xref: /openbmc/linux/drivers/edac/edac_mc.c (revision 6c33a6f4)
1 /*
2  * edac_mc kernel module
3  * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Thayne Harbaugh
8  * Based on work by Dan Hollis <goemon at anime dot net> and others.
9  *	http://www.anime.net/~goemon/linux-ecc/
10  *
11  * Modified by Dave Peterson and Doug Thompson
12  *
13  */
14 
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <linux/uaccess.h>
32 #include <asm/page.h>
33 #include "edac_mc.h"
34 #include "edac_module.h"
35 #include <ras/ras_event.h>
36 
37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB
38 #include <asm/edac.h>
39 #else
40 #define edac_atomic_scrub(va, size) do { } while (0)
41 #endif
42 
43 int edac_op_state = EDAC_OPSTATE_INVAL;
44 EXPORT_SYMBOL_GPL(edac_op_state);
45 
46 static int edac_report = EDAC_REPORTING_ENABLED;
47 
48 /* lock to memory controller's control array */
49 static DEFINE_MUTEX(mem_ctls_mutex);
50 static LIST_HEAD(mc_devices);
51 
52 /*
53  * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
54  *	apei/ghes and i7core_edac to be used at the same time.
55  */
56 static const char *edac_mc_owner;
57 
58 int edac_get_report_status(void)
59 {
60 	return edac_report;
61 }
62 EXPORT_SYMBOL_GPL(edac_get_report_status);
63 
64 void edac_set_report_status(int new)
65 {
66 	if (new == EDAC_REPORTING_ENABLED ||
67 	    new == EDAC_REPORTING_DISABLED ||
68 	    new == EDAC_REPORTING_FORCE)
69 		edac_report = new;
70 }
71 EXPORT_SYMBOL_GPL(edac_set_report_status);
72 
73 static int edac_report_set(const char *str, const struct kernel_param *kp)
74 {
75 	if (!str)
76 		return -EINVAL;
77 
78 	if (!strncmp(str, "on", 2))
79 		edac_report = EDAC_REPORTING_ENABLED;
80 	else if (!strncmp(str, "off", 3))
81 		edac_report = EDAC_REPORTING_DISABLED;
82 	else if (!strncmp(str, "force", 5))
83 		edac_report = EDAC_REPORTING_FORCE;
84 
85 	return 0;
86 }
87 
88 static int edac_report_get(char *buffer, const struct kernel_param *kp)
89 {
90 	int ret = 0;
91 
92 	switch (edac_report) {
93 	case EDAC_REPORTING_ENABLED:
94 		ret = sprintf(buffer, "on");
95 		break;
96 	case EDAC_REPORTING_DISABLED:
97 		ret = sprintf(buffer, "off");
98 		break;
99 	case EDAC_REPORTING_FORCE:
100 		ret = sprintf(buffer, "force");
101 		break;
102 	default:
103 		ret = -EINVAL;
104 		break;
105 	}
106 
107 	return ret;
108 }
109 
110 static const struct kernel_param_ops edac_report_ops = {
111 	.set = edac_report_set,
112 	.get = edac_report_get,
113 };
114 
115 module_param_cb(edac_report, &edac_report_ops, &edac_report, 0644);
116 
117 unsigned int edac_dimm_info_location(struct dimm_info *dimm, char *buf,
118 				     unsigned int len)
119 {
120 	struct mem_ctl_info *mci = dimm->mci;
121 	int i, n, count = 0;
122 	char *p = buf;
123 
124 	for (i = 0; i < mci->n_layers; i++) {
125 		n = snprintf(p, len, "%s %d ",
126 			      edac_layer_name[mci->layers[i].type],
127 			      dimm->location[i]);
128 		p += n;
129 		len -= n;
130 		count += n;
131 		if (!len)
132 			break;
133 	}
134 
135 	return count;
136 }
137 
138 #ifdef CONFIG_EDAC_DEBUG
139 
140 static void edac_mc_dump_channel(struct rank_info *chan)
141 {
142 	edac_dbg(4, "  channel->chan_idx = %d\n", chan->chan_idx);
143 	edac_dbg(4, "    channel = %p\n", chan);
144 	edac_dbg(4, "    channel->csrow = %p\n", chan->csrow);
145 	edac_dbg(4, "    channel->dimm = %p\n", chan->dimm);
146 }
147 
148 static void edac_mc_dump_dimm(struct dimm_info *dimm)
149 {
150 	char location[80];
151 
152 	if (!dimm->nr_pages)
153 		return;
154 
155 	edac_dimm_info_location(dimm, location, sizeof(location));
156 
157 	edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
158 		 dimm->mci->csbased ? "rank" : "dimm",
159 		 dimm->idx, location, dimm->csrow, dimm->cschannel);
160 	edac_dbg(4, "  dimm = %p\n", dimm);
161 	edac_dbg(4, "  dimm->label = '%s'\n", dimm->label);
