1 /* 2 * edac_mc kernel module 3 * (C) 2005, 2006 Linux Networx (http://lnxi.com) 4 * This file may be distributed under the terms of the 5 * GNU General Public License. 6 * 7 * Written by Thayne Harbaugh 8 * Based on work by Dan Hollis <goemon at anime dot net> and others. 9 * http://www.anime.net/~goemon/linux-ecc/ 10 * 11 * Modified by Dave Peterson and Doug Thompson 12 * 13 */ 14 15 #include <linux/module.h> 16 #include <linux/proc_fs.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/smp.h> 20 #include <linux/init.h> 21 #include <linux/sysctl.h> 22 #include <linux/highmem.h> 23 #include <linux/timer.h> 24 #include <linux/slab.h> 25 #include <linux/jiffies.h> 26 #include <linux/spinlock.h> 27 #include <linux/list.h> 28 #include <linux/ctype.h> 29 #include <linux/edac.h> 30 #include <linux/bitops.h> 31 #include <linux/uaccess.h> 32 #include <asm/page.h> 33 #include "edac_mc.h" 34 #include "edac_module.h" 35 #include <ras/ras_event.h> 36 37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB 38 #include <asm/edac.h> 39 #else 40 #define edac_atomic_scrub(va, size) do { } while (0) 41 #endif 42 43 int edac_op_state = EDAC_OPSTATE_INVAL; 44 EXPORT_SYMBOL_GPL(edac_op_state); 45 46 /* lock to memory controller's control array */ 47 static DEFINE_MUTEX(mem_ctls_mutex); 48 static LIST_HEAD(mc_devices); 49 50 /* 51 * Used to lock EDAC MC to just one module, avoiding two drivers e. g. 52 * apei/ghes and i7core_edac to be used at the same time. 53 */ 54 static const char *edac_mc_owner; 55 56 static struct mem_ctl_info *error_desc_to_mci(struct edac_raw_error_desc *e) 57 { 58 return container_of(e, struct mem_ctl_info, error_desc); 59 } 60 61 unsigned int edac_dimm_info_location(struct dimm_info *dimm, char *buf, 62 unsigned int len) 63 { 64 struct mem_ctl_info *mci = dimm->mci; 65 int i, n, count = 0; 66 char *p = buf; 67 68 for (i = 0; i < mci->n_layers; i++) { 69 n = scnprintf(p, len, "%s %d ", 70 edac_layer_name[mci->layers[i].type], 71 dimm->location[i]); 72 p += n; 73 len -= n; 74 count += n; 75 } 76 77 return count; 78 } 79 80 #ifdef CONFIG_EDAC_DEBUG 81 82 static void edac_mc_dump_channel(struct rank_info *chan) 83 { 84 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx); 85 edac_dbg(4, " channel = %p\n", chan); 86 edac_dbg(4, " channel->csrow = %p\n", chan->csrow); 87 edac_dbg(4, " channel->dimm = %p\n", chan->dimm); 88 } 89 90 static void edac_mc_dump_dimm(struct dimm_info *dimm) 91 { 92 char location[80]; 93 94 if (!dimm->nr_pages) 95 return; 96 97 edac_dimm_info_location(dimm, location, sizeof(location)); 98 99 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n", 100 dimm->mci->csbased ? "rank" : "dimm", 101 dimm->idx, location, dimm->csrow, dimm->cschannel); 102 edac_dbg(4, " dimm = %p\n", dimm); 103 edac_dbg(4, " dimm->label = '%s'\n", dimm->label); 104 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); 105 edac_dbg(4, " dimm->grain = %d\n", dimm->grain); 106 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); 107 } 108 109 static void edac_mc_dump_csrow(struct csrow_info *csrow) 110 { 111 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx); 112 edac_dbg(4, " csrow = %p\n", csrow); 113 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page); 114 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page); 115 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask); 116 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels); 117 edac_dbg(4, " csrow->channels = %p\n", csrow->channels); 118 edac_dbg(4, " csrow->mci = %p\n", csrow->mci); 119 } 120 121 static void edac_mc_dump_mci(struct mem_ctl_info *mci) 122 { 123 edac_dbg(3, "\tmci = %p\n", mci); 124 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap); 125 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap); 126 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap); 127 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check); 128 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n", 129 mci->nr_csrows, mci->csrows); 