1 /* 2 * edac_mc kernel module 3 * (C) 2005, 2006 Linux Networx (http://lnxi.com) 4 * This file may be distributed under the terms of the 5 * GNU General Public License. 6 * 7 * Written by Thayne Harbaugh 8 * Based on work by Dan Hollis <goemon at anime dot net> and others. 9 * http://www.anime.net/~goemon/linux-ecc/ 10 * 11 * Modified by Dave Peterson and Doug Thompson 12 * 13 */ 14 15 #include <linux/module.h> 16 #include <linux/proc_fs.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/smp.h> 20 #include <linux/init.h> 21 #include <linux/sysctl.h> 22 #include <linux/highmem.h> 23 #include <linux/timer.h> 24 #include <linux/slab.h> 25 #include <linux/jiffies.h> 26 #include <linux/spinlock.h> 27 #include <linux/list.h> 28 #include <linux/ctype.h> 29 #include <linux/edac.h> 30 #include <linux/bitops.h> 31 #include <linux/uaccess.h> 32 #include <asm/page.h> 33 #include "edac_mc.h" 34 #include "edac_module.h" 35 #include <ras/ras_event.h> 36 37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB 38 #include <asm/edac.h> 39 #else 40 #define edac_atomic_scrub(va, size) do { } while (0) 41 #endif 42 43 int edac_op_state = EDAC_OPSTATE_INVAL; 44 EXPORT_SYMBOL_GPL(edac_op_state); 45 46 static int edac_report = EDAC_REPORTING_ENABLED; 47 48 /* lock to memory controller's control array */ 49 static DEFINE_MUTEX(mem_ctls_mutex); 50 static LIST_HEAD(mc_devices); 51 52 /* 53 * Used to lock EDAC MC to just one module, avoiding two drivers e. g. 54 * apei/ghes and i7core_edac to be used at the same time. 55 */ 56 static const char *edac_mc_owner; 57 58 int edac_get_report_status(void) 59 { 60 return edac_report; 61 } 62 EXPORT_SYMBOL_GPL(edac_get_report_status); 63 64 void edac_set_report_status(int new) 65 { 66 if (new == EDAC_REPORTING_ENABLED || 67 new == EDAC_REPORTING_DISABLED || 68 new == EDAC_REPORTING_FORCE) 69 edac_report = new; 70 } 71 EXPORT_SYMBOL_GPL(edac_set_report_status); 72 73 static int edac_report_set(const char *str, const struct kernel_param *kp) 74 { 75 if (!str) 76 return -EINVAL; 77 78 if (!strncmp(str, "on", 2)) 79 edac_report = EDAC_REPORTING_ENABLED; 80 else if (!strncmp(str, "off", 3)) 81 edac_report = EDAC_REPORTING_DISABLED; 82 else if (!strncmp(str, "force", 5)) 83 edac_report = EDAC_REPORTING_FORCE; 84 85 return 0; 86 } 87 88 static int edac_report_get(char *buffer, const struct kernel_param *kp) 89 { 90 int ret = 0; 91 92 switch (edac_report) { 93 case EDAC_REPORTING_ENABLED: 94 ret = sprintf(buffer, "on"); 95 break; 96 case EDAC_REPORTING_DISABLED: 97 ret = sprintf(buffer, "off"); 98 break; 99 case EDAC_REPORTING_FORCE: 100 ret = sprintf(buffer, "force"); 101 break; 102 default: 103 ret = -EINVAL; 104 break; 105 } 106 107 return ret; 108 } 109 110 static const struct kernel_param_ops edac_report_ops = { 111 .set = edac_report_set, 112 .get = edac_report_get, 113 }; 114 115 module_param_cb(edac_report, &edac_report_ops, &edac_report, 0644); 116 117 unsigned int edac_dimm_info_location(struct dimm_info *dimm, char *buf, 118 unsigned int len) 119 { 120 struct mem_ctl_info *mci = dimm->mci; 121 int i, n, count = 0; 122 char *p = buf; 123 124 for (i = 0; i < mci->n_layers; i++) { 125 n = snprintf(p, len, "%s %d ", 126 edac_layer_name[mci->layers[i].type], 127 dimm->location[i]); 128 p += n; 129 len -= n; 130 count += n; 131 if (!len) 132 break; 133 } 134 135 return count; 136 } 137 138 #ifdef CONFIG_EDAC_DEBUG 139 140 static void edac_mc_dump_channel(struct rank_info *chan) 141 { 142 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx); 143 edac_dbg(4, " channel = %p\n", chan); 144 edac_dbg(4, " channel->csrow = %p\n", chan->csrow); 145 edac_dbg(4, " channel->dimm = %p\n", chan->dimm); 146 } 147 148 static void edac_mc_dump_dimm(struct dimm_info *dimm) 149 { 150 char location[80]; 151 152 if (!dimm->nr_pages) 153 return; 154 155 edac_dimm_info_location(dimm, location, sizeof(location)); 156 157 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n", 158 dimm->mci->csbased ? "rank" : "dimm", 159 dimm->idx, location, dimm->csrow, dimm->cschannel); 160 edac_dbg(4, " dimm = %p\n", dimm); 161 edac_dbg(4, " dimm->label = '%s'\n", dimm->label); 162 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); 163 edac_dbg(4, " dimm->grain = %d\n", dimm->grain); 164 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); 