xref: /openbmc/linux/drivers/edac/edac_mc.c (revision 79a93295)
1 /*
2  * edac_mc kernel module
3  * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Thayne Harbaugh
8  * Based on work by Dan Hollis <goemon at anime dot net> and others.
9  *	http://www.anime.net/~goemon/linux-ecc/
10  *
11  * Modified by Dave Peterson and Doug Thompson
12  *
13  */
14 
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <linux/uaccess.h>
32 #include <asm/page.h>
33 #include "edac_mc.h"
34 #include "edac_module.h"
35 #include <ras/ras_event.h>
36 
37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB
38 #include <asm/edac.h>
39 #else
40 #define edac_atomic_scrub(va, size) do { } while (0)
41 #endif
42 
43 /* lock to memory controller's control array */
44 static DEFINE_MUTEX(mem_ctls_mutex);
45 static LIST_HEAD(mc_devices);
46 
47 /*
48  * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
49  *	apei/ghes and i7core_edac to be used at the same time.
50  */
51 static void const *edac_mc_owner;
52 
53 static struct bus_type mc_bus[EDAC_MAX_MCS];
54 
55 unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
56 			         unsigned len)
57 {
58 	struct mem_ctl_info *mci = dimm->mci;
59 	int i, n, count = 0;
60 	char *p = buf;
61 
62 	for (i = 0; i < mci->n_layers; i++) {
63 		n = snprintf(p, len, "%s %d ",
64 			      edac_layer_name[mci->layers[i].type],
65 			      dimm->location[i]);
66 		p += n;
67 		len -= n;
68 		count += n;
69 		if (!len)
70 			break;
71 	}
72 
73 	return count;
74 }
75 
76 #ifdef CONFIG_EDAC_DEBUG
77 
78 static void edac_mc_dump_channel(struct rank_info *chan)
79 {
80 	edac_dbg(4, "  channel->chan_idx = %d\n", chan->chan_idx);
81 	edac_dbg(4, "    channel = %p\n", chan);
82 	edac_dbg(4, "    channel->csrow = %p\n", chan->csrow);
83 	edac_dbg(4, "    channel->dimm = %p\n", chan->dimm);
84 }
85 
86 static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
87 {
88 	char location[80];
89 
90 	edac_dimm_info_location(dimm, location, sizeof(location));
91 
92 	edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
93 		 dimm->mci->csbased ? "rank" : "dimm",
94 		 number, location, dimm->csrow, dimm->cschannel);
95 	edac_dbg(4, "  dimm = %p\n", dimm);
96 	edac_dbg(4, "  dimm->label = '%s'\n", dimm->label);
97 	edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
98 	edac_dbg(4, "  dimm->grain = %d\n", dimm->grain);
99 	edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
100 }
101 
102 static void edac_mc_dump_csrow(struct csrow_info *csrow)
103 {
104 	edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
105 	edac_dbg(4, "  csrow = %p\n", csrow);
106 	edac_dbg(4, "  csrow->first_page = 0x%lx\n", csrow->first_page);
107 	edac_dbg(4, "  csrow->last_page = 0x%lx\n", csrow->last_page);
108 	edac_dbg(4, "  csrow->page_mask = 0x%lx\n", csrow->page_mask);
109 	edac_dbg(4, "  csrow->nr_channels = %d\n", csrow->nr_channels);
110 	edac_dbg(4, "  csrow->channels = %p\n", csrow->channels);
111 	edac_dbg(4, "  csrow->mci = %p\n", csrow->mci);
112 }
113 
114 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
115 {
116 	edac_dbg(3, "\tmci = %p\n", mci);
117 	edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
118 	edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
119 	edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
120 	edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
121 	edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
122 		 mci->nr_csrows, mci->csrows);
123 	edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
124 		 mci->tot_dimms, mci->dimms);
125 	edac_dbg(3, "\tdev = %p\n", mci->pdev);
126 	edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
127 		 mci->mod_name, mci->ctl_name);
128 	edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
129 }
130 
131 #endif				/* CONFIG_EDAC_DEBUG */
132 
133 const char * const edac_mem_types[] = {
134 	[MEM_EMPTY]	= "Empty csrow",
135 	[MEM_RESERVED]	= "Reserved csrow type",
136 	[MEM_UNKNOWN]	= "Unknown csrow type",
137 	[MEM_FPM]	= "Fast page mode RAM",
138 	[MEM_EDO]	= "Extended data out RAM",
139 	[MEM_BEDO]	= "Burst Extended data out RAM",
140 	[MEM_SDR]	= "Single data rate SDRAM",
141 	[MEM_RDR]	= "Registered single data rate SDRAM",
142 	[MEM_DDR]	= "Double data rate SDRAM",
143 	[MEM_RDDR]	= "Registered Double data rate SDRAM",
144 	[MEM_RMBS]	= "Rambus DRAM",
145 	[MEM_DDR2]	= "Unbuffered DDR2 RAM",
146 	[MEM_FB_DDR2]	= "Fully buffered DDR2",
147 	[MEM_RDDR2]	= "Registered DDR2 RAM",
148 	[MEM_XDR]	= "Rambus XDR",
149 	[MEM_DDR3]	= "Unbuffered DDR3 RAM",
150 	[MEM_RDDR3]	= "Registered DDR3 RAM",
151 	[MEM_LRDDR3]	= "Load-Reduced DDR3 RAM",
152 	[MEM_DDR4]	= "Unbuffered DDR4 RAM",
153 	[MEM_RDDR4]	= "Registered DDR4 RAM",
154 };
155 EXPORT_SYMBOL_GPL(edac_mem_types);
156 
157 /**
158  * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
159  * @p:		pointer to a pointer with the memory offset to be used. At
160  *		return, this will be incremented to point to the next offset
161  * @size:	Size of the data structure to be reserved
162  * @n_elems:	Number of elements that should be reserved
163  *
164  * If 'size' is a constant, the compiler will optimize this whole function
165  * down to either a no-op or the addition of a constant to the value of '*p'.