130 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n", 131 mci->tot_dimms, mci->dimms); 132 edac_dbg(3, "\tdev = %p\n", mci->pdev); 133 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n", 134 mci->mod_name, mci->ctl_name); 135 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info); 136 } 137 138 #endif /* CONFIG_EDAC_DEBUG */ 139 140 const char * const edac_mem_types[] = { 141 [MEM_EMPTY] = "Empty", 142 [MEM_RESERVED] = "Reserved", 143 [MEM_UNKNOWN] = "Unknown", 144 [MEM_FPM] = "FPM", 145 [MEM_EDO] = "EDO", 146 [MEM_BEDO] = "BEDO", 147 [MEM_SDR] = "Unbuffered-SDR", 148 [MEM_RDR] = "Registered-SDR", 149 [MEM_DDR] = "Unbuffered-DDR", 150 [MEM_RDDR] = "Registered-DDR", 151 [MEM_RMBS] = "RMBS", 152 [MEM_DDR2] = "Unbuffered-DDR2", 153 [MEM_FB_DDR2] = "FullyBuffered-DDR2", 154 [MEM_RDDR2] = "Registered-DDR2", 155 [MEM_XDR] = "XDR", 156 [MEM_DDR3] = "Unbuffered-DDR3", 157 [MEM_RDDR3] = "Registered-DDR3", 158 [MEM_LRDDR3] = "Load-Reduced-DDR3-RAM", 159 [MEM_LPDDR3] = "Low-Power-DDR3-RAM", 160 [MEM_DDR4] = "Unbuffered-DDR4", 161 [MEM_RDDR4] = "Registered-DDR4", 162 [MEM_LPDDR4] = "Low-Power-DDR4-RAM", 163 [MEM_LRDDR4] = "Load-Reduced-DDR4-RAM", 164 [MEM_DDR5] = "Unbuffered-DDR5", 165 [MEM_NVDIMM] = "Non-volatile-RAM", 166 [MEM_WIO2] = "Wide-IO-2", 167 [MEM_HBM2] = "High-bandwidth-memory-Gen2", 168 }; 169 EXPORT_SYMBOL_GPL(edac_mem_types); 170 171 /** 172 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation 173 * @p: pointer to a pointer with the memory offset to be used. At 174 * return, this will be incremented to point to the next offset 175 * @size: Size of the data structure to be reserved 176 * @n_elems: Number of elements that should be reserved 177 * 178 * If 'size' is a constant, the compiler will optimize this whole function 179 * down to either a no-op or the addition of a constant to the value of '*p'. 180 * 181 * The 'p' pointer is absolutely needed to keep the proper advancing 182 * further in memory to the proper offsets when allocating the struct along 183 * with its embedded structs, as edac_device_alloc_ctl_info() does it 184 * above, for example. 185 * 186 * At return, the pointer 'p' will be incremented to be used on a next call 187 * to this function. 188 */ 189 void *edac_align_ptr(void **p, unsigned int size, int n_elems) 190 { 191 unsigned int align, r; 192 void *ptr = *p; 193 194 *p += size * n_elems; 195 196 /* 197 * 'p' can possibly be an unaligned item X such that sizeof(X) is 198 * 'size'. Adjust 'p' so that its alignment is at least as 199 * stringent as what the compiler would provide for X and return 200 * the aligned result. 201 * Here we assume that the alignment of a "long long" is the most 202 * stringent alignment that the compiler will ever provide by default. 203 * As far as I know, this is a reasonable assumption. 204 */ 205 if (size > sizeof(long)) 206 align = sizeof(long long); 207 else if (size > sizeof(int)) 208 align = sizeof(long); 209 else if (size > sizeof(short)) 210 align = sizeof(int); 211 else if (size > sizeof(char)) 212 align = sizeof(short); 213 else 214 return (char *)ptr; 215 216 r = (unsigned long)p % align; 217 218 if (r == 0) 219 return (char *)ptr; 220 221 *p += align - r; 222 223 return (void *)(((unsigned long)ptr) + align - r); 224 } 225 226 static void _edac_mc_free(struct mem_ctl_info *mci) 227 { 228 put_device(&mci->dev); 229 } 230 231 static void mci_release(struct device *dev) 232 { 233 struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev); 234 struct csrow_info *csr; 235 int i, chn, row; 236 237 if (mci->dimms) { 238 for (i = 0; i < mci->tot_dimms; i++) 239 kfree(mci->dimms[i]); 240 kfree(mci->dimms); 241 } 242 243 if (mci->csrows) { 244 for (row = 0; row < mci->nr_csrows; row++) { 245 csr = mci->csrows[row]; 246 if (!csr) 247 continue; 248 249 if (csr->channels) { 250 for (chn = 0; chn < mci->num_cschannel; chn++) 251 kfree(csr->channels[chn]); 252 kfree(csr->channels); 253 } 254 kfree(csr); 255 } 256 kfree(mci->csrows); 257 } 258 