165 } 166 167 static void edac_mc_dump_csrow(struct csrow_info *csrow) 168 { 169 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx); 170 edac_dbg(4, " csrow = %p\n", csrow); 171 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page); 172 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page); 173 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask); 174 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels); 175 edac_dbg(4, " csrow->channels = %p\n", csrow->channels); 176 edac_dbg(4, " csrow->mci = %p\n", csrow->mci); 177 } 178 179 static void edac_mc_dump_mci(struct mem_ctl_info *mci) 180 { 181 edac_dbg(3, "\tmci = %p\n", mci); 182 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap); 183 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap); 184 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap); 185 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check); 186 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n", 187 mci->nr_csrows, mci->csrows); 188 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n", 189 mci->tot_dimms, mci->dimms); 190 edac_dbg(3, "\tdev = %p\n", mci->pdev); 191 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n", 192 mci->mod_name, mci->ctl_name); 193 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info); 194 } 195 196 #endif /* CONFIG_EDAC_DEBUG */ 197 198 const char * const edac_mem_types[] = { 199 [MEM_EMPTY] = "Empty", 200 [MEM_RESERVED] = "Reserved", 201 [MEM_UNKNOWN] = "Unknown", 202 [MEM_FPM] = "FPM", 203 [MEM_EDO] = "EDO", 204 [MEM_BEDO] = "BEDO", 205 [MEM_SDR] = "Unbuffered-SDR", 206 [MEM_RDR] = "Registered-SDR", 207 [MEM_DDR] = "Unbuffered-DDR", 208 [MEM_RDDR] = "Registered-DDR", 209 [MEM_RMBS] = "RMBS", 210 [MEM_DDR2] = "Unbuffered-DDR2", 211 [MEM_FB_DDR2] = "FullyBuffered-DDR2", 212 [MEM_RDDR2] = "Registered-DDR2", 213 [MEM_XDR] = "XDR", 214 [MEM_DDR3] = "Unbuffered-DDR3", 215 [MEM_RDDR3] = "Registered-DDR3", 216 [MEM_LRDDR3] = "Load-Reduced-DDR3-RAM", 217 [MEM_DDR4] = "Unbuffered-DDR4", 218 [MEM_RDDR4] = "Registered-DDR4", 219 [MEM_LRDDR4] = "Load-Reduced-DDR4-RAM", 220 [MEM_NVDIMM] = "Non-volatile-RAM", 221 }; 222 EXPORT_SYMBOL_GPL(edac_mem_types); 223 224 /** 225 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation 226 * @p: pointer to a pointer with the memory offset to be used. At 227 * return, this will be incremented to point to the next offset 228 * @size: Size of the data structure to be reserved 229 * @n_elems: Number of elements that should be reserved 230 * 231 * If 'size' is a constant, the compiler will optimize this whole function 232 * down to either a no-op or the addition of a constant to the value of '*p'. 233 * 234 * The 'p' pointer is absolutely needed to keep the proper advancing 235 * further in memory to the proper offsets when allocating the struct along 236 * with its embedded structs, as edac_device_alloc_ctl_info() does it 237 * above, for example. 238 * 239 * At return, the pointer 'p' will be incremented to be used on a next call 240 * to this function. 241 */ 242 void *edac_align_ptr(void **p, unsigned int size, int n_elems) 243 { 244 unsigned int align, r; 245 void *ptr = *p; 246 247 *p += size * n_elems; 248 249 /* 250 * 'p' can possibly be an unaligned item X such that sizeof(X) is 251 * 'size'. Adjust 'p' so that its alignment is at least as 252 * stringent as what the compiler would provide for X and return 253 * the aligned result. 254 * Here we assume that the alignment of a "long long" is the most 255 * stringent alignment that the compiler will ever provide by default. 256 * As far as I know, this is a reasonable assumption. 257 */ 258 if (size > sizeof(long)) 259 align = sizeof(long long); 260 else if (size > sizeof(int)) 261 align = sizeof(long); 262 else if (size > sizeof(short)) 263 align = sizeof(int); 264 else if (size > sizeof(char)) 265 align = sizeof(short); 266 else 267 return (char *)ptr; 268 269 r = (unsigned long)p % align; 270 271 if (r == 0) 272 return (char *)ptr; 273 274 *p += align - r; 275 276 return (void *)(((unsigned long)ptr) + align - r); 277 } 278 279 static void _edac_mc_free(struct mem_ctl_info *mci) 280 { 281 struct csrow_info *csr; 282 int i, chn, row; 283 284 if (mci->dimms) { 285 for (i = 0; i < mci->tot_dimms; i++) 286 