))
194 		align = sizeof(int);
195 	else if (size > sizeof(char))
196 		align = sizeof(short);
197 	else
198 		return (char *)ptr;
199 
200 	r = (unsigned long)p % align;
201 
202 	if (r == 0)
203 		return (char *)ptr;
204 
205 	*p += align - r;
206 
207 	return (void *)(((unsigned long)ptr) + align - r);
208 }
209 
210 static void _edac_mc_free(struct mem_ctl_info *mci)
211 {
212 	int i, chn, row;
213 	struct csrow_info *csr;
214 	const unsigned int tot_dimms = mci->tot_dimms;
215 	const unsigned int tot_channels = mci->num_cschannel;
216 	const unsigned int tot_csrows = mci->nr_csrows;
217 
218 	if (mci->dimms) {
219 		for (i = 0; i < tot_dimms; i++)
220 			kfree(mci->dimms[i]);
221 		kfree(mci->dimms);
222 	}
223 	if (mci->csrows) {
224 		for (row = 0; row < tot_csrows; row++) {
225 			csr = mci->csrows[row];
226 			if (csr) {
227 				if (csr->channels) {
228 					for (chn = 0; chn < tot_channels; chn++)
229 						kfree(csr->channels[chn]);
230 					kfree(csr->channels);
231 				}
232 				kfree(csr);
233 			}
234 		}
235 		kfree(mci->csrows);
236 	}
237 	kfree(mci);
238 }
239 
240 /**
241  * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure
242  * @mc_num:		Memory controller number
243  * @n_layers:		Number of MC hierarchy layers
244  * layers:		Describes each layer as seen by the Memory Controller
245  * @size_pvt:		size of private storage needed
246  *
247  *
248  * Everything is kmalloc'ed as one big chunk - more efficient.
249  * Only can be used if all structures have the same lifetime - otherwise
250  * you have to allocate and initialize your own structures.
251  *
252  * Use edac_mc_free() to free mc structures allocated by this function.
253  *
254  * NOTE: drivers handle multi-rank memories in different ways: in some
255  * drivers, one multi-rank memory stick is mapped as one entry, while, in
256  * others, a single multi-rank memory stick would be mapped into several
257  * entries. Currently, this function will allocate multiple struct dimm_info
258  * on such scenarios, as grouping the multiple ranks require drivers change.
259  *
260  * Returns:
261  *	On failure: NULL
262  *	On success: struct mem_ctl_info pointer
263  */
264 struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
265 				   unsigned n_layers,
266 				   struct edac_mc_layer *layers,
267 				   unsigned sz_pvt)
268 {
269 	struct mem_ctl_info *mci;
270 	struct edac_mc_layer *layer;
271 	struct csrow_info *csr;
272 	struct rank_info *chan;
273 	struct dimm_info *dimm;
274 	u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
275 	unsigned pos[EDAC_MAX_LAYERS];
276 	unsigned size, tot_dimms = 1, count = 1;
277 	unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
278 	void *pvt, *p, *ptr = NULL;
279 	int i, j, row, chn, n, len, off;
280 	bool per_rank = false;
281 
282 	BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
283 	/*
284 	 * Calculate the total amount of dimms and csrows/cschannels while
285 	 * in the old API emulation mode
286 	 */
287 	for (i = 0; i < n_layers; i++) {
288 		tot_dimms *= layers[i].size;
289 		if (layers[i].is_virt_csrow)
290 			tot_csrows *= layers[i].size;
291 		else
292 			tot_channels *= layers[i].size;
293 
294 		if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
295 			per_rank = true;
296 	}
297 
298 	/* Figure out the offsets of the various items from the start of an mc
299 	 * structure.  We want the alignment of each item to be at least as
300 	 * stringent as what the compiler would provide if we could simply
301 	 * hardcode everything into a single struct.
302 	 */
303 	mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
304 	layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
305 	for (i = 0; i < n_layers; i++) {
306 		count *= layers[i].size;
307 		edac_dbg(4, "errcount layer %d size %d\n", i, count);
308 		ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
309 		ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
310 		tot_errcount += 2 * count;
311 	}
312 
313 	edac_dbg(4, "allocating %d error counters\n", tot_errcount);
314 	pvt = edac_align_ptr(&ptr, sz_pvt, 1);
315 	size = ((unsigned long)pvt) + sz_pvt;
316 
317 	edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
318 		 size,
319 		 tot_dimms,
320 		 per_rank ? "ranks" : "dimms",
321 		 tot_csrows * tot_channels);
322 
323 	mci = kzalloc(size, GFP_KERNEL);
324 	if (mci == NULL)
325 		return NULL;
326 
327 	/* Adjust pointers so they point within the memory we just allocated
328 	 * rather than an imaginary chunk of memory located at address 0.