166  *
167  * The 'p' pointer is absolutely needed to keep the proper advancing
168  * further in memory to the proper offsets when allocating the struct along
169  * with its embedded structs, as edac_device_alloc_ctl_info() does it
170  * above, for example.
171  *
172  * At return, the pointer 'p' will be incremented to be used on a next call
173  * to this function.
174  */
175 void *edac_align_ptr(void **p, unsigned size, int n_elems)
176 {
177 	unsigned align, r;
178 	void *ptr = *p;
179 
180 	*p += size * n_elems;
181 
182 	/*
183 	 * 'p' can possibly be an unaligned item X such that sizeof(X) is
184 	 * 'size'.  Adjust 'p' so that its alignment is at least as
185 	 * stringent as what the compiler would provide for X and return
186 	 * the aligned result.
187 	 * Here we assume that the alignment of a "long long" is the most
188 	 * stringent alignment that the compiler will ever provide by default.
189 	 * As far as I know, this is a reasonable assumption.
190 	 */
191 	if (size > sizeof(long))
192 		align = sizeof(long long);
193 	else if (size > sizeof(int))
194 		align = sizeof(long);
195 	else if (size > sizeof(short))
196 		align = sizeof(int);
197 	else if (size > sizeof(char))
198 		align = sizeof(short);
199 	else
200 		return (char *)ptr;
201 
202 	r = (unsigned long)p % align;
203 
204 	if (r == 0)
205 		return (char *)ptr;
206 
207 	*p += align - r;
208 
209 	return (void *)(((unsigned long)ptr) + align - r);
210 }
211 
212 static void _edac_mc_free(struct mem_ctl_info *mci)
213 {
214 	int i, chn, row;
215 	struct csrow_info *csr;
216 	const unsigned int tot_dimms = mci->tot_dimms;
217 	const unsigned int tot_channels = mci->num_cschannel;
218 	const unsigned int tot_csrows = mci->nr_csrows;
219 
220 	if (mci->dimms) {
221 		for (i = 0; i < tot_dimms; i++)
222 			kfree(mci->dimms[i]);
223 		kfree(mci->dimms);
224 	}
225 	if (mci->csrows) {
226 		for (row = 0; row < tot_csrows; row++) {
227 			csr = mci->csrows[row];
228 			if (csr) {
229 				if (csr->channels) {
230 					for (chn = 0; chn < tot_channels; chn++)
231 						kfree(csr->channels[chn]);
232 					kfree(csr->channels);
233 				}
234 				kfree(csr);
235 			}
236 		}
237 		kfree(mci->csrows);
238 	}
239 	kfree(mci);
240 }
241 
242 struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
243 				   unsigned n_layers,
244 				   struct edac_mc_layer *layers,
245 				   unsigned sz_pvt)
246 {
247 	struct mem_ctl_info *mci;
248 	struct edac_mc_layer *layer;
249 	struct csrow_info *csr;
250 	struct rank_info *chan;
251 	struct dimm_info *dimm;
252 	u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
253 	unsigned pos[EDAC_MAX_LAYERS];
254 	unsigned size, tot_dimms = 1, count = 1;
255 	unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
256 	void *pvt, *p, *ptr = NULL;
257 	int i, j, row, chn, n, len, off;
258 	bool per_rank = false;
259 
260 	BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
261 	/*
262 	 * Calculate the total amount of dimms and csrows/cschannels while
263 	 * in the old API emulation mode
264 	 */
265 	for (i = 0; i < n_layers; i++) {
266 		tot_dimms *= layers[i].size;
267 		if (layers[i].is_virt_csrow)
268 			tot_csrows *= layers[i].size;
269 		else
270 			tot_channels *= layers[i].size;
271 
272 		if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
273 			per_rank = true;
274 	}
275 
276 	/* Figure out the offsets of the various items from the start of an mc
277 	 * structure.  We want the alignment of each item to be at least as
278 	 * stringent as what the compiler would provide if we could simply
279 	 * hardcode everything into a single struct.