162 	edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
163 	edac_dbg(4, "  dimm->grain = %d\n", dimm->grain);
164 	edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
165 }
166 
167 static void edac_mc_dump_csrow(struct csrow_info *csrow)
168 {
169 	edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
170 	edac_dbg(4, "  csrow = %p\n", csrow);
171 	edac_dbg(4, "  csrow->first_page = 0x%lx\n", csrow->first_page);
172 	edac_dbg(4, "  csrow->last_page = 0x%lx\n", csrow->last_page);
173 	edac_dbg(4, "  csrow->page_mask = 0x%lx\n", csrow->page_mask);
174 	edac_dbg(4, "  csrow->nr_channels = %d\n", csrow->nr_channels);
175 	edac_dbg(4, "  csrow->channels = %p\n", csrow->channels);
176 	edac_dbg(4, "  csrow->mci = %p\n", csrow->mci);
177 }
178 
179 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
180 {
181 	edac_dbg(3, "\tmci = %p\n", mci);
182 	edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
183 	edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
184 	edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
185 	edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
186 	edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
187 		 mci->nr_csrows, mci->csrows);
188 	edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
189 		 mci->tot_dimms, mci->dimms);
190 	edac_dbg(3, "\tdev = %p\n", mci->pdev);
191 	edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
192 		 mci->mod_name, mci->ctl_name);
193 	edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
194 }
195 
196 #endif				/* CONFIG_EDAC_DEBUG */
197 
198 const char * const edac_mem_types[] = {
199 	[MEM_EMPTY]	= "Empty",
200 	[MEM_RESERVED]	= "Reserved",
201 	[MEM_UNKNOWN]	= "Unknown",
202 	[MEM_FPM]	= "FPM",
203 	[MEM_EDO]	= "EDO",
204 	[MEM_BEDO]	= "BEDO",
205 	[MEM_SDR]	= "Unbuffered-SDR",
206 	[MEM_RDR]	= "Registered-SDR",
207 	[MEM_DDR]	= "Unbuffered-DDR",
208 	[MEM_RDDR]	= "Registered-DDR",
209 	[MEM_RMBS]	= "RMBS",
210 	[MEM_DDR2]	= "Unbuffered-DDR2",
211 	[MEM_FB_DDR2]	= "FullyBuffered-DDR2",
212 	[MEM_RDDR2]	= "Registered-DDR2",
213 	[MEM_XDR]	= "XDR",
214 	[MEM_DDR3]	= "Unbuffered-DDR3",
215 	[MEM_RDDR3]	= "Registered-DDR3",
216 	[MEM_LRDDR3]	= "Load-Reduced-DDR3-RAM",
217 	[MEM_DDR4]	= "Unbuffered-DDR4",
218 	[MEM_RDDR4]	= "Registered-DDR4",
219 	[MEM_LRDDR4]	= "Load-Reduced-DDR4-RAM",
220 	[MEM_NVDIMM]	= "Non-volatile-RAM",
221 };
222 EXPORT_SYMBOL_GPL(edac_mem_types);
223 
224 /**
225  * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
226  * @p:		pointer to a pointer with the memory offset to be used. At
227  *		return, this will be incremented to point to the next offset
228  * @size:	Size of the data structure to be reserved
229  * @n_elems:	Number of elements that should be reserved
230  *
231  * If 'size' is a constant, the compiler will optimize this whole function
232  * down to either a no-op or the addition of a constant to the value of '*p'.
233  *
234  * The 'p' pointer is absolutely needed to keep the proper advancing
235  * further in memory to the proper offsets when allocating the struct along
236  * with its embedded structs, as edac_device_alloc_ctl_info() does it
237  * above, for example.
238  *
239  * At return, the pointer 'p' will be incremented to be used on a next call
240  * to this function.
241  */
242 void *edac_align_ptr(void **p, unsigned int size, int n_elems)
243 {
244 	unsigned int align, r;
245 	void *ptr = *p;
246 
247 	*p += size * n_elems;
248 
249 	/*
250 	 * 'p' can possibly be an unaligned item X such that sizeof(X) is
251 	 * 'size'.  Adjust 'p' so that its alignment is at least as
252 	 * stringent as what the compiler would provide for X and return
253 	 * the aligned result.
254 	 * Here we assume that the alignment of a "long long" is the most
255 	 * stringent alignment that the compiler will ever provide by default.
256 	 * As far as I know, this is a reasonable assumption.