329 	 */
330 	layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
331 	for (i = 0; i < n_layers; i++) {
332 		mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
333 		mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
334 	}
335 	pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
336 
337 	/* setup index and various internal pointers */
338 	mci->mc_idx = mc_num;
339 	mci->tot_dimms = tot_dimms;
340 	mci->pvt_info = pvt;
341 	mci->n_layers = n_layers;
342 	mci->layers = layer;
343 	memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
344 	mci->nr_csrows = tot_csrows;
345 	mci->num_cschannel = tot_channels;
346 	mci->csbased = per_rank;
347 
348 	/*
349 	 * Alocate and fill the csrow/channels structs
350 	 */
351 	mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
352 	if (!mci->csrows)
353 		goto error;
354 	for (row = 0; row < tot_csrows; row++) {
355 		csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
356 		if (!csr)
357 			goto error;
358 		mci->csrows[row] = csr;
359 		csr->csrow_idx = row;
360 		csr->mci = mci;
361 		csr->nr_channels = tot_channels;
362 		csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
363 					GFP_KERNEL);
364 		if (!csr->channels)
365 			goto error;
366 
367 		for (chn = 0; chn < tot_channels; chn++) {
368 			chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
369 			if (!chan)
370 				goto error;
371 			csr->channels[chn] = chan;
372 			chan->chan_idx = chn;
373 			chan->csrow = csr;
374 		}
375 	}
376 
377 	/*
378 	 * Allocate and fill the dimm structs
379 	 */
380 	mci->dimms  = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
381 	if (!mci->dimms)
382 		goto error;
383 
384 	memset(&pos, 0, sizeof(pos));
385 	row = 0;
386 	chn = 0;
387 	for (i = 0; i < tot_dimms; i++) {
388 		chan = mci->csrows[row]->channels[chn];
389 		off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
390 		if (off < 0 || off >= tot_dimms) {
391 			edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
392 			goto error;
393 		}
394 
395 		dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
396 		if (!dimm)
397 			goto error;
398 		mci->dimms[off] = dimm;
399 		dimm->mci = mci;
400 
401 		/*
402 		 * Copy DIMM location and initialize it.
403 		 */
404 		len = sizeof(dimm->label);
405 		p = dimm->label;
406 		n = snprintf(p, len, "mc#%u", mc_num);
407 		p += n;
408 		len -= n;
409 		for (j = 0; j < n_layers; j++) {
410 			n = snprintf(p, len, "%s#%u",
411 				     edac_layer_name[layers[j].type],
412 				     pos[j]);
413 			p += n;
414 			len -= n;
415 			dimm->location[j] = pos[j];
416 
417 			if (len <= 0)
418 				break;
419 		}
420 
421 		/* Link it to the csrows old API data */
422 		chan->dimm = dimm;
423 		dimm->csrow = row;
424 		dimm->cschannel = chn;
425 
426 		/* Increment csrow location */
427 		if (layers[0].is_virt_csrow) {
428 			chn++;
429 			if (chn == tot_channels) {
430 				chn = 0;
431 				row++;
432 			}
433 		} else {
434 			row++;
435 			if (row == tot_csrows) {
436 				row = 0;
437 				chn++;
438 			}
439 		}
440 
441 		/* Increment dimm location */
442 		for (j = n_layers - 1; j >= 0; j--) {
443 			pos[j]++;
444 			if (pos[j] < layers[j].size)
445 				break;
446 			pos[j] = 0;
447 		}
448 	}
449 
450 	mci->op_state = OP_ALLOC;
451 
452 	return mci;
453 
454 error:
455 	_edac_mc_free(mci);
456 
457 	return NULL;
458 }
459 EXPORT_SYMBOL_GPL(edac_mc_alloc);
460 
461 /**
462  * edac_mc_free
463  *	'Free' a previously allocated 'mci' structure
464  * @mci: pointer to a struct mem_ctl_info structure
465  */
466 void edac_mc_free(struct mem_ctl_info *mci)
467 {
468 	edac_dbg(1, "\n");
469 
470 	/* If we're not yet registered with sysfs free only what was allocated
471 	 * in edac_mc_alloc().