280 	 */
281 	mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
282 	layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
283 	for (i = 0; i < n_layers; i++) {
284 		count *= layers[i].size;
285 		edac_dbg(4, "errcount layer %d size %d\n", i, count);
286 		ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
287 		ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
288 		tot_errcount += 2 * count;
289 	}
290 
291 	edac_dbg(4, "allocating %d error counters\n", tot_errcount);
292 	pvt = edac_align_ptr(&ptr, sz_pvt, 1);
293 	size = ((unsigned long)pvt) + sz_pvt;
294 
295 	edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
296 		 size,
297 		 tot_dimms,
298 		 per_rank ? "ranks" : "dimms",
299 		 tot_csrows * tot_channels);
300 
301 	mci = kzalloc(size, GFP_KERNEL);
302 	if (mci == NULL)
303 		return NULL;
304 
305 	/* Adjust pointers so they point within the memory we just allocated
306 	 * rather than an imaginary chunk of memory located at address 0.
307 	 */
308 	layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
309 	for (i = 0; i < n_layers; i++) {
310 		mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
311 		mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
312 	}
313 	pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
314 
315 	/* setup index and various internal pointers */
316 	mci->mc_idx = mc_num;
317 	mci->tot_dimms = tot_dimms;
318 	mci->pvt_info = pvt;
319 	mci->n_layers = n_layers;
320 	mci->layers = layer;
321 	memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
322 	mci->nr_csrows = tot_csrows;
323 	mci->num_cschannel = tot_channels;
324 	mci->csbased = per_rank;
325 
326 	/*
327 	 * Alocate and fill the csrow/channels structs
328 	 */
329 	mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
330 	if (!mci->csrows)
331 		goto error;
332 	for (row = 0; row < tot_csrows; row++) {
333 		csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
334 		if (!csr)
335 			goto error;
336 		mci->csrows[row] = csr;
337 		csr->csrow_idx = row;
338 		csr->mci = mci;
339 		csr->nr_channels = tot_channels;
340 		csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
341 					GFP_KERNEL);
342 		if (!csr->channels)
343 			goto error;
344 
345 		for (chn = 0; chn < tot_channels; chn++) {
346 			chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
347 			if (!chan)
348 				goto error;
349 			csr->channels[chn] = chan;
350 			chan->chan_idx = chn;
351 			chan->csrow = csr;
352 		}
353 	}
354 
355 	/*
356 	 * Allocate and fill the dimm structs
357 	 */
358 	mci->dimms  = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
359 	if (!mci->dimms)
360 		goto error;
361 
362 	memset(&pos, 0, sizeof(pos));
363 	row = 0;
364 	chn = 0;
365 	for (i = 0; i < tot_dimms; i++) {
366 		chan = mci->csrows[row]->channels[chn];
367 		off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
368 		if (off < 0 || off >= tot_dimms) {
369 			edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
370 			goto error;
371 		}
372 
373 		dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
374 		if (!dimm)
375 			goto error;
376 		mci->dimms[off] = dimm;
377 		dimm->mci = mci;
378 
379 		/*
380 		 * Copy DIMM location and initialize it.
381 		 */
382 		len = sizeof(dimm->label);
383 		p = dimm->label;
384 		n = snprintf(p, len, "mc#%u", mc_num);
385 		p += n;
386 		len -= n;
387 		for (j = 0; j < n_layers; j++) {
388 			n = snprintf(p, len, "%s#%u",
389 				     edac_layer_name[layers[j].type],
390 				     pos[j]);
391 			p += n;
392 			len -= n;
393 			dimm->location[j] = pos[j];
394 
395 			if (len <= 0)
396 				break;
397 		}
398 
399 		/* Link it to the csrows old API data */
400 		chan->dimm = dimm;
401 		dimm->csrow = row;
402 		dimm->cschannel = chn;
403 
404 		/* Increment csrow location */
405 		if (layers[0].is_virt_csrow) {
406 			chn++;
407 			if (chn == tot_channels) {
408 				chn = 0;
409 				row++;
410 			}
411 		} else {
412 			row++;
413 			if (row == tot_csrows) {
414 				row = 0;
415 				chn++;
416 			}
417 		}
418 
419 		/* Increment dimm location */
420 		for (j = n_layers - 1; j >= 0; j--) {
421 			pos[j]++;
422 			if (pos[j] < layers[j].size)
423 				break;
424 			pos[j] = 0;
425 		}
426 	}
427 
428 	mci->op_state = OP_ALLOC;
429 
430 	return mci;
431 
432 error:
433 	_edac_mc_free(mci);
434 
435 	return NULL;
436 }
437 EXPORT_SYMBOL_GPL(edac_mc_alloc);
438 
439 void edac_mc_free(struct mem_ctl_info *mci)
440 {
441 	edac_dbg(1, "\n");
442 
443 	/* If we're not yet registered with sysfs free only what was allocated
444 	 * in edac_mc_alloc().