257 	 */
258 	if (size > sizeof(long))
259 		align = sizeof(long long);
260 	else if (size > sizeof(int))
261 		align = sizeof(long);
262 	else if (size > sizeof(short))
263 		align = sizeof(int);
264 	else if (size > sizeof(char))
265 		align = sizeof(short);
266 	else
267 		return (char *)ptr;
268 
269 	r = (unsigned long)p % align;
270 
271 	if (r == 0)
272 		return (char *)ptr;
273 
274 	*p += align - r;
275 
276 	return (void *)(((unsigned long)ptr) + align - r);
277 }
278 
279 static void _edac_mc_free(struct mem_ctl_info *mci)
280 {
281 	struct csrow_info *csr;
282 	int i, chn, row;
283 
284 	if (mci->dimms) {
285 		for (i = 0; i < mci->tot_dimms; i++)
286 			kfree(mci->dimms[i]);
287 		kfree(mci->dimms);
288 	}
289 
290 	if (mci->csrows) {
291 		for (row = 0; row < mci->nr_csrows; row++) {
292 			csr = mci->csrows[row];
293 			if (!csr)
294 				continue;
295 
296 			if (csr->channels) {
297 				for (chn = 0; chn < mci->num_cschannel; chn++)
298 					kfree(csr->channels[chn]);
299 				kfree(csr->channels);
300 			}
301 			kfree(csr);
302 		}
303 		kfree(mci->csrows);
304 	}
305 	kfree(mci);
306 }
307 
308 struct mem_ctl_info *edac_mc_alloc(unsigned int mc_num,
309 				   unsigned int n_layers,
310 				   struct edac_mc_layer *layers,
311 				   unsigned int sz_pvt)
312 {
313 	struct mem_ctl_info *mci;
314 	struct edac_mc_layer *layer;
315 	struct csrow_info *csr;
316 	struct rank_info *chan;
317 	struct dimm_info *dimm;
318 	u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
319 	unsigned int pos[EDAC_MAX_LAYERS];
320 	unsigned int idx, size, tot_dimms = 1, count = 1;
321 	unsigned int tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
322 	void *pvt, *p, *ptr = NULL;
323 	int i, j, row, chn, n, len;
324 	bool per_rank = false;
325 
326 	if (WARN_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0))
327 		return NULL;
328 
329 	/*
330 	 * Calculate the total amount of dimms and csrows/cschannels while
331 	 * in the old API emulation mode
332 	 */
333 	for (idx = 0; idx < n_layers; idx++) {
334 		tot_dimms *= layers[idx].size;
335 
336 		if (layers[idx].is_virt_csrow)
337 			tot_csrows *= layers[idx].size;
338 		else
339 			tot_channels *= layers[idx].size;
340 
341 		if (layers[idx].type == EDAC_MC_LAYER_CHIP_SELECT)
342 			per_rank = true;
343 	}
344 
345 	/* Figure out the offsets of the various items from the start of an mc
346 	 * structure.  We want the alignment of each item to be at least as
347 	 * stringent as what the compiler would provide if we could simply
348 	 * hardcode everything into a single struct.
349 	 */
350 	mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
351 	layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
352 	for (i = 0; i < n_layers; i++) {
353 		count *= layers[i].size;
354 		edac_dbg(4, "errcount layer %d size %d\n", i, count);
355 		ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
356 		ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
357 		tot_errcount += 2 * count;
358 	}
359 
360 	edac_dbg(4, "allocating %d error counters\n", tot_errcount);
361 	pvt = edac_align_ptr(&ptr, sz_pvt, 1);
362 	size = ((unsigned long)pvt) + sz_pvt;
363 
364 	edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
365 		 size,
366 		 tot_dimms,
367 		 per_rank ? "ranks" : "dimms",
368 		 tot_csrows * tot_channels);
369 
370 	mci = kzalloc(size, GFP_KERNEL);
371 	if (mci == NULL)
372 		return NULL;
373 
374 	/* Adjust pointers so they point within the memory we just allocated
375 	 * rather than an imaginary chunk of memory located at address 0.
376 	 */
377 	layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
378 	for (i = 0; i < n_layers; i++) {
379 		mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
380 		mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
381 	}
382 	pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
383 
384 	/* setup index and various internal pointers */
385 	mci->mc_idx = mc_num;
386 	mci->tot_dimms = tot_dimms;
387 	mci->pvt_info = pvt;
388 	mci->n_layers = n_layers;
389 	mci->layers = layer;
390 	memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
391 	mci->nr_csrows = tot_csrows;
392 	mci->num_cschannel = tot_channels;
393 	mci->csbased = per_rank;
394 
395 	/*
396 	 * Alocate and fill the csrow/channels structs
397 	 */
398 	mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
399 	if (!mci->csrows)
400 		goto error;
401 	for (row = 0; row < tot_csrows; row++) {
402 		csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
403 		if (!csr)
404 			goto error;
405 		mci->csrows[row] = csr;
406 		csr->csrow_idx = row;
407 		csr->mci = mci;
408 		csr->nr_channels = tot_channels;
409 		csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
410 					GFP_KERNEL);
411 		if (!csr->channels)
412 			goto error;
413 
414 		for (chn = 0; chn < tot_channels; chn++) {
415 			chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
416 			if (!chan)
417 				goto error;
418 			csr->channels[chn] = chan;
419 			chan->chan_idx = chn;
420 			chan->csrow = csr;
421 		}
422 	}
423 
424 	/*
425 	 * Allocate and fill the dimm structs
426 	 */
427 	mci->dimms  = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
428 	if (!mci->dimms)
429 		goto error;
430 
431 	memset(&pos, 0, sizeof(pos));
432 	row = 0;
433 	chn = 0;
434 	for (idx = 0; idx < tot_dimms; idx++) {
435 		chan = mci->csrows[row]->channels[chn];
436 
437 		dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
438 		if (!dimm)
439 			goto error;
440 		mci->dimms[idx] = dimm;
441 		dimm->mci = mci;
442 		dimm->idx = idx;
443 
444 		/*
445 		 * Copy DIMM location and initialize it.