kfree(mci->dimms[i]); 287 kfree(mci->dimms); 288 } 289 290 if (mci->csrows) { 291 for (row = 0; row < mci->nr_csrows; row++) { 292 csr = mci->csrows[row]; 293 if (!csr) 294 continue; 295 296 if (csr->channels) { 297 for (chn = 0; chn < mci->num_cschannel; chn++) 298 kfree(csr->channels[chn]); 299 kfree(csr->channels); 300 } 301 kfree(csr); 302 } 303 kfree(mci->csrows); 304 } 305 kfree(mci); 306 } 307 308 struct mem_ctl_info *edac_mc_alloc(unsigned int mc_num, 309 unsigned int n_layers, 310 struct edac_mc_layer *layers, 311 unsigned int sz_pvt) 312 { 313 struct mem_ctl_info *mci; 314 struct edac_mc_layer *layer; 315 struct csrow_info *csr; 316 struct rank_info *chan; 317 struct dimm_info *dimm; 318 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS]; 319 unsigned int pos[EDAC_MAX_LAYERS]; 320 unsigned int idx, size, tot_dimms = 1, count = 1; 321 unsigned int tot_csrows = 1, tot_channels = 1, tot_errcount = 0; 322 void *pvt, *p, *ptr = NULL; 323 int i, j, row, chn, n, len; 324 bool per_rank = false; 325 326 if (WARN_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0)) 327 return NULL; 328 329 /* 330 * Calculate the total amount of dimms and csrows/cschannels while 331 * in the old API emulation mode 332 */ 333 for (idx = 0; idx < n_layers; idx++) { 334 tot_dimms *= layers[idx].size; 335 336 if (layers[idx].is_virt_csrow) 337 tot_csrows *= layers[idx].size; 338 else 339 tot_channels *= layers[idx].size; 340 341 if (layers[idx].type == EDAC_MC_LAYER_CHIP_SELECT) 342 per_rank = true; 343 } 344 345 /* Figure out the offsets of the various items from the start of an mc 346 * structure. We want the alignment of each item to be at least as 347 * stringent as what the compiler would provide if we could simply 348 * hardcode everything into a single struct. 349 */ 350 mci = edac_align_ptr(&ptr, sizeof(*mci), 1); 351 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers); 352 for (i = 0; i < n_layers; i++) { 353 count *= layers[i].size; 354 edac_dbg(4, "errcount layer %d size %d\n", i, count); 355 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count); 356 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count); 357 tot_errcount += 2 * count; 358 } 359 360 edac_dbg(4, "allocating %d error counters\n", tot_errcount); 361 pvt = edac_align_ptr(&ptr, sz_pvt, 1); 362 size = ((unsigned long)pvt) + sz_pvt; 363 364 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n", 365 size, 366 tot_dimms, 367 per_rank ? "ranks" : "dimms", 368 tot_csrows * tot_channels); 369 370 mci = kzalloc(size, GFP_KERNEL); 371 if (mci == NULL) 372 return NULL; 373 374 /* Adjust pointers so they point within the memory we just allocated 375 * rather than an imaginary chunk of memory located at address 0. 376 */ 377 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer)); 378 for (i = 0; i < n_layers; i++) { 379 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i])); 380 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i])); 381 } 382 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL; 383 384 /* setup index and various internal pointers */ 385 mci->mc_idx = mc_num; 386 mci->tot_dimms = tot_dimms; 387 mci->pvt_info = pvt; 388 mci->n_layers = n_layers; 389 mci->layers = layer; 390 memcpy(mci->layers, layers, sizeof(*layer) * n_layers); 391 mci->nr_csrows = tot_csrows; 392 mci->num_cschannel = tot_channels; 393 mci->csbased = per_rank; 394 395 /* 396 * Alocate and fill the csrow/channels structs 397 */ 398 mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL); 399 if (!mci->csrows) 400 goto error; 401 for (row = 0; row < tot_csrows; row++) { 402 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL); 403 if (!csr) 404 goto error; 405 mci->csrows[row] = csr; 406 csr->csrow_idx = row; 407 csr->mci = mci; 408 csr->nr_channels = tot_channels; 409 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels), 410 GFP_KERNEL); 411 if (!csr->channels) 412 goto error; 413 414 for (chn = 0; chn < tot_channels; chn++) { 415 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL); 416 if (!chan) 417 goto error; 418 csr->channels[chn] = chan; 419 chan->chan_idx = chn; 420 chan->csrow = csr; 421 } 422 } 423 424 /* 425 * Allocate and fill the dimm structs 426 */ 427 mci->dimms = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL); 428 if (!mci->dimms) 