445 	 */
446 	if (!device_is_registered(&mci->dev)) {
447 		_edac_mc_free(mci);
448 		return;
449 	}
450 
451 	/* the mci instance is freed here, when the sysfs object is dropped */
452 	edac_unregister_sysfs(mci);
453 }
454 EXPORT_SYMBOL_GPL(edac_mc_free);
455 
456 /* Caller must hold mem_ctls_mutex */
457 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
458 {
459 	struct mem_ctl_info *mci;
460 	struct list_head *item;
461 
462 	edac_dbg(3, "\n");
463 
464 	list_for_each(item, &mc_devices) {
465 		mci = list_entry(item, struct mem_ctl_info, link);
466 
467 		if (mci->pdev == dev)
468 			return mci;
469 	}
470 
471 	return NULL;
472 }
473 
474 /**
475  * find_mci_by_dev
476  *
477  *	scan list of controllers looking for the one that manages
478  *	the 'dev' device
479  * @dev: pointer to a struct device related with the MCI
480  */
481 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
482 {
483 	struct mem_ctl_info *ret;
484 
485 	mutex_lock(&mem_ctls_mutex);
486 	ret = __find_mci_by_dev(dev);
487 	mutex_unlock(&mem_ctls_mutex);
488 
489 	return ret;
490 }
491 EXPORT_SYMBOL_GPL(find_mci_by_dev);
492 
493 /*
494  * handler for EDAC to check if NMI type handler has asserted interrupt
495  */
496 static int edac_mc_assert_error_check_and_clear(void)
497 {
498 	int old_state;
499 
500 	if (edac_op_state == EDAC_OPSTATE_POLL)
501 		return 1;
502 
503 	old_state = edac_err_assert;
504 	edac_err_assert = 0;
505 
506 	return old_state;
507 }
508 
509 /*
510  * edac_mc_workq_function
511  *	performs the operation scheduled by a workq request
512  */
513 static void edac_mc_workq_function(struct work_struct *work_req)
514 {
515 	struct delayed_work *d_work = to_delayed_work(work_req);
516 	struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
517 
518 	mutex_lock(&mem_ctls_mutex);
519 
520 	if (mci->op_state != OP_RUNNING_POLL) {
521 		mutex_unlock(&mem_ctls_mutex);
522 		return;
523 	}
524 
525 	if (edac_mc_assert_error_check_and_clear())
526 		mci->edac_check(mci);
527 
528 	mutex_unlock(&mem_ctls_mutex);
529 
530 	/* Queue ourselves again. */
531 	edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
532 }
533 
534 /*
535  * edac_mc_reset_delay_period(unsigned long value)
536  *
537  *	user space has updated our poll period value, need to
538  *	reset our workq delays
539  */
540 void edac_mc_reset_delay_period(unsigned long value)
541 {
542 	struct mem_ctl_info *mci;
543 	struct list_head *item;
544 
545 	mutex_lock(&mem_ctls_mutex);
546 
547 	list_for_each(item, &mc_devices) {
548 		mci = list_entry(item, struct mem_ctl_info, link);
549 
550 		if (mci->op_state == OP_RUNNING_POLL)
551 			edac_mod_work(&mci->work, value);
552 	}
553 	mutex_unlock(&mem_ctls_mutex);
554 }
555 
556 
557 
558 /* Return 0 on success, 1 on failure.
559  * Before calling this function, caller must
560  * assign a unique value to mci->mc_idx.
561  *
562  *	locking model:
563  *
564  *		called with the mem_ctls_mutex lock held
565  */
566 static int add_mc_to_global_list(struct mem_ctl_info *mci)
567 {
568 	struct list_head *item, *insert_before;
569 	struct mem_ctl_info *p;
570 
571 	insert_before = &mc_devices;
572 
573 	p = __find_mci_by_dev(mci->pdev);
574 	if (unlikely(p != NULL))
575 		goto fail0;
576 
577 	list_for_each(item, &mc_devices) {
578 		p = list_entry(item, struct mem_ctl_info, link);
579 
580 		if (p->mc_idx >= mci->mc_idx) {
581 			if (unlikely(p->mc_idx == mci->mc_idx))
582 				goto fail1;
583 
584 			insert_before = item;
585 			break;
586 		}
587 	}
588 
589 	list_add_tail_rcu(&mci->link, insert_before);
590 	atomic_inc(&edac_handlers);
591 	return 0;
592 
593 fail0:
594 	edac_printk(KERN_WARNING, EDAC_MC,
595 		"%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
596 		edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
597 	return 1;
598 
599 fail1:
600 	edac_printk(KERN_WARNING, EDAC_MC,
601 		"bug in low-level driver: attempt to assign\n"
602 		"    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
603 	return 1;
604 }
605 
606 static int del_mc_from_global_list(struct mem_ctl_info *mci)
607 {
608 	int handlers = atomic_dec_return(&edac_handlers);
609 	list_del_rcu(&mci->link);
610 
611 	/* these are for safe removal of devices from global list while
612 	 * NMI handlers may be traversing list
613 	 */
614 	synchronize_rcu();