472 	 */
473 	if (!device_is_registered(&mci->dev)) {
474 		_edac_mc_free(mci);
475 		return;
476 	}
477 
478 	/* the mci instance is freed here, when the sysfs object is dropped */
479 	edac_unregister_sysfs(mci);
480 }
481 EXPORT_SYMBOL_GPL(edac_mc_free);
482 
483 
484 /**
485  * find_mci_by_dev
486  *
487  *	scan list of controllers looking for the one that manages
488  *	the 'dev' device
489  * @dev: pointer to a struct device related with the MCI
490  */
491 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
492 {
493 	struct mem_ctl_info *mci;
494 	struct list_head *item;
495 
496 	edac_dbg(3, "\n");
497 
498 	list_for_each(item, &mc_devices) {
499 		mci = list_entry(item, struct mem_ctl_info, link);
500 
501 		if (mci->pdev == dev)
502 			return mci;
503 	}
504 
505 	return NULL;
506 }
507 EXPORT_SYMBOL_GPL(find_mci_by_dev);
508 
509 /*
510  * handler for EDAC to check if NMI type handler has asserted interrupt
511  */
512 static int edac_mc_assert_error_check_and_clear(void)
513 {
514 	int old_state;
515 
516 	if (edac_op_state == EDAC_OPSTATE_POLL)
517 		return 1;
518 
519 	old_state = edac_err_assert;
520 	edac_err_assert = 0;
521 
522 	return old_state;
523 }
524 
525 /*
526  * edac_mc_workq_function
527  *	performs the operation scheduled by a workq request
528  */
529 static void edac_mc_workq_function(struct work_struct *work_req)
530 {
531 	struct delayed_work *d_work = to_delayed_work(work_req);
532 	struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
533 
534 	mutex_lock(&mem_ctls_mutex);
535 
536 	/* if this control struct has movd to offline state, we are done */
537 	if (mci->op_state == OP_OFFLINE) {
538 		mutex_unlock(&mem_ctls_mutex);
539 		return;
540 	}
541 
542 	/* Only poll controllers that are running polled and have a check */
543 	if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL))
544 		mci->edac_check(mci);
545 
546 	mutex_unlock(&mem_ctls_mutex);
547 
548 	/* Reschedule */
549 	queue_delayed_work(edac_workqueue, &mci->work,
550 			msecs_to_jiffies(edac_mc_get_poll_msec()));
551 }
552 
553 /*
554  * edac_mc_workq_setup
555  *	initialize a workq item for this mci
556  *	passing in the new delay period in msec
557  *
558  *	locking model:
559  *
560  *		called with the mem_ctls_mutex held
561  */
562 static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec)
563 {
564 	edac_dbg(0, "\n");
565 
566 	/* if this instance is not in the POLL state, then simply return */
567 	if (mci->op_state != OP_RUNNING_POLL)
568 		return;
569 
570 	INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
571 	mod_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec));
572 }
573 
574 /*
575  * edac_mc_workq_teardown
576  *	stop the workq processing on this mci
577  *
578  *	locking model:
579  *
580  *		called WITHOUT lock held
581  */
582 static void edac_mc_workq_teardown(struct mem_ctl_info *mci)
583 {
584 	int status;
585 
586 	if (mci->op_state != OP_RUNNING_POLL)
587 		return;
588 
589 	status = cancel_delayed_work(&mci->work);
590 	if (status == 0) {
591 		edac_dbg(0, "not canceled, flush the queue\n");
592 
593 		/* workq instance might be running, wait for it */
594 		flush_workqueue(edac_workqueue);
595 	}
596 }
597 
598 /*
599  * edac_mc_reset_delay_period(unsigned long value)
600  *
601  *	user space has updated our poll period value, need to
602  *	reset our workq delays
603  */
604 void edac_mc_reset_delay_period(int value)
605 {
606 	struct mem_ctl_info *mci;
607 	struct list_head *item;
608 
609 	mutex_lock(&mem_ctls_mutex);
610 
611 	list_for_each(item, &mc_devices) {
612 		mci = list_entry(item, struct mem_ctl_info, link);
613 
614 		edac_mc_workq_setup(mci, (unsigned long) value);
615 	}
616 
617 	mutex_unlock(&mem_ctls_mutex);
618 }
619 
620 
621 
622 /* Return 0 on success, 1 on failure.
623  * Before calling this function, caller must
624  * assign a unique value to mci->mc_idx.