429 goto error; 430 431 memset(&pos, 0, sizeof(pos)); 432 row = 0; 433 chn = 0; 434 for (idx = 0; idx < tot_dimms; idx++) { 435 chan = mci->csrows[row]->channels[chn]; 436 437 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL); 438 if (!dimm) 439 goto error; 440 mci->dimms[idx] = dimm; 441 dimm->mci = mci; 442 dimm->idx = idx; 443 444 /* 445 * Copy DIMM location and initialize it. 446 */ 447 len = sizeof(dimm->label); 448 p = dimm->label; 449 n = snprintf(p, len, "mc#%u", mc_num); 450 p += n; 451 len -= n; 452 for (j = 0; j < n_layers; j++) { 453 n = snprintf(p, len, "%s#%u", 454 edac_layer_name[layers[j].type], 455 pos[j]); 456 p += n; 457 len -= n; 458 dimm->location[j] = pos[j]; 459 460 if (len <= 0) 461 break; 462 } 463 464 /* Link it to the csrows old API data */ 465 chan->dimm = dimm; 466 dimm->csrow = row; 467 dimm->cschannel = chn; 468 469 /* Increment csrow location */ 470 if (layers[0].is_virt_csrow) { 471 chn++; 472 if (chn == tot_channels) { 473 chn = 0; 474 row++; 475 } 476 } else { 477 row++; 478 if (row == tot_csrows) { 479 row = 0; 480 chn++; 481 } 482 } 483 484 /* Increment dimm location */ 485 for (j = n_layers - 1; j >= 0; j--) { 486 pos[j]++; 487 if (pos[j] < layers[j].size) 488 break; 489 pos[j] = 0; 490 } 491 } 492 493 mci->op_state = OP_ALLOC; 494 495 return mci; 496 497 error: 498 _edac_mc_free(mci); 499 500 return NULL; 501 } 502 EXPORT_SYMBOL_GPL(edac_mc_alloc); 503 504 void edac_mc_free(struct mem_ctl_info *mci) 505 { 506 edac_dbg(1, "\n"); 507 508 if (device_is_registered(&mci->dev)) 509 edac_unregister_sysfs(mci); 510 511 _edac_mc_free(mci); 512 } 513 EXPORT_SYMBOL_GPL(edac_mc_free); 514 515 bool edac_has_mcs(void) 516 { 517 bool ret; 518 519 mutex_lock(&mem_ctls_mutex); 520 521 ret = list_empty(&mc_devices); 522 523 mutex_unlock(&mem_ctls_mutex); 524 525 return !ret; 526 } 527 EXPORT_SYMBOL_GPL(edac_has_mcs); 528 529 /* Caller must hold mem_ctls_mutex */ 530 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev) 531 { 532 struct mem_ctl_info *mci; 533 struct list_head *item; 534 535 edac_dbg(3, "\n"); 536 537 list_for_each(item, &mc_devices) { 538 mci = list_entry(item, struct mem_ctl_info, link); 539 540 if (mci->pdev == dev) 541 return mci; 542 } 543 544 return NULL; 545 } 546 547 /** 548 * find_mci_by_dev 549 * 550 * scan list of controllers looking for the one that manages 551 * the 'dev' device 552 * @dev: pointer to a struct device related with the MCI 553 */ 554 struct mem_ctl_info *find_mci_by_dev(struct device *dev) 555 { 556 struct mem_ctl_info *ret; 557 558 mutex_lock(&mem_ctls_mutex); 559 ret = __find_mci_by_dev(dev); 560 mutex_unlock(&mem_ctls_mutex); 561 562 return ret; 563 } 564 EXPORT_SYMBOL_GPL(find_mci_by_dev); 565 566 /* 567 * edac_mc_workq_function 568 * performs the operation scheduled by a workq request 569 */ 570 static void edac_mc_workq_function(struct work_struct *work_req) 571 { 572 struct delayed_work *d_work = to_delayed_work(work_req); 573 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work); 574 575 mutex_lock(&mem_ctls_mutex); 576 577 if (mci->op_state != OP_RUNNING_POLL) { 578 mutex_unlock(&mem_ctls_mutex); 579 return; 580 } 581 582 if (edac_op_state == EDAC_OPSTATE_POLL) 583 mci->edac_check(mci); 584 585 mutex_unlock(&mem_ctls_mutex); 586 587 /* Queue ourselves again. */ 588 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec())); 589 } 590 591 /* 592 * edac_mc_reset_delay_period(unsigned long value) 593 * 594 * user space has updated our poll period value, need to 595 * reset our workq delays 596 */ 597 void edac_mc_reset_delay_period(unsigned long value) 598 { 599 struct mem_ctl_info *mci; 600 struct list_head *item; 601 602 mutex_lock(&mem_ctls_mutex); 603 604 list_for_each(item, &mc_devices) { 605 mci = list_entry(item, struct mem_ctl_info, link); 606 607 if (mci->op_state == OP_RUNNING_POLL) 608 edac_mod_work(&mci->work, value); 609 } 610 mutex_unlock(&mem_ctls_mutex); 611 } 612 613 614 615 /* Return 0 on success, 1 on failure. 