kfree(mci); 259 } 260 261 static int edac_mc_alloc_csrows(struct mem_ctl_info *mci) 262 { 263 unsigned int tot_channels = mci->num_cschannel; 264 unsigned int tot_csrows = mci->nr_csrows; 265 unsigned int row, chn; 266 267 /* 268 * Alocate and fill the csrow/channels structs 269 */ 270 mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL); 271 if (!mci->csrows) 272 return -ENOMEM; 273 274 for (row = 0; row < tot_csrows; row++) { 275 struct csrow_info *csr; 276 277 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL); 278 if (!csr) 279 return -ENOMEM; 280 281 mci->csrows[row] = csr; 282 csr->csrow_idx = row; 283 csr->mci = mci; 284 csr->nr_channels = tot_channels; 285 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels), 286 GFP_KERNEL); 287 if (!csr->channels) 288 return -ENOMEM; 289 290 for (chn = 0; chn < tot_channels; chn++) { 291 struct rank_info *chan; 292 293 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL); 294 if (!chan) 295 return -ENOMEM; 296 297 csr->channels[chn] = chan; 298 chan->chan_idx = chn; 299 chan->csrow = csr; 300 } 301 } 302 303 return 0; 304 } 305 306 static int edac_mc_alloc_dimms(struct mem_ctl_info *mci) 307 { 308 unsigned int pos[EDAC_MAX_LAYERS]; 309 unsigned int row, chn, idx; 310 int layer; 311 void *p; 312 313 /* 314 * Allocate and fill the dimm structs 315 */ 316 mci->dimms = kcalloc(mci->tot_dimms, sizeof(*mci->dimms), GFP_KERNEL); 317 if (!mci->dimms) 318 return -ENOMEM; 319 320 memset(&pos, 0, sizeof(pos)); 321 row = 0; 322 chn = 0; 323 for (idx = 0; idx < mci->tot_dimms; idx++) { 324 struct dimm_info *dimm; 325 struct rank_info *chan; 326 int n, len; 327 328 chan = mci->csrows[row]->channels[chn]; 329 330 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL); 331 if (!dimm) 332 return -ENOMEM; 333 mci->dimms[idx] = dimm; 334 dimm->mci = mci; 335 dimm->idx = idx; 336 337 /* 338 * Copy DIMM location and initialize it. 339 */ 340 len = sizeof(dimm->label); 341 p = dimm->label; 342 n = scnprintf(p, len, "mc#%u", mci->mc_idx); 343 p += n; 344 len -= n; 345 for (layer = 0; layer < mci->n_layers; layer++) { 346 n = scnprintf(p, len, "%s#%u", 347 edac_layer_name[mci->layers[layer].type], 348 pos[layer]); 349 p += n; 350 len -= n; 351 dimm->location[layer] = pos[layer]; 352 } 353 354 /* Link it to the csrows old API data */ 355 chan->dimm = dimm; 356 dimm->csrow = row; 357 dimm->cschannel = chn; 358 359 /* Increment csrow location */ 360 if (mci->layers[0].is_virt_csrow) { 361 chn++; 362 if (chn == mci->num_cschannel) { 363 chn = 0; 364 row++; 365 } 366 } else { 367 row++; 368 if (row == mci->nr_csrows) { 369 row = 0; 370 chn++; 371 } 372 } 373 374 /* Increment dimm location */ 375 for (layer = mci->n_layers - 1; layer >= 0; layer--) { 376 pos[layer]++; 377 if (pos[layer] < mci->layers[layer].size) 378 break; 379 pos[layer] = 0; 380 } 381 } 382 383 return 0; 384 } 385 386 struct mem_ctl_info *edac_mc_alloc(unsigned int mc_num, 387 unsigned int n_layers, 388 struct edac_mc_layer *layers, 389 unsigned int sz_pvt) 390 { 391 struct mem_ctl_info *mci; 392 struct edac_mc_layer *layer; 393 unsigned int idx, size, tot_dimms = 1; 394 unsigned int tot_csrows = 1, tot_channels = 1; 395 void *pvt, *ptr = NULL; 396 bool per_rank = false; 397 398 if (WARN_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0)) 399 return NULL; 400 401 /* 402 * Calculate the total amount of dimms and csrows/cschannels while 403 * in the old API emulation mode 404 */ 405 for (idx = 0; idx < n_layers; idx++) { 406 tot_dimms *= layers[idx].size; 407 408 if (layers[idx].is_virt_csrow) 409 tot_csrows *= layers[idx].size; 410 else 411 tot_channels *= layers[idx].size; 412 413 if (layers[idx].type == EDAC_MC_LAYER_CHIP_SELECT) 414 per_rank = true; 415 } 416 417 /* Figure out the offsets of the various items from the start of an mc 418 * structure. We want the alignment of each item to be at least as 419 * stringent as what the compiler would provide if we could simply 420 * hardcode everything into a single struct. 