615 	INIT_LIST_HEAD(&mci->link);
616 
617 	return handlers;
618 }
619 
620 struct mem_ctl_info *edac_mc_find(int idx)
621 {
622 	struct mem_ctl_info *mci = NULL;
623 	struct list_head *item;
624 
625 	mutex_lock(&mem_ctls_mutex);
626 
627 	list_for_each(item, &mc_devices) {
628 		mci = list_entry(item, struct mem_ctl_info, link);
629 
630 		if (mci->mc_idx >= idx) {
631 			if (mci->mc_idx == idx) {
632 				goto unlock;
633 			}
634 			break;
635 		}
636 	}
637 
638 unlock:
639 	mutex_unlock(&mem_ctls_mutex);
640 	return mci;
641 }
642 EXPORT_SYMBOL(edac_mc_find);
643 
644 
645 /* FIXME - should a warning be printed if no error detection? correction? */
646 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
647 			       const struct attribute_group **groups)
648 {
649 	int ret = -EINVAL;
650 	edac_dbg(0, "\n");
651 
652 	if (mci->mc_idx >= EDAC_MAX_MCS) {
653 		pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx);
654 		return -ENODEV;
655 	}
656 
657 #ifdef CONFIG_EDAC_DEBUG
658 	if (edac_debug_level >= 3)
659 		edac_mc_dump_mci(mci);
660 
661 	if (edac_debug_level >= 4) {
662 		int i;
663 
664 		for (i = 0; i < mci->nr_csrows; i++) {
665 			struct csrow_info *csrow = mci->csrows[i];
666 			u32 nr_pages = 0;
667 			int j;
668 
669 			for (j = 0; j < csrow->nr_channels; j++)
670 				nr_pages += csrow->channels[j]->dimm->nr_pages;
671 			if (!nr_pages)
672 				continue;
673 			edac_mc_dump_csrow(csrow);
674 			for (j = 0; j < csrow->nr_channels; j++)
675 				if (csrow->channels[j]->dimm->nr_pages)
676 					edac_mc_dump_channel(csrow->channels[j]);
677 		}
678 		for (i = 0; i < mci->tot_dimms; i++)
679 			if (mci->dimms[i]->nr_pages)
680 				edac_mc_dump_dimm(mci->dimms[i], i);
681 	}
682 #endif
683 	mutex_lock(&mem_ctls_mutex);
684 
685 	if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
686 		ret = -EPERM;
687 		goto fail0;
688 	}
689 
690 	if (add_mc_to_global_list(mci))
691 		goto fail0;
692 
693 	/* set load time so that error rate can be tracked */
694 	mci->start_time = jiffies;
695 
696 	mci->bus = &mc_bus[mci->mc_idx];
697 
698 	if (edac_create_sysfs_mci_device(mci, groups)) {
699 		edac_mc_printk(mci, KERN_WARNING,
700 			"failed to create sysfs device\n");
701 		goto fail1;
702 	}
703 
704 	if (mci->edac_check) {
705 		mci->op_state = OP_RUNNING_POLL;
706 
707 		INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
708 		edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
709 
710 	} else {
711 		mci->op_state = OP_RUNNING_INTERRUPT;
712 	}
713 
714 	/* Report action taken */
715 	edac_mc_printk(mci, KERN_INFO,
716 		"Giving out device to module %s controller %s: DEV %s (%s)\n",
717 		mci->mod_name, mci->ctl_name, mci->dev_name,
718 		edac_op_state_to_string(mci->op_state));
719 
720 	edac_mc_owner = mci->mod_name;
721 
722 	mutex_unlock(&mem_ctls_mutex);
723 	return 0;
724 
725 fail1:
726 	del_mc_from_global_list(mci);
727 
728 fail0:
729 	mutex_unlock(&mem_ctls_mutex);
730 	return ret;
731 }
732 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
733 
734 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
735 {
736 	struct mem_ctl_info *mci;
737 
738 	edac_dbg(0, "\n");
739 
740 	mutex_lock(&mem_ctls_mutex);
741 
742 	/* find the requested mci struct in the global list */
743 	mci = __find_mci_by_dev(dev);
744 	if (mci == NULL) {
745 		mutex_unlock(&mem_ctls_mutex);
746 		return NULL;
747 	}
748 
749 	/* mark MCI offline: */
750 	mci->op_state = OP_OFFLINE;
751 
752 	if (!del_mc_from_global_list(mci))
753 		edac_mc_owner = NULL;
754 
755 	mutex_unlock(&mem_ctls_mutex);
756 
757 	if (mci->edac_check)
758 		edac_stop_work(&mci->work);
759 
760 	/* remove from sysfs */
761 	edac_remove_sysfs_mci_device(mci);
762 
763 	edac_printk(KERN_INFO, EDAC_MC,
764 		"Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
765 		mci->mod_name, mci->ctl_name, edac_dev_name(mci));
766 
767 	return mci;
768 }
769 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
770 
771 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
772 				u32 size)
773 {
774 	struct page *pg;
775 	void *virt_addr;
776 	unsigned long flags = 0;
777 
778 	edac_dbg(3, "\n");
779 
780 	/* ECC error page was not in our memory. Ignore it. */
781 	if (!pfn_valid(page))
782 		return;
783 
784 	/* Find the actual page structure then map it and fix */