616 * Before calling this function, caller must 617 * assign a unique value to mci->mc_idx. 618 * 619 * locking model: 620 * 621 * called with the mem_ctls_mutex lock held 622 */ 623 static int add_mc_to_global_list(struct mem_ctl_info *mci) 624 { 625 struct list_head *item, *insert_before; 626 struct mem_ctl_info *p; 627 628 insert_before = &mc_devices; 629 630 p = __find_mci_by_dev(mci->pdev); 631 if (unlikely(p != NULL)) 632 goto fail0; 633 634 list_for_each(item, &mc_devices) { 635 p = list_entry(item, struct mem_ctl_info, link); 636 637 if (p->mc_idx >= mci->mc_idx) { 638 if (unlikely(p->mc_idx == mci->mc_idx)) 639 goto fail1; 640 641 insert_before = item; 642 break; 643 } 644 } 645 646 list_add_tail_rcu(&mci->link, insert_before); 647 return 0; 648 649 fail0: 650 edac_printk(KERN_WARNING, EDAC_MC, 651 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev), 652 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx); 653 return 1; 654 655 fail1: 656 edac_printk(KERN_WARNING, EDAC_MC, 657 "bug in low-level driver: attempt to assign\n" 658 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__); 659 return 1; 660 } 661 662 static int del_mc_from_global_list(struct mem_ctl_info *mci) 663 { 664 list_del_rcu(&mci->link); 665 666 /* these are for safe removal of devices from global list while 667 * NMI handlers may be traversing list 668 */ 669 synchronize_rcu(); 670 INIT_LIST_HEAD(&mci->link); 671 672 return list_empty(&mc_devices); 673 } 674 675 struct mem_ctl_info *edac_mc_find(int idx) 676 { 677 struct mem_ctl_info *mci; 678 struct list_head *item; 679 680 mutex_lock(&mem_ctls_mutex); 681 682 list_for_each(item, &mc_devices) { 683 mci = list_entry(item, struct mem_ctl_info, link); 684 if (mci->mc_idx == idx) 685 goto unlock; 686 } 687 688 mci = NULL; 689 unlock: 690 mutex_unlock(&mem_ctls_mutex); 691 return mci; 692 } 693 EXPORT_SYMBOL(edac_mc_find); 694 695 const char *edac_get_owner(void) 696 { 697 return edac_mc_owner; 698 } 699 EXPORT_SYMBOL_GPL(edac_get_owner); 700 701 /* FIXME - should a warning be printed if no error detection? correction? */ 702 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci, 703 const struct attribute_group **groups) 704 { 705 int ret = -EINVAL; 706 edac_dbg(0, "\n"); 707 708 #ifdef CONFIG_EDAC_DEBUG 709 if (edac_debug_level >= 3) 710 edac_mc_dump_mci(mci); 711 712 if (edac_debug_level >= 4) { 713 struct dimm_info *dimm; 714 int i; 715 716 for (i = 0; i < mci->nr_csrows; i++) { 717 struct csrow_info *csrow = mci->csrows[i]; 718 u32 nr_pages = 0; 719 int j; 720 721 for (j = 0; j < csrow->nr_channels; j++) 722 nr_pages += csrow->channels[j]->dimm->nr_pages; 723 if (!nr_pages) 724 continue; 725 edac_mc_dump_csrow(csrow); 726 for (j = 0; j < csrow->nr_channels; j++) 727 if (csrow->channels[j]->dimm->nr_pages) 728 edac_mc_dump_channel(csrow->channels[j]); 729 } 730 731 mci_for_each_dimm(mci, dimm) 732 edac_mc_dump_dimm(dimm); 733 } 734 #endif 735 mutex_lock(&mem_ctls_mutex); 736 737 if (edac_mc_owner && edac_mc_owner != mci->mod_name) { 738 ret = -EPERM; 739 goto fail0; 740 } 741 742 if (add_mc_to_global_list(mci)) 743 goto fail0; 744 745 /* set load time so that error rate can be tracked */ 746 mci->start_time = jiffies; 747 748 mci->bus = edac_get_sysfs_subsys(); 749 750 if (edac_create_sysfs_mci_device(mci, groups)) { 751 edac_mc_printk(mci, KERN_WARNING, 752 "failed to create sysfs device\n"); 753 goto fail1; 754 } 755 756 if (mci->edac_check) { 757 mci->op_state = OP_RUNNING_POLL; 758 759 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function); 760 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec())); 761 762 } else { 763 mci->op_state = OP_RUNNING_INTERRUPT; 764 } 765 766 /* Report action taken */ 767 edac_mc_printk(mci, KERN_INFO, 768 "Giving out device to module %s controller %s: DEV %s (%s)\n", 769 mci->mod_name, mci->ctl_name, mci->dev_name, 770 edac_op_state_to_string(mci->op_state)); 771 772 edac_mc_owner = mci->mod_name; 773 774 mutex_unlock(&mem_ctls_mutex); 775 return 0; 776 777 fail1: 778 del_mc_from_global_list(mci); 779 780 fail0: 781 mutex_unlock(&mem_ctls_mutex); 782 return ret; 783 } 784 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups); 785 786 struct mem_ctl_info *edac_mc_del_mc(struct device *dev) 787 { 788 struct mem_ctl_info *mci; 789 790 edac_dbg(0, "\n"); 791 792 mutex_lock(&mem_ctls_mutex); 793 794 /* find the requested mci struct in the global list */ 795 mci = __find_mci_by_dev(dev); 796 if (mci == NULL) { 797 mutex_unlock(&mem_ctls_mutex); 798 return NULL; 799 } 800 801 /* mark MCI offline: */ 802 mci->op_state = OP_OFFLINE; 