625  *
626  *	locking model:
627  *
628  *		called with the mem_ctls_mutex lock held
629  */
630 static int add_mc_to_global_list(struct mem_ctl_info *mci)
631 {
632 	struct list_head *item, *insert_before;
633 	struct mem_ctl_info *p;
634 
635 	insert_before = &mc_devices;
636 
637 	p = find_mci_by_dev(mci->pdev);
638 	if (unlikely(p != NULL))
639 		goto fail0;
640 
641 	list_for_each(item, &mc_devices) {
642 		p = list_entry(item, struct mem_ctl_info, link);
643 
644 		if (p->mc_idx >= mci->mc_idx) {
645 			if (unlikely(p->mc_idx == mci->mc_idx))
646 				goto fail1;
647 
648 			insert_before = item;
649 			break;
650 		}
651 	}
652 
653 	list_add_tail_rcu(&mci->link, insert_before);
654 	atomic_inc(&edac_handlers);
655 	return 0;
656 
657 fail0:
658 	edac_printk(KERN_WARNING, EDAC_MC,
659 		"%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
660 		edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
661 	return 1;
662 
663 fail1:
664 	edac_printk(KERN_WARNING, EDAC_MC,
665 		"bug in low-level driver: attempt to assign\n"
666 		"    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
667 	return 1;
668 }
669 
670 static int del_mc_from_global_list(struct mem_ctl_info *mci)
671 {
672 	int handlers = atomic_dec_return(&edac_handlers);
673 	list_del_rcu(&mci->link);
674 
675 	/* these are for safe removal of devices from global list while
676 	 * NMI handlers may be traversing list
677 	 */
678 	synchronize_rcu();
679 	INIT_LIST_HEAD(&mci->link);
680 
681 	return handlers;
682 }
683 
684 /**
685  * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
686  *
687  * If found, return a pointer to the structure.
688  * Else return NULL.
689  *
690  * Caller must hold mem_ctls_mutex.
691  */
692 struct mem_ctl_info *edac_mc_find(int idx)
693 {
694 	struct list_head *item;
695 	struct mem_ctl_info *mci;
696 
697 	list_for_each(item, &mc_devices) {
698 		mci = list_entry(item, struct mem_ctl_info, link);
699 
700 		if (mci->mc_idx >= idx) {
701 			if (mci->mc_idx == idx)
702 				return mci;
703 
704 			break;
705 		}
706 	}
707 
708 	return NULL;
709 }
710 EXPORT_SYMBOL(edac_mc_find);
711 
712 /**
713  * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
714  *                 create sysfs entries associated with mci structure
715  * @mci: pointer to the mci structure to be added to the list
716  *
717  * Return:
718  *	0	Success
719  *	!0	Failure
720  */
721 
722 /* FIXME - should a warning be printed if no error detection? correction? */
723 int edac_mc_add_mc(struct mem_ctl_info *mci)
724 {
725 	int ret = -EINVAL;
726 	edac_dbg(0, "\n");
727 
728 	if (mci->mc_idx >= EDAC_MAX_MCS) {
729 		pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx);
730 		return -ENODEV;
731 	}
732 
733 #ifdef CONFIG_EDAC_DEBUG
734 	if (edac_debug_level >= 3)
735 		edac_mc_dump_mci(mci);
736 
737 	if (edac_debug_level >= 4) {
738 		int i;
739 
740 		for (i = 0; i < mci->nr_csrows; i++) {
741 			struct csrow_info *csrow = mci->csrows[i];
742 			u32 nr_pages = 0;
743 			int j;
744 
745 			for (j = 0; j < csrow->nr_channels; j++)
746 				nr_pages += csrow->channels[j]->dimm->nr_pages;
747 			if (!nr_pages)
748 				continue;
749 			edac_mc_dump_csrow(csrow);
750 			for (j = 0; j < csrow->nr_channels; j++)
751 				if (csrow->channels[j]->dimm->nr_pages)
752 					edac_mc_dump_channel(csrow->channels[j]);
753 		}
754 		for (i = 0; i < mci->tot_dimms; i++)
755 			if (mci->dimms[i]->nr_pages)
756 				edac_mc_dump_dimm(mci->dimms[i], i);
757 	}
758 #endif
759 	mutex_lock(&mem_ctls_mutex);
760 
761 	if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
762 		ret = -EPERM;
763 		goto fail0;
764 	}
765 
766 	if (add_mc_to_global_list(mci))
767 		goto fail0;
768 
769 	/* set load time so that error rate can be tracked */
770 	mci->start_time = jiffies;
771 
772 	mci->bus = &mc_bus[mci->mc_idx];
773 
774 	if (edac_create_sysfs_mci_device(mci)) {
775 		edac_mc_printk(mci, KERN_WARNING,
776 			"failed to create sysfs device\n");
777 		goto fail1;
778 	}
779 
780 	/* If there IS a check routine, then we are running POLLED */
781 	if (mci->edac_check != NULL) {
782 		/* This instance is NOW RUNNING */
783 		mci->op_state = OP_RUNNING_POLL;
784 
785 		edac_mc_workq_setup(mci, edac_mc_get_poll_msec());
786 	} else {
787 		mci->op_state = OP_RUNNING_INTERRUPT;
788 	}
789 
790 	/* Report action taken */
791 	edac_mc_printk(mci, KERN_INFO, "Giving out device to '%s' '%s':"
792 		" DEV %s\n", mci->mod_name, mci->ctl_name, edac_dev_name(mci));
793 
794 	edac_mc_owner = mci->mod_name;
795 
796 	mutex_unlock(&mem_ctls_mutex);
797 	return 0;
798 
799 fail1:
800 	del_mc_from_global_list(mci);
801 
802 fail0:
803 	mutex_unlock(&mem_ctls_mutex);
804 	return ret;
805 }
806 EXPORT_SYMBOL_GPL(edac_mc_add_mc);
807 
808 /**
809  * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
810  *                 remove mci structure from global list
811  * @pdev: Pointer to 'struct device' representing mci structure to remove.