421 */ 422 mci = edac_align_ptr(&ptr, sizeof(*mci), 1); 423 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers); 424 pvt = edac_align_ptr(&ptr, sz_pvt, 1); 425 size = ((unsigned long)pvt) + sz_pvt; 426 427 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n", 428 size, 429 tot_dimms, 430 per_rank ? "ranks" : "dimms", 431 tot_csrows * tot_channels); 432 433 mci = kzalloc(size, GFP_KERNEL); 434 if (mci == NULL) 435 return NULL; 436 437 mci->dev.release = mci_release; 438 device_initialize(&mci->dev); 439 440 /* Adjust pointers so they point within the memory we just allocated 441 * rather than an imaginary chunk of memory located at address 0. 442 */ 443 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer)); 444 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL; 445 446 /* setup index and various internal pointers */ 447 mci->mc_idx = mc_num; 448 mci->tot_dimms = tot_dimms; 449 mci->pvt_info = pvt; 450 mci->n_layers = n_layers; 451 mci->layers = layer; 452 memcpy(mci->layers, layers, sizeof(*layer) * n_layers); 453 mci->nr_csrows = tot_csrows; 454 mci->num_cschannel = tot_channels; 455 mci->csbased = per_rank; 456 457 if (edac_mc_alloc_csrows(mci)) 458 goto error; 459 460 if (edac_mc_alloc_dimms(mci)) 461 goto error; 462 463 mci->op_state = OP_ALLOC; 464 465 return mci; 466 467 error: 468 _edac_mc_free(mci); 469 470 return NULL; 471 } 472 EXPORT_SYMBOL_GPL(edac_mc_alloc); 473 474 void edac_mc_free(struct mem_ctl_info *mci) 475 { 476 edac_dbg(1, "\n"); 477 478 _edac_mc_free(mci); 479 } 480 EXPORT_SYMBOL_GPL(edac_mc_free); 481 482 bool edac_has_mcs(void) 483 { 484 bool ret; 485 486 mutex_lock(&mem_ctls_mutex); 487 488 ret = list_empty(&mc_devices); 489 490 mutex_unlock(&mem_ctls_mutex); 491 492 return !ret; 493 } 494 EXPORT_SYMBOL_GPL(edac_has_mcs); 495 496 /* Caller must hold mem_ctls_mutex */ 497 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev) 498 { 499 struct mem_ctl_info *mci; 500 struct list_head *item; 501 502 edac_dbg(3, "\n"); 503 504 list_for_each(item, &mc_devices) { 505 mci = list_entry(item, struct mem_ctl_info, link); 506 507 if (mci->pdev == dev) 508 return mci; 509 } 510 511 return NULL; 512 } 513 514 /** 515 * find_mci_by_dev 516 * 517 * scan list of controllers looking for the one that manages 518 * the 'dev' device 519 * @dev: pointer to a struct device related with the MCI 520 */ 521 struct mem_ctl_info *find_mci_by_dev(struct device *dev) 522 { 523 struct mem_ctl_info *ret; 524 525 mutex_lock(&mem_ctls_mutex); 526 ret = __find_mci_by_dev(dev); 527 mutex_unlock(&mem_ctls_mutex); 528 529 return ret; 530 } 531 EXPORT_SYMBOL_GPL(find_mci_by_dev); 532 533 /* 534 * edac_mc_workq_function 535 * performs the operation scheduled by a workq request 536 */ 537 static void edac_mc_workq_function(struct work_struct *work_req) 538 { 539 struct delayed_work *d_work = to_delayed_work(work_req); 540 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work); 541 542 mutex_lock(&mem_ctls_mutex); 543 544 if (mci->op_state != OP_RUNNING_POLL) { 545 mutex_unlock(&mem_ctls_mutex); 546 return; 547 } 548 549 if (edac_op_state == EDAC_OPSTATE_POLL) 550 mci->edac_check(mci); 551 552 mutex_unlock(&mem_ctls_mutex); 553 554 /* Queue ourselves again. */ 555 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec())); 556 } 557 558 /* 559 * edac_mc_reset_delay_period(unsigned long value) 560 * 561 * user space has updated our poll period value, need to 562 * reset our workq delays 563 */ 564 void edac_mc_reset_delay_period(unsigned long value) 565 { 566 struct mem_ctl_info *mci; 567 struct list_head *item; 568 569 mutex_lock(&mem_ctls_mutex); 570 571 list_for_each(item, &mc_devices) { 572 mci = list_entry(item, struct mem_ctl_info, link); 573 574 if (mci->op_state == OP_RUNNING_POLL) 575 edac_mod_work(&mci->work, value); 576 } 577 mutex_unlock(&mem_ctls_mutex); 578 } 579 580 581 582 /* Return 0 on success, 1 on failure. 