803 804 if (del_mc_from_global_list(mci)) 805 edac_mc_owner = NULL; 806 807 mutex_unlock(&mem_ctls_mutex); 808 809 if (mci->edac_check) 810 edac_stop_work(&mci->work); 811 812 /* remove from sysfs */ 813 edac_remove_sysfs_mci_device(mci); 814 815 edac_printk(KERN_INFO, EDAC_MC, 816 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx, 817 mci->mod_name, mci->ctl_name, edac_dev_name(mci)); 818 819 return mci; 820 } 821 EXPORT_SYMBOL_GPL(edac_mc_del_mc); 822 823 static void edac_mc_scrub_block(unsigned long page, unsigned long offset, 824 u32 size) 825 { 826 struct page *pg; 827 void *virt_addr; 828 unsigned long flags = 0; 829 830 edac_dbg(3, "\n"); 831 832 /* ECC error page was not in our memory. Ignore it. */ 833 if (!pfn_valid(page)) 834 return; 835 836 /* Find the actual page structure then map it and fix */ 837 pg = pfn_to_page(page); 838 839 if (PageHighMem(pg)) 840 local_irq_save(flags); 841 842 virt_addr = kmap_atomic(pg); 843 844 /* Perform architecture specific atomic scrub operation */ 845 edac_atomic_scrub(virt_addr + offset, size); 846 847 /* Unmap and complete */ 848 kunmap_atomic(virt_addr); 849 850 if (PageHighMem(pg)) 851 local_irq_restore(flags); 852 } 853 854 /* FIXME - should return -1 */ 855 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page) 856 { 857 struct csrow_info **csrows = mci->csrows; 858 int row, i, j, n; 859 860 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page); 861 row = -1; 862 863 for (i = 0; i < mci->nr_csrows; i++) { 864 struct csrow_info *csrow = csrows[i]; 865 n = 0; 866 for (j = 0; j < csrow->nr_channels; j++) { 867 struct dimm_info *dimm = csrow->channels[j]->dimm; 868 n += dimm->nr_pages; 869 } 870 if (n == 0) 871 continue; 872 873 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n", 874 mci->mc_idx, 875 csrow->first_page, page, csrow->last_page, 876 csrow->page_mask); 877 878 if ((page >= csrow->first_page) && 879 (page <= csrow->last_page) && 880 ((page & csrow->page_mask) == 881 (csrow->first_page & csrow->page_mask))) { 882 row = i; 883 break; 884 } 885 } 886 887 if (row == -1) 888 edac_mc_printk(mci, KERN_ERR, 889 "could not look up page error address %lx\n", 890 (unsigned long)page); 891 892 return row; 893 } 894 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page); 895 896 const char *edac_layer_name[] = { 897 [EDAC_MC_LAYER_BRANCH] = "branch", 898 [EDAC_MC_LAYER_CHANNEL] = "channel", 899 [EDAC_MC_LAYER_SLOT] = "slot", 900 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow", 901 [EDAC_MC_LAYER_ALL_MEM] = "memory", 902 }; 903 EXPORT_SYMBOL_GPL(edac_layer_name); 904 905 static void edac_inc_ce_error(struct mem_ctl_info *mci, 906 bool enable_per_layer_report, 907 const int pos[EDAC_MAX_LAYERS], 908 const u16 count) 909 { 910 int i, index = 0; 911 912 mci->ce_mc += count; 913 914 if (!enable_per_layer_report) { 915 mci->ce_noinfo_count += count; 916 return; 917 } 918 919 for (i = 0; i < mci->n_layers; i++) { 920 if (pos[i] < 0) 921 break; 922 index += pos[i]; 923 mci->ce_per_layer[i][index] += count; 924 925 if (i < mci->n_layers - 1) 926 index *= mci->layers[i + 1].size; 927 } 928 } 929 930 static void edac_inc_ue_error(struct mem_ctl_info *mci, 931 bool enable_per_layer_report, 932 const int pos[EDAC_MAX_LAYERS], 933 const u16 count) 934 { 935 int i, index = 0; 936 937 mci->ue_mc += count; 938 939 if (!enable_per_layer_report) { 940 mci->ue_noinfo_count += count; 941 return; 942 } 943 944 for (i = 0; i < mci->n_layers; i++) { 945 if (pos[i] < 0) 946 break; 947 index += pos[i]; 948 mci->ue_per_layer[i][index] += count; 949 950 if (i < mci->n_layers - 1) 951 index *= mci->layers[i + 1].size; 952 } 953 } 954 955 static void edac_ce_error(struct mem_ctl_info *mci, 956 const u16 error_count, 957 const int pos[EDAC_MAX_LAYERS], 958 const char *msg, 959 const char *location, 960 const char *label, 961 const char *detail, 962 const char *other_detail, 963 const bool enable_per_layer_report, 964 const unsigned long page_frame_number, 965 const unsigned long offset_in_page, 966 long grain) 967 { 968 unsigned long remapped_page; 969 char *msg_aux = ""; 970 971 if (*msg) 972 msg_aux = " "; 973 974 if (edac_mc_get_log_ce()) { 975 if (other_detail && *other_detail) 976 edac_mc_printk(mci, KERN_WARNING, 977 "%d CE %s%son %s (%s %s - %s)\n", 978 error_count, msg, msg_aux, label, 979 location, detail, other_detail); 980 else 981 edac_mc_printk(mci, KERN_WARNING, 982 "%d CE %s%son %s (%s %s)\n", 983 error_count, msg, msg_aux, label, 984 location, detail); 985 } 986 edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count); 987 988 if (mci->scrub_mode == SCRUB_SW_SRC) { 989 /* 990 * Some memory controllers (called MCs below) can remap 991 * memory so that it is still available at a different 992 * address when PCI devices map into memory. 