785 	pg = pfn_to_page(page);
786 
787 	if (PageHighMem(pg))
788 		local_irq_save(flags);
789 
790 	virt_addr = kmap_atomic(pg);
791 
792 	/* Perform architecture specific atomic scrub operation */
793 	edac_atomic_scrub(virt_addr + offset, size);
794 
795 	/* Unmap and complete */
796 	kunmap_atomic(virt_addr);
797 
798 	if (PageHighMem(pg))
799 		local_irq_restore(flags);
800 }
801 
802 /* FIXME - should return -1 */
803 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
804 {
805 	struct csrow_info **csrows = mci->csrows;
806 	int row, i, j, n;
807 
808 	edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
809 	row = -1;
810 
811 	for (i = 0; i < mci->nr_csrows; i++) {
812 		struct csrow_info *csrow = csrows[i];
813 		n = 0;
814 		for (j = 0; j < csrow->nr_channels; j++) {
815 			struct dimm_info *dimm = csrow->channels[j]->dimm;
816 			n += dimm->nr_pages;
817 		}
818 		if (n == 0)
819 			continue;
820 
821 		edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
822 			 mci->mc_idx,
823 			 csrow->first_page, page, csrow->last_page,
824 			 csrow->page_mask);
825 
826 		if ((page >= csrow->first_page) &&
827 		    (page <= csrow->last_page) &&
828 		    ((page & csrow->page_mask) ==
829 		     (csrow->first_page & csrow->page_mask))) {
830 			row = i;
831 			break;
832 		}
833 	}
834 
835 	if (row == -1)
836 		edac_mc_printk(mci, KERN_ERR,
837 			"could not look up page error address %lx\n",
838 			(unsigned long)page);
839 
840 	return row;
841 }
842 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
843 
844 const char *edac_layer_name[] = {
845 	[EDAC_MC_LAYER_BRANCH] = "branch",
846 	[EDAC_MC_LAYER_CHANNEL] = "channel",
847 	[EDAC_MC_LAYER_SLOT] = "slot",
848 	[EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
849 	[EDAC_MC_LAYER_ALL_MEM] = "memory",
850 };
851 EXPORT_SYMBOL_GPL(edac_layer_name);
852 
853 static void edac_inc_ce_error(struct mem_ctl_info *mci,
854 			      bool enable_per_layer_report,
855 			      const int pos[EDAC_MAX_LAYERS],
856 			      const u16 count)
857 {
858 	int i, index = 0;
859 
860 	mci->ce_mc += count;
861 
862 	if (!enable_per_layer_report) {
863 		mci->ce_noinfo_count += count;
864 		return;
865 	}
866 
867 	for (i = 0; i < mci->n_layers; i++) {
868 		if (pos[i] < 0)
869 			break;
870 		index += pos[i];
871 		mci->ce_per_layer[i][index] += count;
872 
873 		if (i < mci->n_layers - 1)
874 			index *= mci->layers[i + 1].size;
875 	}
876 }
877 
878 static void edac_inc_ue_error(struct mem_ctl_info *mci,
879 				    bool enable_per_layer_report,
880 				    const int pos[EDAC_MAX_LAYERS],
881 				    const u16 count)
882 {
883 	int i, index = 0;
884 
885 	mci->ue_mc += count;
886 
887 	if (!enable_per_layer_report) {
888 		mci->ue_noinfo_count += count;
889 		return;
890 	}
891 
892 	for (i = 0; i < mci->n_layers; i++) {
893 		if (pos[i] < 0)
894 			break;
895 		index += pos[i];
896 		mci->ue_per_layer[i][index] += count;
897 
898 		if (i < mci->n_layers - 1)
899 			index *= mci->layers[i + 1].size;
900 	}
901 }
902 
903 static void edac_ce_error(struct mem_ctl_info *mci,
904 			  const u16 error_count,
905 			  const int pos[EDAC_MAX_LAYERS],
906 			  const char *msg,
907 			  const char *location,
908 			  const char *label,
909 			  const char *detail,
910 			  const char *other_detail,
911 			  const bool enable_per_layer_report,
912 			  const unsigned long page_frame_number,
913 			  const unsigned long offset_in_page,
914 			  long grain)
915 {
916 	unsigned long remapped_page;
917 	char *msg_aux = "";
918 
919 	if (*msg)
920 		msg_aux = " ";
921 
922 	if (edac_mc_get_log_ce()) {
923 		if (other_detail && *other_detail)
924 			edac_mc_printk(mci, KERN_WARNING,
925 				       "%d CE %s%son %s (%s %s - %s)\n",
926 				       error_count, msg, msg_aux, label,
927 				       location, detail, other_detail);
928 		else
929 			edac_mc_printk(mci, KERN_WARNING,
930 				       "%d CE %s%son %s (%s %s)\n",
931 				       error_count, msg, msg_aux, label,
932 				       location, detail);
933 	}
934 	edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
935 
936 	if (mci->scrub_mode == SCRUB_SW_SRC) {
937 		/*
938 			* Some memory controllers (called MCs below) can remap
939 			* memory so that it is still available at a different
940 			* address when PCI devices map into memory.