446 		 */
447 		len = sizeof(dimm->label);
448 		p = dimm->label;
449 		n = snprintf(p, len, "mc#%u", mc_num);
450 		p += n;
451 		len -= n;
452 		for (j = 0; j < n_layers; j++) {
453 			n = snprintf(p, len, "%s#%u",
454 				     edac_layer_name[layers[j].type],
455 				     pos[j]);
456 			p += n;
457 			len -= n;
458 			dimm->location[j] = pos[j];
459 
460 			if (len <= 0)
461 				break;
462 		}
463 
464 		/* Link it to the csrows old API data */
465 		chan->dimm = dimm;
466 		dimm->csrow = row;
467 		dimm->cschannel = chn;
468 
469 		/* Increment csrow location */
470 		if (layers[0].is_virt_csrow) {
471 			chn++;
472 			if (chn == tot_channels) {
473 				chn = 0;
474 				row++;
475 			}
476 		} else {
477 			row++;
478 			if (row == tot_csrows) {
479 				row = 0;
480 				chn++;
481 			}
482 		}
483 
484 		/* Increment dimm location */
485 		for (j = n_layers - 1; j >= 0; j--) {
486 			pos[j]++;
487 			if (pos[j] < layers[j].size)
488 				break;
489 			pos[j] = 0;
490 		}
491 	}
492 
493 	mci->op_state = OP_ALLOC;
494 
495 	return mci;
496 
497 error:
498 	_edac_mc_free(mci);
499 
500 	return NULL;
501 }
502 EXPORT_SYMBOL_GPL(edac_mc_alloc);
503 
504 void edac_mc_free(struct mem_ctl_info *mci)
505 {
506 	edac_dbg(1, "\n");
507 
508 	if (device_is_registered(&mci->dev))
509 		edac_unregister_sysfs(mci);
510 
511 	_edac_mc_free(mci);
512 }
513 EXPORT_SYMBOL_GPL(edac_mc_free);
514 
515 bool edac_has_mcs(void)
516 {
517 	bool ret;
518 
519 	mutex_lock(&mem_ctls_mutex);
520 
521 	ret = list_empty(&mc_devices);
522 
523 	mutex_unlock(&mem_ctls_mutex);
524 
525 	return !ret;
526 }
527 EXPORT_SYMBOL_GPL(edac_has_mcs);
528 
529 /* Caller must hold mem_ctls_mutex */
530 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
531 {
532 	struct mem_ctl_info *mci;
533 	struct list_head *item;
534 
535 	edac_dbg(3, "\n");
536 
537 	list_for_each(item, &mc_devices) {
538 		mci = list_entry(item, struct mem_ctl_info, link);
539 
540 		if (mci->pdev == dev)
541 			return mci;
542 	}
543 
544 	return NULL;
545 }
546 
547 /**
548  * find_mci_by_dev
549  *
550  *	scan list of controllers looking for the one that manages
551  *	the 'dev' device
552  * @dev: pointer to a struct device related with the MCI
553  */
554 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
555 {
556 	struct mem_ctl_info *ret;
557 
558 	mutex_lock(&mem_ctls_mutex);
559 	ret = __find_mci_by_dev(dev);
560 	mutex_unlock(&mem_ctls_mutex);
561 
562 	return ret;
563 }
564 EXPORT_SYMBOL_GPL(find_mci_by_dev);
565 
566 /*
567  * edac_mc_workq_function
568  *	performs the operation scheduled by a workq request
569  */
570 static void edac_mc_workq_function(struct work_struct *work_req)
571 {
572 	struct delayed_work *d_work = to_delayed_work(work_req);
573 	struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
574 
575 	mutex_lock(&mem_ctls_mutex);
576 
577 	if (mci->op_state != OP_RUNNING_POLL) {
578 		mutex_unlock(&mem_ctls_mutex);
579 		return;
580 	}
581 
582 	if (edac_op_state == EDAC_OPSTATE_POLL)
583 		mci->edac_check(mci);
584 
585 	mutex_unlock(&mem_ctls_mutex);
586 
587 	/* Queue ourselves again. */
588 	edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
589 }
590 
591 /*
592  * edac_mc_reset_delay_period(unsigned long value)
593  *
594  *	user space has updated our poll period value, need to
595  *	reset our workq delays
596  */
597 void edac_mc_reset_delay_period(unsigned long value)
598 {
599 	struct mem_ctl_info *mci;
600 	struct list_head *item;
601 
602 	mutex_lock(&mem_ctls_mutex);
603 
604 	list_for_each(item, &mc_devices) {
605 		mci = list_entry(item, struct mem_ctl_info, link);
606 
607 		if (mci->op_state == OP_RUNNING_POLL)
608 			edac_mod_work(&mci->work, value);
609 	}
610 	mutex_unlock(&mem_ctls_mutex);
611 }
612 
613 
614 
615 /* Return 0 on success, 1 on failure.
616  * Before calling this function, caller must
617  * assign a unique value to mci->mc_idx.