583 * Before calling this function, caller must 584 * assign a unique value to mci->mc_idx. 585 * 586 * locking model: 587 * 588 * called with the mem_ctls_mutex lock held 589 */ 590 static int add_mc_to_global_list(struct mem_ctl_info *mci) 591 { 592 struct list_head *item, *insert_before; 593 struct mem_ctl_info *p; 594 595 insert_before = &mc_devices; 596 597 p = __find_mci_by_dev(mci->pdev); 598 if (unlikely(p != NULL)) 599 goto fail0; 600 601 list_for_each(item, &mc_devices) { 602 p = list_entry(item, struct mem_ctl_info, link); 603 604 if (p->mc_idx >= mci->mc_idx) { 605 if (unlikely(p->mc_idx == mci->mc_idx)) 606 goto fail1; 607 608 insert_before = item; 609 break; 610 } 611 } 612 613 list_add_tail_rcu(&mci->link, insert_before); 614 return 0; 615 616 fail0: 617 edac_printk(KERN_WARNING, EDAC_MC, 618 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev), 619 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx); 620 return 1; 621 622 fail1: 623 edac_printk(KERN_WARNING, EDAC_MC, 624 "bug in low-level driver: attempt to assign\n" 625 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__); 626 return 1; 627 } 628 629 static int del_mc_from_global_list(struct mem_ctl_info *mci) 630 { 631 list_del_rcu(&mci->link); 632 633 /* these are for safe removal of devices from global list while 634 * NMI handlers may be traversing list 635 */ 636 synchronize_rcu(); 637 INIT_LIST_HEAD(&mci->link); 638 639 return list_empty(&mc_devices); 640 } 641 642 struct mem_ctl_info *edac_mc_find(int idx) 643 { 644 struct mem_ctl_info *mci; 645 struct list_head *item; 646 647 mutex_lock(&mem_ctls_mutex); 648 649 list_for_each(item, &mc_devices) { 650 mci = list_entry(item, struct mem_ctl_info, link); 651 if (mci->mc_idx == idx) 652 goto unlock; 653 } 654 655 mci = NULL; 656 unlock: 657 mutex_unlock(&mem_ctls_mutex); 658 return mci; 659 } 660 EXPORT_SYMBOL(edac_mc_find); 661 662 const char *edac_get_owner(void) 663 { 664 return edac_mc_owner; 665 } 666 EXPORT_SYMBOL_GPL(edac_get_owner); 667 668 /* FIXME - should a warning be printed if no error detection? correction? */ 669 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci, 670 const struct attribute_group **groups) 671 { 672 int ret = -EINVAL; 673 edac_dbg(0, "\n"); 674 675 #ifdef CONFIG_EDAC_DEBUG 676 if (edac_debug_level >= 3) 677 edac_mc_dump_mci(mci); 678 679 if (edac_debug_level >= 4) { 680 struct dimm_info *dimm; 681 int i; 682 683 for (i = 0; i < mci->nr_csrows; i++) { 684 struct csrow_info *csrow = mci->csrows[i]; 685 u32 nr_pages = 0; 686 int j; 687 688 for (j = 0; j < csrow->nr_channels; j++) 689 nr_pages += csrow->channels[j]->dimm->nr_pages; 690 if (!nr_pages) 691 continue; 692 edac_mc_dump_csrow(csrow); 693 for (j = 0; j < csrow->nr_channels; j++) 694 if (csrow->channels[j]->dimm->nr_pages) 695 edac_mc_dump_channel(csrow->channels[j]); 696 } 697 698 mci_for_each_dimm(mci, dimm) 699 edac_mc_dump_dimm(dimm); 700 } 701 #endif 702 mutex_lock(&mem_ctls_mutex); 703 704 if (edac_mc_owner && edac_mc_owner != mci->mod_name) { 705 ret = -EPERM; 706 goto fail0; 707 } 708 709 if (add_mc_to_global_list(mci)) 710 goto fail0; 711 712 /* set load time so that error rate can be tracked */ 713 mci->start_time = jiffies; 714 715 mci->bus = edac_get_sysfs_subsys(); 716 717 if (edac_create_sysfs_mci_device(mci, groups)) { 718 edac_mc_printk(mci, KERN_WARNING, 719 "failed to create sysfs device\n"); 720 goto fail1; 721 } 722 723 if (mci->edac_check) { 724 mci->op_state = OP_RUNNING_POLL; 725 726 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function); 727 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec())); 728 729 } else { 730 mci->op_state = OP_RUNNING_INTERRUPT; 731 } 732 733 /* Report action taken */ 734 edac_mc_printk(mci, KERN_INFO, 735 "Giving out device to module %s controller %s: DEV %s (%s)\n", 736 mci->mod_name, mci->ctl_name, mci->dev_name, 737 edac_op_state_to_string(mci->op_state)); 738 739 edac_mc_owner = mci->mod_name; 740 741 mutex_unlock(&mem_ctls_mutex); 742 return 0; 743 744 fail1: 745 del_mc_from_global_list(mci); 746 747 fail0: 748 