941 			* MC's that can't do this, lose the memory where PCI
942 			* devices are mapped. This mapping is MC-dependent
943 			* and so we call back into the MC driver for it to
944 			* map the MC page to a physical (CPU) page which can
945 			* then be mapped to a virtual page - which can then
946 			* be scrubbed.
947 			*/
948 		remapped_page = mci->ctl_page_to_phys ?
949 			mci->ctl_page_to_phys(mci, page_frame_number) :
950 			page_frame_number;
951 
952 		edac_mc_scrub_block(remapped_page,
953 					offset_in_page, grain);
954 	}
955 }
956 
957 static void edac_ue_error(struct mem_ctl_info *mci,
958 			  const u16 error_count,
959 			  const int pos[EDAC_MAX_LAYERS],
960 			  const char *msg,
961 			  const char *location,
962 			  const char *label,
963 			  const char *detail,
964 			  const char *other_detail,
965 			  const bool enable_per_layer_report)
966 {
967 	char *msg_aux = "";
968 
969 	if (*msg)
970 		msg_aux = " ";
971 
972 	if (edac_mc_get_log_ue()) {
973 		if (other_detail && *other_detail)
974 			edac_mc_printk(mci, KERN_WARNING,
975 				       "%d UE %s%son %s (%s %s - %s)\n",
976 				       error_count, msg, msg_aux, label,
977 				       location, detail, other_detail);
978 		else
979 			edac_mc_printk(mci, KERN_WARNING,
980 				       "%d UE %s%son %s (%s %s)\n",
981 				       error_count, msg, msg_aux, label,
982 				       location, detail);
983 	}
984 
985 	if (edac_mc_get_panic_on_ue()) {
986 		if (other_detail && *other_detail)
987 			panic("UE %s%son %s (%s%s - %s)\n",
988 			      msg, msg_aux, label, location, detail, other_detail);
989 		else
990 			panic("UE %s%son %s (%s%s)\n",
991 			      msg, msg_aux, label, location, detail);
992 	}
993 
994 	edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
995 }
996 
997 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
998 			      struct mem_ctl_info *mci,
999 			      struct edac_raw_error_desc *e)
1000 {
1001 	char detail[80];
1002 	int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
1003 
1004 	/* Memory type dependent details about the error */
1005 	if (type == HW_EVENT_ERR_CORRECTED) {
1006 		snprintf(detail, sizeof(detail),
1007 			"page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1008 			e->page_frame_number, e->offset_in_page,
1009 			e->grain, e->syndrome);
1010 		edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1011 			      detail, e->other_detail, e->enable_per_layer_report,
1012 			      e->page_frame_number, e->offset_in_page, e->grain);
1013 	} else {
1014 		snprintf(detail, sizeof(detail),
1015 			"page:0x%lx offset:0x%lx grain:%ld",
1016 			e->page_frame_number, e->offset_in_page, e->grain);
1017 
1018 		edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1019 			      detail, e->other_detail, e->enable_per_layer_report);
1020 	}
1021 
1022 
1023 }
1024 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1025 
1026 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1027 			  struct mem_ctl_info *mci,
1028 			  const u16 error_count,
1029 			  const unsigned long page_frame_number,
1030 			  const unsigned long offset_in_page,
1031 			  const unsigned long syndrome,
1032 			  const int top_layer,
1033 			  const int mid_layer,
1034 			  const int low_layer,
1035 			  const char *msg,
1036 			  const char *other_detail)
1037 {
1038 	char *p;
1039 	int row = -1, chan = -1;
1040 	int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1041 	int i, n_labels = 0;
1042 	u8 grain_bits;
1043 	struct edac_raw_error_desc *e = &mci->error_desc;
1044 
1045 	edac_dbg(3, "MC%d\n", mci->mc_idx);
1046 
1047 	/* Fills the error report buffer */
1048 	memset(e, 0, sizeof (*e));
1049 	e->error_count = error_count;
1050 	e->top_layer = top_layer;
1051 	e->mid_layer = mid_layer;
1052 	e->low_layer = low_layer;
1053 	e->page_frame_number = page_frame_number;
1054 	e->offset_in_page = offset_in_page;
1055 	e->syndrome = syndrome;
1056 	e->msg = msg;
1057 	e->other_detail = other_detail;
1058 
1059 	/*
1060 	 * Check if the event report is consistent and if the memory
1061 	 * location is known. If it is known, enable_per_layer_report will be
1062 	 * true, the DIMM(s) label info will be filled and the per-layer
1063 	 * error counters will be incremented.