618  *
619  *	locking model:
620  *
621  *		called with the mem_ctls_mutex lock held
622  */
623 static int add_mc_to_global_list(struct mem_ctl_info *mci)
624 {
625 	struct list_head *item, *insert_before;
626 	struct mem_ctl_info *p;
627 
628 	insert_before = &mc_devices;
629 
630 	p = __find_mci_by_dev(mci->pdev);
631 	if (unlikely(p != NULL))
632 		goto fail0;
633 
634 	list_for_each(item, &mc_devices) {
635 		p = list_entry(item, struct mem_ctl_info, link);
636 
637 		if (p->mc_idx >= mci->mc_idx) {
638 			if (unlikely(p->mc_idx == mci->mc_idx))
639 				goto fail1;
640 
641 			insert_before = item;
642 			break;
643 		}
644 	}
645 
646 	list_add_tail_rcu(&mci->link, insert_before);
647 	return 0;
648 
649 fail0:
650 	edac_printk(KERN_WARNING, EDAC_MC,
651 		"%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
652 		edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
653 	return 1;
654 
655 fail1:
656 	edac_printk(KERN_WARNING, EDAC_MC,
657 		"bug in low-level driver: attempt to assign\n"
658 		"    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
659 	return 1;
660 }
661 
662 static int del_mc_from_global_list(struct mem_ctl_info *mci)
663 {
664 	list_del_rcu(&mci->link);
665 
666 	/* these are for safe removal of devices from global list while
667 	 * NMI handlers may be traversing list
668 	 */
669 	synchronize_rcu();
670 	INIT_LIST_HEAD(&mci->link);
671 
672 	return list_empty(&mc_devices);
673 }
674 
675 struct mem_ctl_info *edac_mc_find(int idx)
676 {
677 	struct mem_ctl_info *mci;
678 	struct list_head *item;
679 
680 	mutex_lock(&mem_ctls_mutex);
681 
682 	list_for_each(item, &mc_devices) {
683 		mci = list_entry(item, struct mem_ctl_info, link);
684 		if (mci->mc_idx == idx)
685 			goto unlock;
686 	}
687 
688 	mci = NULL;
689 unlock:
690 	mutex_unlock(&mem_ctls_mutex);
691 	return mci;
692 }
693 EXPORT_SYMBOL(edac_mc_find);
694 
695 const char *edac_get_owner(void)
696 {
697 	return edac_mc_owner;
698 }
699 EXPORT_SYMBOL_GPL(edac_get_owner);
700 
701 /* FIXME - should a warning be printed if no error detection? correction? */
702 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
703 			       const struct attribute_group **groups)
704 {
705 	int ret = -EINVAL;
706 	edac_dbg(0, "\n");
707 
708 #ifdef CONFIG_EDAC_DEBUG
709 	if (edac_debug_level >= 3)
710 		edac_mc_dump_mci(mci);
711 
712 	if (edac_debug_level >= 4) {
713 		struct dimm_info *dimm;
714 		int i;
715 
716 		for (i = 0; i < mci->nr_csrows; i++) {
717 			struct csrow_info *csrow = mci->csrows[i];
718 			u32 nr_pages = 0;
719 			int j;
720 
721 			for (j = 0; j < csrow->nr_channels; j++)
722 				nr_pages += csrow->channels[j]->dimm->nr_pages;
723 			if (!nr_pages)
724 				continue;
725 			edac_mc_dump_csrow(csrow);
726 			for (j = 0; j < csrow->nr_channels; j++)
727 				if (csrow->channels[j]->dimm->nr_pages)
728 					edac_mc_dump_channel(csrow->channels[j]);
729 		}
730 
731 		mci_for_each_dimm(mci, dimm)
732 			edac_mc_dump_dimm(dimm);
733 	}
734 #endif
735 	mutex_lock(&mem_ctls_mutex);
736 
737 	if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
738 		ret = -EPERM;
739 		goto fail0;
740 	}
741 
742 	if (add_mc_to_global_list(mci))
743 		goto fail0;
744 
745 	/* set load time so that error rate can be tracked */
746 	mci->start_time = jiffies;
747 
748 	mci->bus = edac_get_sysfs_subsys();
749 
750 	if (edac_create_sysfs_mci_device(mci, groups)) {
751 		edac_mc_printk(mci, KERN_WARNING,
752 			"failed to create sysfs device\n");
753 		goto fail1;
754 	}
755 
756 	if (mci->edac_check) {
757 		mci->op_state = OP_RUNNING_POLL;
758 
759 		INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
760 		edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
761 
762 	} else {
763 		mci->op_state = OP_RUNNING_INTERRUPT;
764 	}
765 
766 	/* Report action taken */
767 	edac_mc_printk(mci, KERN_INFO,
768 		"Giving out device to module %s controller %s: DEV %s (%s)\n",
769 		mci->mod_name, mci->ctl_name, mci->dev_name,
770 		edac_op_state_to_string(mci->op_state));
771 
772 	edac_mc_owner = mci->mod_name;
773 
774 	mutex_unlock(&mem_ctls_mutex);
775 	return 0;
776 
777 fail1:
778 	del_mc_from_global_list(mci);
779 
780 fail0:
781 	mutex_unlock(&mem_ctls_mutex);
782 	return ret;
783 }
784 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
785 
786 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
787 {
788 	struct mem_ctl_info *mci;
789 
790 	edac_dbg(0, "\n");
791 
792 	mutex_lock(&mem_ctls_mutex);
793 
794 	/* find the requested mci struct in the global list */
795 	mci = __find_mci_by_dev(dev);
796 	if (mci == NULL) {
797 		mutex_unlock(&mem_ctls_mutex);
798 		return NULL;
799 	}
800 
801 	/* mark MCI offline: */
802 	mci->op_state = OP_OFFLINE;
803 
804 	if (del_mc_from_global_list(mci))
805 		edac_mc_owner = NULL;
806 
807 	mutex_unlock(&mem_ctls_mutex);
808 
809 	if (mci->edac_check)
810 		edac_stop_work(&mci->work);
811 
812 	/* remove from sysfs */