mutex_unlock(&mem_ctls_mutex); 749 return ret; 750 } 751 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups); 752 753 struct mem_ctl_info *edac_mc_del_mc(struct device *dev) 754 { 755 struct mem_ctl_info *mci; 756 757 edac_dbg(0, "\n"); 758 759 mutex_lock(&mem_ctls_mutex); 760 761 /* find the requested mci struct in the global list */ 762 mci = __find_mci_by_dev(dev); 763 if (mci == NULL) { 764 mutex_unlock(&mem_ctls_mutex); 765 return NULL; 766 } 767 768 /* mark MCI offline: */ 769 mci->op_state = OP_OFFLINE; 770 771 if (del_mc_from_global_list(mci)) 772 edac_mc_owner = NULL; 773 774 mutex_unlock(&mem_ctls_mutex); 775 776 if (mci->edac_check) 777 edac_stop_work(&mci->work); 778 779 /* remove from sysfs */ 780 edac_remove_sysfs_mci_device(mci); 781 782 edac_printk(KERN_INFO, EDAC_MC, 783 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx, 784 mci->mod_name, mci->ctl_name, edac_dev_name(mci)); 785 786 return mci; 787 } 788 EXPORT_SYMBOL_GPL(edac_mc_del_mc); 789 790 static void edac_mc_scrub_block(unsigned long page, unsigned long offset, 791 u32 size) 792 { 793 struct page *pg; 794 void *virt_addr; 795 unsigned long flags = 0; 796 797 edac_dbg(3, "\n"); 798 799 /* ECC error page was not in our memory. Ignore it. */ 800 if (!pfn_valid(page)) 801 return; 802 803 /* Find the actual page structure then map it and fix */ 804 pg = pfn_to_page(page); 805 806 if (PageHighMem(pg)) 807 local_irq_save(flags); 808 809 virt_addr = kmap_atomic(pg); 810 811 /* Perform architecture specific atomic scrub operation */ 812 edac_atomic_scrub(virt_addr + offset, size); 813 814 /* Unmap and complete */ 815 kunmap_atomic(virt_addr); 816 817 if (PageHighMem(pg)) 818 local_irq_restore(flags); 819 } 820 821 /* FIXME - should return -1 */ 822 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page) 823 { 824 struct csrow_info **csrows = mci->csrows; 825 int row, i, j, n; 826 827 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page); 828 row = -1; 829 830 for (i = 0; i < mci->nr_csrows; i++) { 831 struct csrow_info *csrow = csrows[i]; 832 n = 0; 833 for (j = 0; j < csrow->nr_channels; j++) { 834 struct dimm_info *dimm = csrow->channels[j]->dimm; 835 n += dimm->nr_pages; 836 } 837 if (n == 0) 838 continue; 839 840 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n", 841 mci->mc_idx, 842 csrow->first_page, page, csrow->last_page, 843 csrow->page_mask); 844 845 if ((page >= csrow->first_page) && 846 (page <= csrow->last_page) && 847 ((page & csrow->page_mask) == 848 (csrow->first_page & csrow->page_mask))) { 849 row = i; 850 break; 851 } 852 } 853 854 if (row == -1) 855 edac_mc_printk(mci, KERN_ERR, 856 "could not look up page error address %lx\n", 857 (unsigned long)page); 858 859 return row; 860 } 861 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page); 862 863 const char *edac_layer_name[] = { 864 [EDAC_MC_LAYER_BRANCH] = "branch", 865 [EDAC_MC_LAYER_CHANNEL] = "channel", 866 [EDAC_MC_LAYER_SLOT] = "slot", 867 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow", 868 [EDAC_MC_LAYER_ALL_MEM] = "memory", 869 }; 870 EXPORT_SYMBOL_GPL(edac_layer_name); 871 872 static void edac_inc_ce_error(struct edac_raw_error_desc *e) 873 { 874 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer }; 875 struct mem_ctl_info *mci = error_desc_to_mci(e); 876 struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]); 877 878 mci->ce_mc += e->error_count; 879 880 if (dimm) 881 dimm->ce_count += e->error_count; 882 else 883 mci->ce_noinfo_count += e->error_count; 884 } 885 886 static void edac_inc_ue_error(struct edac_raw_error_desc *e) 887 { 888 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer }; 889 struct mem_ctl_info *mci = error_desc_to_mci(e); 890 struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]); 891 892 mci->ue_mc += e->error_count; 893 894 if (dimm) 895 dimm->ue_count += e->error_count; 896 else 897 mci->ue_noinfo_count += e->error_count; 898 } 899 900 static void edac_ce_error(struct edac_raw_error_desc *e) 901 { 902 struct mem_ctl_info *mci = error_desc_to_mci(e); 903 unsigned long remapped_page; 904 905 if (edac_mc_get_log_ce()) { 906 edac_mc_printk(mci, KERN_WARNING, 907 "%d CE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx%s%s)\n", 908 e->error_count, e->msg, 909 *e->msg ? " " : "", 910 e->label, e->location, e->page_frame_number, e->offset_in_page, 911 e->grain, e->syndrome, 912 *e->other_detail ? " - " : "", 913 e->other_detail); 914 } 915 916 edac_inc_ce_error(e); 917 918 if (mci->scrub_mode == SCRUB_SW_SRC) { 919 /* 920 * Some memory controllers (called MCs below) can remap 921 * memory so that it is still available at a different 922 * address when PCI devices map into memory. 923 * MC's that can't do this, lose the memory where PCI 924 * devices are mapped. This mapping is MC-dependent 925 * and so we call back into the MC driver for it to 926 * map the MC page to a physical (CPU) page which can 927 * then be mapped to a virtual page - which can then 928 * be scrubbed. 929 */ 930 remapped_page = mci->ctl_page_to_phys ? 931 mci->ctl_page_to_phys(mci, e->page_frame_number) : 932 e->page_frame_number; 933 934 edac_mc_scrub_block(remapped_page, e->offset_in_page, e->grain); 935 } 936 } 937 938 static void edac_ue_error(struct edac_raw_error_desc *e) 939 { 940 struct mem_ctl_info *mci = error_desc_to_mci(e); 941 942 if (edac_mc_get_log_ue()) { 943 edac_mc_printk(mci, KERN_WARNING, 944 "%d UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n", 945 e->error_count, e->msg, 946 *e->msg ? " " : "", 947 e->label, e->location, e->page_frame_number, e->offset_in_page, 948 e->grain, 949 *e->other_detail ? " - " : "", 950 e->other_detail); 951 } 952 953 edac_inc_ue_error(e); 954 955 if (edac_mc_get_panic_on_ue()) { 956 panic("UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n", 957 e->msg, 958 *e->msg ? " " : "", 959 e->label, e->location, e->page_frame_number, e->offset_in_page, 960 e->grain, 961 *e->other_detail ? " - " : "", 962 e->other_detail); 963 } 964 } 965 966 static void edac_inc_csrow(struct edac_raw_error_desc *e, int row, int chan) 967 { 968 struct mem_ctl_info *mci = error_desc_to_mci(e); 969 enum hw_event_mc_err_type type = e->type; 970 u16 count = e->error_count; 971 972 if (row < 0) 973 return; 974 975 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan); 976 977 if (type == HW_EVENT_ERR_CORRECTED) { 978 mci->csrows[row]->ce_count += count; 979 if (chan >= 0) 980 mci->csrows[row]->channels[chan]->ce_count += count; 981 } else { 982 mci->csrows[row]->ue_count += count; 983 } 984 } 985 986 void edac_raw_mc_handle_error(struct edac_raw_error_desc *e) 987 { 988 struct mem_ctl_info *mci = error_desc_to_mci(e); 989 u8 grain_bits; 990 991 /* Sanity-check driver-supplied grain value. */ 992 if (WARN_ON_ONCE(!e->grain)) 993 e->grain = 1; 994 995 grain_bits = fls_long(e->grain - 1); 996 997 /* Report the error via the trace interface */ 998 if (IS_ENABLED(CONFIG_RAS)) 999 trace_mc_event(e->type, e->msg, e->label, e->error_count, 1000 mci->mc_idx, e->top_layer, e->mid_layer, 1001 e->low_layer, 1002 (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page, 1003 grain_bits, e->syndrome, e->other_detail); 1004 1005 if (e->type == HW_EVENT_ERR_CORRECTED) 1006 edac_ce_error(e); 1007 else 1008 edac_ue_error(e); 1009 } 1010 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error); 1011 1012 void edac_mc_handle_error(const enum hw_event_mc_err_type type, 1013 struct mem_ctl_info *mci, 1014 const u16 error_count, 1015 const unsigned long page_frame_number, 1016 const unsigned long offset_in_page, 1017 const unsigned long syndrome, 1018 const int top_layer, 1019 const int mid_layer, 1020 const int low_layer, 1021 const char *msg, 1022 const char *other_detail) 1023 { 1024 struct dimm_info *dimm; 1025 char *p, *end; 1026 int row = -1, chan = -1; 1027 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer }; 1028 int i, n_labels = 0; 1029 struct edac_raw_error_desc *e = &mci->error_desc; 1030 bool any_memory = true; 1031 const char *prefix; 1032 1033 edac_dbg(3, "MC%d\n", mci->mc_idx); 1034 1035 /* Fills the error report buffer */ 1036 memset(e, 0, sizeof (*e)); 1037 e->error_count = error_count; 1038 e->type = type; 1039 e->top_layer = top_layer; 1040 e->mid_layer = mid_layer; 1041 e->low_layer = low_layer; 1042 e->page_frame_number = page_frame_number; 1043 e->offset_in_page = offset_in_page; 1044 e->syndrome = syndrome; 1045 /* need valid strings here for both: */ 1046 e->msg = msg ?: ""; 1047 e->other_detail = other_detail ?: ""; 1048 1049 /* 1050 * Check if the event report is consistent and if the memory location is 1051 * known. If it is, the DIMM(s) label info will be filled and the DIMM's 1052 * error counters will be incremented. 1053 */ 1054 for (i = 0; i < mci->n_layers; i++) { 1055 if (pos[i] >= (int)mci->layers[i].size) { 1056 1057 edac_mc_printk(mci, KERN_ERR, 1058 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n", 1059 edac_layer_name[mci->layers[i].type], 1060 pos[i], mci->layers[i].size); 1061 /* 1062 * Instead of just returning it, let's use what's 1063 * known about the error. The increment routines and 1064 * the DIMM filter logic will do the right thing by 1065 * pointing the likely damaged DIMMs. 1066 */ 1067 pos[i] = -1; 1068 } 1069 if (pos[i] >= 0) 1070 any_memory = false; 1071 } 1072 1073 /* 1074 * Get the dimm label/grain that applies to the match criteria. 1075 * As the error algorithm may not be able to point to just one memory 1076 * stick, the logic here will get all possible labels that could 1077 * pottentially be affected by the error. 1078 * On FB-DIMM memory controllers, for uncorrected errors, it is common 1079 * to have only the MC channel and the MC dimm (also called "branch") 1080 * but the channel is not known, as the memory is arranged in pairs, 1081 * where each memory belongs to a separate channel within the same 1082 * branch. 1083 */ 1084 p = e->label; 1085 *p = '\0'; 1086 end = p + sizeof(e->label); 1087 prefix = ""; 1088 1089 mci_for_each_dimm(mci, dimm) { 1090 if (top_layer >= 0 && top_layer != dimm->location[0]) 1091 continue; 1092 if (mid_layer >= 0 && mid_layer != dimm->location[1]) 1093 continue; 1094 if (low_layer >= 0 && low_layer != dimm->location[2]) 1095 continue; 1096 1097 /* get the max grain, over the error match range */ 1098 if (dimm->grain > e->grain) 1099 e->grain = dimm->grain; 1100 1101 /* 1102 * If the error is memory-controller wide, there's no need to 1103 * seek for the affected DIMMs because the whole channel/memory 1104 * controller/... may be affected. Also, don't show errors for 1105 * empty DIMM slots. 1106 */ 1107 if (!dimm->nr_pages) 1108 continue; 1109 1110 n_labels++; 1111 if (n_labels > EDAC_MAX_LABELS) { 1112 p = e->label; 1113 *p = '\0'; 1114 } else { 1115 p += scnprintf(p, end - p, "%s%s", prefix, dimm->label); 1116 prefix = OTHER_LABEL; 1117 } 1118 1119 /* 1120 * get csrow/channel of the DIMM, in order to allow 1121 * incrementing the compat API counters 1122 */ 1123 edac_dbg(4, "%s csrows map: (%d,%d)\n", 1124 mci->csbased ? "rank" : "dimm", 1125 dimm->csrow, dimm->cschannel); 1126 if (row == -1) 1127 row = dimm->csrow; 1128 else if (row >= 0 && row != dimm->csrow) 1129 row = -2; 1130 1131 if (chan == -1) 1132 chan = dimm->cschannel; 1133 else if (chan >= 0 && chan != dimm->cschannel) 1134 chan = -2; 1135 } 1136 1137 if (any_memory) 1138 strscpy(e->label, "any memory", sizeof(e->label)); 1139 else if (!*e->label) 1140 strscpy(e->label, "unknown memory", sizeof(e->label)); 1141 1142 edac_inc_csrow(e, row, chan); 1143 1144 /* Fill the RAM location data */ 1145 p = e->location; 1146 end = p + sizeof(e->location); 1147 prefix = ""; 1148 1149 for (i = 0; i < mci->n_layers; i++) { 1150 if (pos[i] < 0) 1151 continue; 1152 1153 p += scnprintf(p, end - p, "%s%s:%d", prefix, 1154 edac_layer_name[mci->layers[i].type], pos[i]); 1155 prefix = " "; 1156 } 1157 1158 edac_raw_mc_handle_error(e); 1159 } 1160 EXPORT_SYMBOL_GPL(edac_mc_handle_error); 1161