812  *
813  * Return pointer to removed mci structure, or NULL if device not found.
814  */
815 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
816 {
817 	struct mem_ctl_info *mci;
818 
819 	edac_dbg(0, "\n");
820 
821 	mutex_lock(&mem_ctls_mutex);
822 
823 	/* find the requested mci struct in the global list */
824 	mci = find_mci_by_dev(dev);
825 	if (mci == NULL) {
826 		mutex_unlock(&mem_ctls_mutex);
827 		return NULL;
828 	}
829 
830 	if (!del_mc_from_global_list(mci))
831 		edac_mc_owner = NULL;
832 	mutex_unlock(&mem_ctls_mutex);
833 
834 	/* flush workq processes */
835 	edac_mc_workq_teardown(mci);
836 
837 	/* marking MCI offline */
838 	mci->op_state = OP_OFFLINE;
839 
840 	/* remove from sysfs */
841 	edac_remove_sysfs_mci_device(mci);
842 
843 	edac_printk(KERN_INFO, EDAC_MC,
844 		"Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
845 		mci->mod_name, mci->ctl_name, edac_dev_name(mci));
846 
847 	return mci;
848 }
849 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
850 
851 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
852 				u32 size)
853 {
854 	struct page *pg;
855 	void *virt_addr;
856 	unsigned long flags = 0;
857 
858 	edac_dbg(3, "\n");
859 
860 	/* ECC error page was not in our memory. Ignore it. */
861 	if (!pfn_valid(page))
862 		return;
863 
864 	/* Find the actual page structure then map it and fix */
865 	pg = pfn_to_page(page);
866 
867 	if (PageHighMem(pg))
868 		local_irq_save(flags);
869 
870 	virt_addr = kmap_atomic(pg);
871 
872 	/* Perform architecture specific atomic scrub operation */
873 	atomic_scrub(virt_addr + offset, size);
874 
875 	/* Unmap and complete */
876 	kunmap_atomic(virt_addr);
877 
878 	if (PageHighMem(pg))
879 		local_irq_restore(flags);
880 }
881 
882 /* FIXME - should return -1 */
883 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
884 {
885 	struct csrow_info **csrows = mci->csrows;
886 	int row, i, j, n;
887 
888 	edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
889 	row = -1;
890 
891 	for (i = 0; i < mci->nr_csrows; i++) {
892 		struct csrow_info *csrow = csrows[i];
893 		n = 0;
894 		for (j = 0; j < csrow->nr_channels; j++) {
895 			struct dimm_info *dimm = csrow->channels[j]->dimm;
896 			n += dimm->nr_pages;
897 		}
898 		if (n == 0)
899 			continue;
900 
901 		edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
902 			 mci->mc_idx,
903 			 csrow->first_page, page, csrow->last_page,
904 			 csrow->page_mask);
905 
906 		if ((page >= csrow->first_page) &&
907 		    (page <= csrow->last_page) &&
908 		    ((page & csrow->page_mask) ==
909 		     (csrow->first_page & csrow->page_mask))) {
910 			row = i;
911 			break;
912 		}
913 	}
914 
915 	if (row == -1)
916 		edac_mc_printk(mci, KERN_ERR,
917 			"could not look up page error address %lx\n",
918 			(unsigned long)page);
919 
920 	return row;
921 }
922 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
923 
924 const char *edac_layer_name[] = {
925 	[EDAC_MC_LAYER_BRANCH] = "branch",
926 	[EDAC_MC_LAYER_CHANNEL] = "channel",
927 	[EDAC_MC_LAYER_SLOT] = "slot",
928 	[EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
929 	[EDAC_MC_LAYER_ALL_MEM] = "memory",
930 };
931 EXPORT_SYMBOL_GPL(edac_layer_name);
932 
933 static void edac_inc_ce_error(struct mem_ctl_info *mci,
934 			      bool enable_per_layer_report,
935 			      const int pos[EDAC_MAX_LAYERS],
936 			      const u16 count)
937 {
938 	int i, index = 0;
939 
940 	mci->ce_mc += count;
941 
942 	if (!enable_per_layer_report) {
943 		mci->ce_noinfo_count += count;
944 		return;
945 	}
946 
947 	for (i = 0; i < mci->n_layers; i++) {
948 		if (pos[i] < 0)
949 			break;
950 		index += pos[i];
951 		mci->ce_per_layer[i][index] += count;
952 
953 		if (i < mci->n_layers - 1)
954 			index *= mci->layers[i + 1].size;
955 	}
956 }
957 
958 static void edac_inc_ue_error(struct mem_ctl_info *mci,
959 				    bool enable_per_layer_report,
960 				    const int pos[EDAC_MAX_LAYERS],
961 				    const u16 count)
962 {
963 	int i, index = 0;
964 