813 	edac_remove_sysfs_mci_device(mci);
814 
815 	edac_printk(KERN_INFO, EDAC_MC,
816 		"Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
817 		mci->mod_name, mci->ctl_name, edac_dev_name(mci));
818 
819 	return mci;
820 }
821 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
822 
823 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
824 				u32 size)
825 {
826 	struct page *pg;
827 	void *virt_addr;
828 	unsigned long flags = 0;
829 
830 	edac_dbg(3, "\n");
831 
832 	/* ECC error page was not in our memory. Ignore it. */
833 	if (!pfn_valid(page))
834 		return;
835 
836 	/* Find the actual page structure then map it and fix */
837 	pg = pfn_to_page(page);
838 
839 	if (PageHighMem(pg))
840 		local_irq_save(flags);
841 
842 	virt_addr = kmap_atomic(pg);
843 
844 	/* Perform architecture specific atomic scrub operation */
845 	edac_atomic_scrub(virt_addr + offset, size);
846 
847 	/* Unmap and complete */
848 	kunmap_atomic(virt_addr);
849 
850 	if (PageHighMem(pg))
851 		local_irq_restore(flags);
852 }
853 
854 /* FIXME - should return -1 */
855 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
856 {
857 	struct csrow_info **csrows = mci->csrows;
858 	int row, i, j, n;
859 
860 	edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
861 	row = -1;
862 
863 	for (i = 0; i < mci->nr_csrows; i++) {
864 		struct csrow_info *csrow = csrows[i];
865 		n = 0;
866 		for (j = 0; j < csrow->nr_channels; j++) {
867 			struct dimm_info *dimm = csrow->channels[j]->dimm;
868 			n += dimm->nr_pages;
869 		}
870 		if (n == 0)
871 			continue;
872 
873 		edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
874 			 mci->mc_idx,
875 			 csrow->first_page, page, csrow->last_page,
876 			 csrow->page_mask);
877 
878 		if ((page >= csrow->first_page) &&
879 		    (page <= csrow->last_page) &&
880 		    ((page & csrow->page_mask) ==
881 		     (csrow->first_page & csrow->page_mask))) {
882 			row = i;
883 			break;
884 		}
885 	}
886 
887 	if (row == -1)
888 		edac_mc_printk(mci, KERN_ERR,
889 			"could not look up page error address %lx\n",
890 			(unsigned long)page);
891 
892 	return row;
893 }
894 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
895 
896 const char *edac_layer_name[] = {
897 	[EDAC_MC_LAYER_BRANCH] = "branch",
898 	[EDAC_MC_LAYER_CHANNEL] = "channel",
899 	[EDAC_MC_LAYER_SLOT] = "slot",
900 	[EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
901 	[EDAC_MC_LAYER_ALL_MEM] = "memory",
902 };
903 EXPORT_SYMBOL_GPL(edac_layer_name);
904 
905 static void edac_inc_ce_error(struct mem_ctl_info *mci,
906 			      bool enable_per_layer_report,
907 			      const int pos[EDAC_MAX_LAYERS],
908 			      const u16 count)
909 {
910 	int i, index = 0;
911 
912 	mci->ce_mc += count;
913 
914 	if (!enable_per_layer_report) {
915 		mci->ce_noinfo_count += count;
916 		return;
917 	}
918 
919 	for (i = 0; i < mci->n_layers; i++) {
920 		if (pos[i] < 0)
921 			break;
922 		index += pos[i];
923 		mci->ce_per_layer[i][index] += count;
924 
925 		if (i < mci->n_layers - 1)
926 			index *= mci->layers[i + 1].size;
927 	}
928 }
929 
930 static void edac_inc_ue_error(struct mem_ctl_info *mci,
931 				    bool enable_per_layer_report,
932 				    const int pos[EDAC_MAX_LAYERS],
933 				    const u16 count)
934 {
935 	int i, index = 0;
936 
937 	mci->ue_mc += count;
938 
939 	if (!enable_per_layer_report) {
940 		mci->ue_noinfo_count += count;
941 		return;
942 	}
943 
944 	for (i = 0; i < mci->n_layers; i++) {
945 		if (pos[i] < 0)
946 			break;
947 		index += pos[i];
948 		mci->ue_per_layer[i][index] += count;
949 
950 		if (i < mci->n_layers - 1)
951 			index *= mci->layers[i + 1].size;
952 	}
953 }
954 
955 static void edac_ce_error(struct mem_ctl_info *mci,
956 			  const u16 error_count,
957 			  const int pos[EDAC_MAX_LAYERS],
958 			  const char *msg,
959 			  const char *location,
960 			  const char *label,
961 			  const char *detail,
962 			  const char *other_detail,
963 			  const bool enable_per_layer_report,
964 			  const unsigned long page_frame_number,
965 			  const unsigned long offset_in_page,
966 			  long grain)
967 {
968 	unsigned long remapped_page;
969 	char *msg_aux = "";
970 
971 	if (*msg)
972 		msg_aux = " ";
973 
974 	if (edac_mc_get_log_ce()) {
975 		if (other_detail && *other_detail)
976 			edac_mc_printk(mci, KERN_WARNING,
977 				       "%d CE %s%son %s (%s %s - %s)\n",
978 				       error_count, msg, msg_aux, label,
979 				       location, detail, other_detail);
980 		else
981 			edac_mc_printk(mci, KERN_WARNING,
982 				       "%d CE %s%son %s (%s %s)\n",
983 				       error_count, msg, msg_aux, label,
984 				       location, detail);
985 	}
986 	edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
987 
988 	if (mci->scrub_mode == SCRUB_SW_SRC) {
989 		/*
990 			* Some memory controllers (called MCs below) can remap
991 			* memory so that it is still available at a different
992 			* address when PCI devices map into memory.