993 * MC's that can't do this, lose the memory where PCI 994 * devices are mapped. This mapping is MC-dependent 995 * and so we call back into the MC driver for it to 996 * map the MC page to a physical (CPU) page which can 997 * then be mapped to a virtual page - which can then 998 * be scrubbed. 999 */ 1000 remapped_page = mci->ctl_page_to_phys ? 1001 mci->ctl_page_to_phys(mci, page_frame_number) : 1002 page_frame_number; 1003 1004 edac_mc_scrub_block(remapped_page, 1005 offset_in_page, grain); 1006 } 1007 } 1008 1009 static void edac_ue_error(struct mem_ctl_info *mci, 1010 const u16 error_count, 1011 const int pos[EDAC_MAX_LAYERS], 1012 const char *msg, 1013 const char *location, 1014 const char *label, 1015 const char *detail, 1016 const char *other_detail, 1017 const bool enable_per_layer_report) 1018 { 1019 char *msg_aux = ""; 1020 1021 if (*msg) 1022 msg_aux = " "; 1023 1024 if (edac_mc_get_log_ue()) { 1025 if (other_detail && *other_detail) 1026 edac_mc_printk(mci, KERN_WARNING, 1027 "%d UE %s%son %s (%s %s - %s)\n", 1028 error_count, msg, msg_aux, label, 1029 location, detail, other_detail); 1030 else 1031 edac_mc_printk(mci, KERN_WARNING, 1032 "%d UE %s%son %s (%s %s)\n", 1033 error_count, msg, msg_aux, label, 1034 location, detail); 1035 } 1036 1037 if (edac_mc_get_panic_on_ue()) { 1038 if (other_detail && *other_detail) 1039 panic("UE %s%son %s (%s%s - %s)\n", 1040 msg, msg_aux, label, location, detail, other_detail); 1041 else 1042 panic("UE %s%son %s (%s%s)\n", 1043 msg, msg_aux, label, location, detail); 1044 } 1045 1046 edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count); 1047 } 1048 1049 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type, 1050 struct mem_ctl_info *mci, 1051 struct edac_raw_error_desc *e) 1052 { 1053 char detail[80]; 1054 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer }; 1055 u8 grain_bits; 1056 1057 /* Sanity-check driver-supplied grain value. */ 1058 if (WARN_ON_ONCE(!e->grain)) 1059 e->grain = 1; 1060 1061 grain_bits = fls_long(e->grain - 1); 1062 1063 /* Report the error via the trace interface */ 1064 if (IS_ENABLED(CONFIG_RAS)) 1065 trace_mc_event(type, e->msg, e->label, e->error_count, 1066 mci->mc_idx, e->top_layer, e->mid_layer, 1067 e->low_layer, 1068 (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page, 1069 grain_bits, e->syndrome, e->other_detail); 1070 1071 /* Memory type dependent details about the error */ 1072 if (type == HW_EVENT_ERR_CORRECTED) { 1073 snprintf(detail, sizeof(detail), 1074 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx", 1075 e->page_frame_number, e->offset_in_page, 1076 e->grain, e->syndrome); 1077 edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label, 1078 detail, e->other_detail, e->enable_per_layer_report, 1079 e->page_frame_number, e->offset_in_page, e->grain); 1080 } else { 1081 snprintf(detail, sizeof(detail), 1082 "page:0x%lx offset:0x%lx grain:%ld", 1083 e->page_frame_number, e->offset_in_page, e->grain); 1084 1085 edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label, 1086 detail, e->other_detail, e->enable_per_layer_report); 1087 } 1088 1089 1090 } 1091 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error); 1092 1093 void edac_mc_handle_error(const enum hw_event_mc_err_type type, 1094 struct mem_ctl_info *mci, 1095 const u16 error_count, 1096 const unsigned long page_frame_number, 1097 const unsigned long offset_in_page, 1098 const unsigned long syndrome, 1099 const int top_layer, 1100 const int mid_layer, 1101 const int low_layer, 1102 const char *msg, 1103 const char *other_detail) 1104 { 1105 struct dimm_info *dimm; 1106 char *p; 1107 int row = -1, chan = -1; 1108 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer }; 1109 int i, n_labels = 0; 1110 struct edac_raw_error_desc *e = &mci->error_desc; 1111 1112 edac_dbg(3, "MC%d\n", mci->mc_idx); 1113 1114 /* Fills the error report buffer */ 1115 memset(e, 0, sizeof (*e)); 1116 e->error_count = error_count; 1117 e->top_layer = top_layer; 1118 e->mid_layer = mid_layer; 1119 e->low_layer = low_layer; 1120 e->page_frame_number = page_frame_number; 1121 e->offset_in_page = offset_in_page; 1122 e->syndrome = syndrome; 1123 e->msg = msg; 1124 e->other_detail = other_detail; 1125 1126 /* 1127 * Check if the event report is consistent and if the memory 1128 * location is known. If it is known, enable_per_layer_report will be 1129 * true, the DIMM(s) label info will be filled and the per-layer 1130 * error counters will be incremented. 1131 */ 1132 for (i = 0; i < mci->n_layers; i++) { 1133 if (pos[i] >= (int)mci->layers[i].size) { 1134 1135 edac_mc_printk(mci, KERN_ERR, 1136 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n", 1137 edac_layer_name[mci->layers[i].type], 1138 pos[i], mci->layers[i].size); 1139 /* 1140 * Instead of just returning it, let's use what's 1141 * known about the error. The increment routines and 1142 * the DIMM filter logic will do the right thing by 1143 * pointing the likely damaged DIMMs. 1144 */ 1145 pos[i] = -1; 1146 } 1147 if (pos[i] >= 0) 1148 e->enable_per_layer_report = true; 1149 } 1150 1151 /* 1152 * Get the dimm label/grain that applies to the match criteria. 1153 * As the error algorithm may not be able to point to just one memory 1154 * stick, the logic here will get all possible labels that could 1155 * pottentially be affected by the error. 1156 * On FB-DIMM memory controllers, for uncorrected errors, it is common 1157 * to have only the MC channel and the MC dimm (also called "branch") 1158 * but the channel is not known, as the memory is arranged in pairs, 1159 * where each memory belongs to a separate channel within the same 1160 * branch. 1161 */ 1162 p = e->label; 1163 *p = '\0'; 1164 1165 mci_for_each_dimm(mci, dimm) { 1166 if (top_layer >= 0 && top_layer != dimm->location[0]) 1167 continue; 1168 if (mid_layer >= 0 && mid_layer != dimm->location[1]) 1169 continue; 1170 if (low_layer >= 0 && low_layer != dimm->location[2]) 1171 continue; 1172 1173 /* get the max grain, over the error match range */ 1174 if (dimm->grain > e->grain) 1175 e->grain = dimm->grain; 1176 1177 /* 1178 * If the error is memory-controller wide, there's no need to 1179 * seek for the affected DIMMs because the whole 1180 * channel/memory controller/... may be affected. 1181 * Also, don't show errors for empty DIMM slots. 1182 */ 1183 if (!e->enable_per_layer_report || !dimm->nr_pages) 1184 continue; 1185 1186 if (n_labels >= EDAC_MAX_LABELS) { 1187 e->enable_per_layer_report = false; 1188 break; 1189 } 1190 n_labels++; 1191 if (p != e->label) { 1192 strcpy(p, OTHER_LABEL); 1193 p += strlen(OTHER_LABEL); 1194 } 1195 strcpy(p, dimm->label); 1196 p += strlen(p); 1197 1198 /* 1199 * get csrow/channel of the DIMM, in order to allow 1200 * incrementing the compat API counters 1201 */ 1202 edac_dbg(4, "%s csrows map: (%d,%d)\n", 1203 mci->csbased ? "rank" : "dimm", 1204 dimm->csrow, dimm->cschannel); 1205 if (row == -1) 1206 row = dimm->csrow; 1207 else if (row >= 0 && row != dimm->csrow) 1208 row = -2; 1209 1210 if (chan == -1) 1211 chan = dimm->cschannel; 1212 else if (chan >= 0 && chan != dimm->cschannel) 1213 chan = -2; 1214 } 1215 1216 if (!e->enable_per_layer_report) { 1217 strcpy(e->label, "any memory"); 1218 } else { 1219 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan); 1220 if (p == e->label) 1221 strcpy(e->label, "unknown memory"); 1222 if (type == HW_EVENT_ERR_CORRECTED) { 1223 if (row >= 0) { 1224 mci->csrows[row]->ce_count += error_count; 1225 if (chan >= 0) 1226 mci->csrows[row]->channels[chan]->ce_count += error_count; 1227 } 1228 } else 1229 if (row >= 0) 1230 mci->csrows[row]->ue_count += error_count; 1231 } 1232 1233 /* Fill the RAM location data */ 1234 p = e->location; 1235 1236 for (i = 0; i < mci->n_layers; i++) { 1237 if (pos[i] < 0) 1238 continue; 1239 1240 p += sprintf(p, "%s:%d ", 1241 edac_layer_name[mci->layers[i].type], 1242 pos[i]); 1243 } 1244 if (p > e->location) 1245 *(p - 1) = '\0'; 1246 1247 edac_raw_mc_handle_error(type, mci, e); 1248 } 1249 EXPORT_SYMBOL_GPL(edac_mc_handle_error); 1250