965 	mci->ue_mc += count;
966 
967 	if (!enable_per_layer_report) {
968 		mci->ce_noinfo_count += count;
969 		return;
970 	}
971 
972 	for (i = 0; i < mci->n_layers; i++) {
973 		if (pos[i] < 0)
974 			break;
975 		index += pos[i];
976 		mci->ue_per_layer[i][index] += count;
977 
978 		if (i < mci->n_layers - 1)
979 			index *= mci->layers[i + 1].size;
980 	}
981 }
982 
983 static void edac_ce_error(struct mem_ctl_info *mci,
984 			  const u16 error_count,
985 			  const int pos[EDAC_MAX_LAYERS],
986 			  const char *msg,
987 			  const char *location,
988 			  const char *label,
989 			  const char *detail,
990 			  const char *other_detail,
991 			  const bool enable_per_layer_report,
992 			  const unsigned long page_frame_number,
993 			  const unsigned long offset_in_page,
994 			  long grain)
995 {
996 	unsigned long remapped_page;
997 	char *msg_aux = "";
998 
999 	if (*msg)
1000 		msg_aux = " ";
1001 
1002 	if (edac_mc_get_log_ce()) {
1003 		if (other_detail && *other_detail)
1004 			edac_mc_printk(mci, KERN_WARNING,
1005 				       "%d CE %s%son %s (%s %s - %s)\n",
1006 				       error_count, msg, msg_aux, label,
1007 				       location, detail, other_detail);
1008 		else
1009 			edac_mc_printk(mci, KERN_WARNING,
1010 				       "%d CE %s%son %s (%s %s)\n",
1011 				       error_count, msg, msg_aux, label,
1012 				       location, detail);
1013 	}
1014 	edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
1015 
1016 	if (mci->scrub_mode & SCRUB_SW_SRC) {
1017 		/*
1018 			* Some memory controllers (called MCs below) can remap
1019 			* memory so that it is still available at a different
1020 			* address when PCI devices map into memory.
1021 			* MC's that can't do this, lose the memory where PCI
1022 			* devices are mapped. This mapping is MC-dependent
1023 			* and so we call back into the MC driver for it to
1024 			* map the MC page to a physical (CPU) page which can
1025 			* then be mapped to a virtual page - which can then
1026 			* be scrubbed.
1027 			*/
1028 		remapped_page = mci->ctl_page_to_phys ?
1029 			mci->ctl_page_to_phys(mci, page_frame_number) :
1030 			page_frame_number;
1031 
1032 		edac_mc_scrub_block(remapped_page,
1033 					offset_in_page, grain);
1034 	}
1035 }
1036 
1037 static void edac_ue_error(struct mem_ctl_info *mci,
1038 			  const u16 error_count,
1039 			  const int pos[EDAC_MAX_LAYERS],
1040 			  const char *msg,
1041 			  const char *location,
1042 			  const char *label,
1043 			  const char *detail,
1044 			  const char *other_detail,
1045 			  const bool enable_per_layer_report)
1046 {
1047 	char *msg_aux = "";
1048 
1049 	if (*msg)
1050 		msg_aux = " ";
1051 
1052 	if (edac_mc_get_log_ue()) {
1053 		if (other_detail && *other_detail)
1054 			edac_mc_printk(mci, KERN_WARNING,
1055 				       "%d UE %s%son %s (%s %s - %s)\n",
1056 				       error_count, msg, msg_aux, label,
1057 				       location, detail, other_detail);
1058 		else
1059 			edac_mc_printk(mci, KERN_WARNING,
1060 				       "%d UE %s%son %s (%s %s)\n",
1061 				       error_count, msg, msg_aux, label,
1062 				       location, detail);
1063 	}
1064 
1065 	if (edac_mc_get_panic_on_ue()) {
1066 		if (other_detail && *other_detail)
1067 			panic("UE %s%son %s (%s%s - %s)\n",
1068 			      msg, msg_aux, label, location, detail, other_detail);
1069 		else
1070 			panic("UE %s%son %s (%s%s)\n",
1071 			      msg, msg_aux, label, location, detail);
1072 	}
1073 
1074 	edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
1075 }
1076 
1077 /**
1078  * edac_raw_mc_handle_error - reports a memory event to userspace without doing
1079  *			      anything to discover the error location
1080  *
1081  * @type:		severity of the error (CE/UE/Fatal)
1082  * @mci:		a struct mem_ctl_info pointer
1083  * @e:			error description
1084  *
1085  * This raw function is used internally by edac_mc_handle_error(). It should
1086  * only be called directly when the hardware error come directly from BIOS,
1087  * like in the case of APEI GHES driver.