993 			* MC's that can't do this, lose the memory where PCI
994 			* devices are mapped. This mapping is MC-dependent
995 			* and so we call back into the MC driver for it to
996 			* map the MC page to a physical (CPU) page which can
997 			* then be mapped to a virtual page - which can then
998 			* be scrubbed.
999 			*/
1000 		remapped_page = mci->ctl_page_to_phys ?
1001 			mci->ctl_page_to_phys(mci, page_frame_number) :
1002 			page_frame_number;
1003 
1004 		edac_mc_scrub_block(remapped_page,
1005 					offset_in_page, grain);
1006 	}
1007 }
1008 
1009 static void edac_ue_error(struct mem_ctl_info *mci,
1010 			  const u16 error_count,
1011 			  const int pos[EDAC_MAX_LAYERS],
1012 			  const char *msg,
1013 			  const char *location,
1014 			  const char *label,
1015 			  const char *detail,
1016 			  const char *other_detail,
1017 			  const bool enable_per_layer_report)
1018 {
1019 	char *msg_aux = "";
1020 
1021 	if (*msg)
1022 		msg_aux = " ";
1023 
1024 	if (edac_mc_get_log_ue()) {
1025 		if (other_detail && *other_detail)
1026 			edac_mc_printk(mci, KERN_WARNING,
1027 				       "%d UE %s%son %s (%s %s - %s)\n",
1028 				       error_count, msg, msg_aux, label,
1029 				       location, detail, other_detail);
1030 		else
1031 			edac_mc_printk(mci, KERN_WARNING,
1032 				       "%d UE %s%son %s (%s %s)\n",
1033 				       error_count, msg, msg_aux, label,
1034 				       location, detail);
1035 	}
1036 
1037 	if (edac_mc_get_panic_on_ue()) {
1038 		if (other_detail && *other_detail)
1039 			panic("UE %s%son %s (%s%s - %s)\n",
1040 			      msg, msg_aux, label, location, detail, other_detail);
1041 		else
1042 			panic("UE %s%son %s (%s%s)\n",
1043 			      msg, msg_aux, label, location, detail);
1044 	}
1045 
1046 	edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
1047 }
1048 
1049 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
1050 			      struct mem_ctl_info *mci,
1051 			      struct edac_raw_error_desc *e)
1052 {
1053 	char detail[80];
1054 	int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
1055 	u8 grain_bits;
1056 
1057 	/* Sanity-check driver-supplied grain value. */
1058 	if (WARN_ON_ONCE(!e->grain))
1059 		e->grain = 1;
1060 
1061 	grain_bits = fls_long(e->grain - 1);
1062 
1063 	/* Report the error via the trace interface */
1064 	if (IS_ENABLED(CONFIG_RAS))
1065 		trace_mc_event(type, e->msg, e->label, e->error_count,
1066 			       mci->mc_idx, e->top_layer, e->mid_layer,
1067 			       e->low_layer,
1068 			       (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
1069 			       grain_bits, e->syndrome, e->other_detail);
1070 
1071 	/* Memory type dependent details about the error */
1072 	if (type == HW_EVENT_ERR_CORRECTED) {
1073 		snprintf(detail, sizeof(detail),
1074 			"page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1075 			e->page_frame_number, e->offset_in_page,
1076 			e->grain, e->syndrome);
1077 		edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1078 			      detail, e->other_detail, e->enable_per_layer_report,
1079 			      e->page_frame_number, e->offset_in_page, e->grain);
1080 	} else {
1081 		snprintf(detail, sizeof(detail),
1082 			"page:0x%lx offset:0x%lx grain:%ld",
1083 			e->page_frame_number, e->offset_in_page, e->grain);
1084 
1085 		edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1086 			      detail, e->other_detail, e->enable_per_layer_report);
1087 	}
1088 
1089 
1090 }
1091 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1092 
1093 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1094 			  struct mem_ctl_info *mci,
1095 			  const u16 error_count,
1096 			  const unsigned long page_frame_number,
1097 			  const unsigned long offset_in_page,
1098 			  const unsigned long syndrome,
1099 			  const int top_layer,
1100 			  const int mid_layer,
1101 			  const int low_layer,
1102 			  const char *msg,
1103 			  const char *other_detail)
1104 {
1105 	struct dimm_info *dimm;
1106 	char *p;
1107 	int row = -1, chan = -1;
1108 	int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1109 	int i, n_labels = 0;
1110 	struct edac_raw_error_desc *e = &mci->error_desc;
1111 
1112 	edac_dbg(3, "MC%d\n", mci->mc_idx);
1113 
1114 	/* Fills the error report buffer */
1115 	memset(e, 0, sizeof (*e));
1116 	e->error_count = error_count;
1117 	e->top_layer = top_layer;
1118 	e->mid_layer = mid_layer;
1119 	e->low_layer = low_layer;
1120 	e->page_frame_number = page_frame_number;
1121 	e->offset_in_page = offset_in_page;
1122 	e->syndrome = syndrome;
1123 	e->msg = msg;
1124 	e->other_detail = other_detail;
1125 
1126 	/*
1127 	 * Check if the event report is consistent and if the memory
1128 	 * location is known. If it is known, enable_per_layer_report will be
1129 	 * true, the DIMM(s) label info will be filled and the per-layer
1130 	 * error counters will be incremented.