1064 	 */
1065 	for (i = 0; i < mci->n_layers; i++) {
1066 		if (pos[i] >= (int)mci->layers[i].size) {
1067 
1068 			edac_mc_printk(mci, KERN_ERR,
1069 				       "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1070 				       edac_layer_name[mci->layers[i].type],
1071 				       pos[i], mci->layers[i].size);
1072 			/*
1073 			 * Instead of just returning it, let's use what's
1074 			 * known about the error. The increment routines and
1075 			 * the DIMM filter logic will do the right thing by
1076 			 * pointing the likely damaged DIMMs.
1077 			 */
1078 			pos[i] = -1;
1079 		}
1080 		if (pos[i] >= 0)
1081 			e->enable_per_layer_report = true;
1082 	}
1083 
1084 	/*
1085 	 * Get the dimm label/grain that applies to the match criteria.
1086 	 * As the error algorithm may not be able to point to just one memory
1087 	 * stick, the logic here will get all possible labels that could
1088 	 * pottentially be affected by the error.
1089 	 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1090 	 * to have only the MC channel and the MC dimm (also called "branch")
1091 	 * but the channel is not known, as the memory is arranged in pairs,
1092 	 * where each memory belongs to a separate channel within the same
1093 	 * branch.
1094 	 */
1095 	p = e->label;
1096 	*p = '\0';
1097 
1098 	for (i = 0; i < mci->tot_dimms; i++) {
1099 		struct dimm_info *dimm = mci->dimms[i];
1100 
1101 		if (top_layer >= 0 && top_layer != dimm->location[0])
1102 			continue;
1103 		if (mid_layer >= 0 && mid_layer != dimm->location[1])
1104 			continue;
1105 		if (low_layer >= 0 && low_layer != dimm->location[2])
1106 			continue;
1107 
1108 		/* get the max grain, over the error match range */
1109 		if (dimm->grain > e->grain)
1110 			e->grain = dimm->grain;
1111 
1112 		/*
1113 		 * If the error is memory-controller wide, there's no need to
1114 		 * seek for the affected DIMMs because the whole
1115 		 * channel/memory controller/...  may be affected.
1116 		 * Also, don't show errors for empty DIMM slots.
1117 		 */
1118 		if (e->enable_per_layer_report && dimm->nr_pages) {
1119 			if (n_labels >= EDAC_MAX_LABELS) {
1120 				e->enable_per_layer_report = false;
1121 				break;
1122 			}
1123 			n_labels++;
1124 			if (p != e->label) {
1125 				strcpy(p, OTHER_LABEL);
1126 				p += strlen(OTHER_LABEL);
1127 			}
1128 			strcpy(p, dimm->label);
1129 			p += strlen(p);
1130 			*p = '\0';
1131 
1132 			/*
1133 			 * get csrow/channel of the DIMM, in order to allow
1134 			 * incrementing the compat API counters
1135 			 */
1136 			edac_dbg(4, "%s csrows map: (%d,%d)\n",
1137 				 mci->csbased ? "rank" : "dimm",
1138 				 dimm->csrow, dimm->cschannel);
1139 			if (row == -1)
1140 				row = dimm->csrow;
1141 			else if (row >= 0 && row != dimm->csrow)
1142 				row = -2;
1143 
1144 			if (chan == -1)
1145 				chan = dimm->cschannel;
1146 			else if (chan >= 0 && chan != dimm->cschannel)
1147 				chan = -2;
1148 		}
1149 	}
1150 
1151 	if (!e->enable_per_layer_report) {
1152 		strcpy(e->label, "any memory");
1153 	} else {
1154 		edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
1155 		if (p == e->label)
1156 			strcpy(e->label, "unknown memory");
1157 		if (type == HW_EVENT_ERR_CORRECTED) {
1158 			if (row >= 0) {
1159 				mci->csrows[row]->ce_count += error_count;
1160 				if (chan >= 0)
1161 					mci->csrows[row]->channels[chan]->ce_count += error_count;
1162 			}
1163 		} else
1164 			if (row >= 0)
1165 				mci->csrows[row]->ue_count += error_count;
1166 	}
1167 
1168 	/* Fill the RAM location data */
1169 	p = e->location;
1170 
1171 	for (i = 0; i < mci->n_layers; i++) {
1172 		if (pos[i] < 0)
1173 			continue;
1174 
1175 		p += sprintf(p, "%s:%d ",
1176 			     edac_layer_name[mci->layers[i].type],
1177 			     pos[i]);
1178 	}
1179 	if (p > e->location)
1180 		*(p - 1) = '\0';
1181 
1182 	/* Report the error via the trace interface */
1183 	grain_bits = fls_long(e->grain) + 1;
1184 	trace_mc_event(type, e->msg, e->label, e->error_count,
1185 		       mci->mc_idx, e->top_layer, e->mid_layer, e->low_layer,
1186 		       (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
1187 		       grain_bits, e->syndrome, e->other_detail);
1188 
1189 	edac_raw_mc_handle_error(type, mci, e);
1190 }
1191 EXPORT_SYMBOL_GPL(edac_mc_handle_error);
1192