1088  */
1089 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
1090 			      struct mem_ctl_info *mci,
1091 			      struct edac_raw_error_desc *e)
1092 {
1093 	char detail[80];
1094 	int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
1095 
1096 	/* Memory type dependent details about the error */
1097 	if (type == HW_EVENT_ERR_CORRECTED) {
1098 		snprintf(detail, sizeof(detail),
1099 			"page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1100 			e->page_frame_number, e->offset_in_page,
1101 			e->grain, e->syndrome);
1102 		edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1103 			      detail, e->other_detail, e->enable_per_layer_report,
1104 			      e->page_frame_number, e->offset_in_page, e->grain);
1105 	} else {
1106 		snprintf(detail, sizeof(detail),
1107 			"page:0x%lx offset:0x%lx grain:%ld",
1108 			e->page_frame_number, e->offset_in_page, e->grain);
1109 
1110 		edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1111 			      detail, e->other_detail, e->enable_per_layer_report);
1112 	}
1113 
1114 
1115 }
1116 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1117 
1118 /**
1119  * edac_mc_handle_error - reports a memory event to userspace
1120  *
1121  * @type:		severity of the error (CE/UE/Fatal)
1122  * @mci:		a struct mem_ctl_info pointer
1123  * @error_count:	Number of errors of the same type
1124  * @page_frame_number:	mem page where the error occurred
1125  * @offset_in_page:	offset of the error inside the page
1126  * @syndrome:		ECC syndrome
1127  * @top_layer:		Memory layer[0] position
1128  * @mid_layer:		Memory layer[1] position
1129  * @low_layer:		Memory layer[2] position
1130  * @msg:		Message meaningful to the end users that
1131  *			explains the event
1132  * @other_detail:	Technical details about the event that
1133  *			may help hardware manufacturers and
1134  *			EDAC developers to analyse the event
1135  */
1136 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1137 			  struct mem_ctl_info *mci,
1138 			  const u16 error_count,
1139 			  const unsigned long page_frame_number,
1140 			  const unsigned long offset_in_page,
1141 			  const unsigned long syndrome,
1142 			  const int top_layer,
1143 			  const int mid_layer,
1144 			  const int low_layer,
1145 			  const char *msg,
1146 			  const char *other_detail)
1147 {
1148 	char *p;
1149 	int row = -1, chan = -1;
1150 	int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1151 	int i, n_labels = 0;
1152 	u8 grain_bits;
1153 	struct edac_raw_error_desc *e = &mci->error_desc;
1154 
1155 	edac_dbg(3, "MC%d\n", mci->mc_idx);
1156 
1157 	/* Fills the error report buffer */
1158 	memset(e, 0, sizeof (*e));
1159 	e->error_count = error_count;
1160 	e->top_layer = top_layer;
1161 	e->mid_layer = mid_layer;
1162 	e->low_layer = low_layer;
1163 	e->page_frame_number = page_frame_number;
1164 	e->offset_in_page = offset_in_page;
1165 	e->syndrome = syndrome;
1166 	e->msg = msg;
1167 	e->other_detail = other_detail;
1168 
1169 	/*
1170 	 * Check if the event report is consistent and if the memory
1171 	 * location is known. If it is known, enable_per_layer_report will be
1172 	 * true, the DIMM(s) label info will be filled and the per-layer
1173 	 * error counters will be incremented.
1174 	 */
1175 	for (i = 0; i < mci->n_layers; i++) {
1176 		if (pos[i] >= (int)mci->layers[i].size) {
1177 
1178 			edac_mc_printk(mci, KERN_ERR,
1179 				       "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1180 				       edac_layer_name[mci->layers[i].type],
1181 				       pos[i], mci->layers[i].size);
1182 			/*
1183 			 * Instead of just returning it, let's use what's
1184 			 * known about the error. The increment routines and
1185 			 * the DIMM filter logic will do the right thing by
1186 			 * pointing the likely damaged DIMMs.