1131 	 */
1132 	for (i = 0; i < mci->n_layers; i++) {
1133 		if (pos[i] >= (int)mci->layers[i].size) {
1134 
1135 			edac_mc_printk(mci, KERN_ERR,
1136 				       "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1137 				       edac_layer_name[mci->layers[i].type],
1138 				       pos[i], mci->layers[i].size);
1139 			/*
1140 			 * Instead of just returning it, let's use what's
1141 			 * known about the error. The increment routines and
1142 			 * the DIMM filter logic will do the right thing by
1143 			 * pointing the likely damaged DIMMs.
1144 			 */
1145 			pos[i] = -1;
1146 		}
1147 		if (pos[i] >= 0)
1148 			e->enable_per_layer_report = true;
1149 	}
1150 
1151 	/*
1152 	 * Get the dimm label/grain that applies to the match criteria.
1153 	 * As the error algorithm may not be able to point to just one memory
1154 	 * stick, the logic here will get all possible labels that could
1155 	 * pottentially be affected by the error.
1156 	 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1157 	 * to have only the MC channel and the MC dimm (also called "branch")
1158 	 * but the channel is not known, as the memory is arranged in pairs,
1159 	 * where each memory belongs to a separate channel within the same
1160 	 * branch.
1161 	 */
1162 	p = e->label;
1163 	*p = '\0';
1164 
1165 	mci_for_each_dimm(mci, dimm) {
1166 		if (top_layer >= 0 && top_layer != dimm->location[0])
1167 			continue;
1168 		if (mid_layer >= 0 && mid_layer != dimm->location[1])
1169 			continue;
1170 		if (low_layer >= 0 && low_layer != dimm->location[2])
1171 			continue;
1172 
1173 		/* get the max grain, over the error match range */
1174 		if (dimm->grain > e->grain)
1175 			e->grain = dimm->grain;
1176 
1177 		/*
1178 		 * If the error is memory-controller wide, there's no need to
1179 		 * seek for the affected DIMMs because the whole
1180 		 * channel/memory controller/...  may be affected.
1181 		 * Also, don't show errors for empty DIMM slots.
1182 		 */
1183 		if (!e->enable_per_layer_report || !dimm->nr_pages)
1184 			continue;
1185 
1186 		if (n_labels >= EDAC_MAX_LABELS) {
1187 			e->enable_per_layer_report = false;
1188 			break;
1189 		}
1190 		n_labels++;
1191 		if (p != e->label) {
1192 			strcpy(p, OTHER_LABEL);
1193 			p += strlen(OTHER_LABEL);
1194 		}
1195 		strcpy(p, dimm->label);
1196 		p += strlen(p);
1197 
1198 		/*
1199 		 * get csrow/channel of the DIMM, in order to allow
1200 		 * incrementing the compat API counters
1201 		 */
1202 		edac_dbg(4, "%s csrows map: (%d,%d)\n",
1203 			mci->csbased ? "rank" : "dimm",
1204 			dimm->csrow, dimm->cschannel);
1205 		if (row == -1)
1206 			row = dimm->csrow;
1207 		else if (row >= 0 && row != dimm->csrow)
1208 			row = -2;
1209 
1210 		if (chan == -1)
1211 			chan = dimm->cschannel;
1212 		else if (chan >= 0 && chan != dimm->cschannel)
1213 			chan = -2;
1214 	}
1215 
1216 	if (!e->enable_per_layer_report) {
1217 		strcpy(e->label, "any memory");
1218 	} else {
1219 		edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
1220 		if (p == e->label)
1221 			strcpy(e->label, "unknown memory");
1222 		if (type == HW_EVENT_ERR_CORRECTED) {
1223 			if (row >= 0) {
1224 				mci->csrows[row]->ce_count += error_count;
1225 				if (chan >= 0)
1226 					mci->csrows[row]->channels[chan]->ce_count += error_count;
1227 			}
1228 		} else
1229 			if (row >= 0)
1230 				mci->csrows[row]->ue_count += error_count;
1231 	}
1232 
1233 	/* Fill the RAM location data */
1234 	p = e->location;
1235 
1236 	for (i = 0; i < mci->n_layers; i++) {
1237 		if (pos[i] < 0)
1238 			continue;
1239 
1240 		p += sprintf(p, "%s:%d ",
1241 			     edac_layer_name[mci->layers[i].type],
1242 			     pos[i]);
1243 	}
1244 	if (p > e->location)
1245 		*(p - 1) = '\0';
1246 
1247 	edac_raw_mc_handle_error(type, mci, e);
1248 }
1249 EXPORT_SYMBOL_GPL(edac_mc_handle_error);
1250