1187 			 */
1188 			pos[i] = -1;
1189 		}
1190 		if (pos[i] >= 0)
1191 			e->enable_per_layer_report = true;
1192 	}
1193 
1194 	/*
1195 	 * Get the dimm label/grain that applies to the match criteria.
1196 	 * As the error algorithm may not be able to point to just one memory
1197 	 * stick, the logic here will get all possible labels that could
1198 	 * pottentially be affected by the error.
1199 	 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1200 	 * to have only the MC channel and the MC dimm (also called "branch")
1201 	 * but the channel is not known, as the memory is arranged in pairs,
1202 	 * where each memory belongs to a separate channel within the same
1203 	 * branch.
1204 	 */
1205 	p = e->label;
1206 	*p = '\0';
1207 
1208 	for (i = 0; i < mci->tot_dimms; i++) {
1209 		struct dimm_info *dimm = mci->dimms[i];
1210 
1211 		if (top_layer >= 0 && top_layer != dimm->location[0])
1212 			continue;
1213 		if (mid_layer >= 0 && mid_layer != dimm->location[1])
1214 			continue;
1215 		if (low_layer >= 0 && low_layer != dimm->location[2])
1216 			continue;
1217 
1218 		/* get the max grain, over the error match range */
1219 		if (dimm->grain > e->grain)
1220 			e->grain = dimm->grain;
1221 
1222 		/*
1223 		 * If the error is memory-controller wide, there's no need to
1224 		 * seek for the affected DIMMs because the whole
1225 		 * channel/memory controller/...  may be affected.
1226 		 * Also, don't show errors for empty DIMM slots.
1227 		 */
1228 		if (e->enable_per_layer_report && dimm->nr_pages) {
1229 			if (n_labels >= EDAC_MAX_LABELS) {
1230 				e->enable_per_layer_report = false;
1231 				break;
1232 			}
1233 			n_labels++;
1234 			if (p != e->label) {
1235 				strcpy(p, OTHER_LABEL);
1236 				p += strlen(OTHER_LABEL);
1237 			}
1238 			strcpy(p, dimm->label);
1239 			p += strlen(p);
1240 			*p = '\0';
1241 
1242 			/*
1243 			 * get csrow/channel of the DIMM, in order to allow
1244 			 * incrementing the compat API counters
1245 			 */
1246 			edac_dbg(4, "%s csrows map: (%d,%d)\n",
1247 				 mci->csbased ? "rank" : "dimm",
1248 				 dimm->csrow, dimm->cschannel);
1249 			if (row == -1)
1250 				row = dimm->csrow;
1251 			else if (row >= 0 && row != dimm->csrow)
1252 				row = -2;
1253 
1254 			if (chan == -1)
1255 				chan = dimm->cschannel;
1256 			else if (chan >= 0 && chan != dimm->cschannel)
1257 				chan = -2;
1258 		}
1259 	}
1260 
1261 	if (!e->enable_per_layer_report) {
1262 		strcpy(e->label, "any memory");
1263 	} else {
1264 		edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
1265 		if (p == e->label)
1266 			strcpy(e->label, "unknown memory");
1267 		if (type == HW_EVENT_ERR_CORRECTED) {
1268 			if (row >= 0) {
1269 				mci->csrows[row]->ce_count += error_count;
1270 				if (chan >= 0)
1271 					mci->csrows[row]->channels[chan]->ce_count += error_count;
1272 			}
1273 		} else
1274 			if (row >= 0)
1275 				mci->csrows[row]->ue_count += error_count;
1276 	}
1277 
1278 	/* Fill the RAM location data */
1279 	p = e->location;
1280 
1281 	for (i = 0; i < mci->n_layers; i++) {
1282 		if (pos[i] < 0)
1283 			continue;
1284 
1285 		p += sprintf(p, "%s:%d ",
1286 			     edac_layer_name[mci->layers[i].type],
1287 			     pos[i]);
1288 	}
1289 	if (p > e->location)
1290 		*(p - 1) = '\0';
1291 
1292 	/* Report the error via the trace interface */
1293 	grain_bits = fls_long(e->grain) + 1;
1294 	trace_mc_event(type, e->msg, e->label, e->error_count,
1295 		       mci->mc_idx, e->top_layer, e->mid_layer, e->low_layer,
1296 		       PAGES_TO_MiB(e->page_frame_number) | e->offset_in_page,
1297 		       grain_bits, e->syndrome, e->other_detail);
1298 
1299 	edac_raw_mc_handle_error(type, mci, e);
1300 }
1301 EXPORT_SYMBOL_GPL(edac_mc_handle_error);
1302