xref: /openbmc/linux/drivers/edac/edac_mc.c (revision 61c610ec)
1 /*
2  * edac_mc kernel module
3  * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Thayne Harbaugh
8  * Based on work by Dan Hollis <goemon at anime dot net> and others.
9  *	http://www.anime.net/~goemon/linux-ecc/
10  *
11  * Modified by Dave Peterson and Doug Thompson
12  *
13  */
14 
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <asm/uaccess.h>
32 #include <asm/page.h>
33 #include "edac_core.h"
34 #include "edac_module.h"
35 #include <ras/ras_event.h>
36 
37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB
38 #include <asm/edac.h>
39 #else
40 #define edac_atomic_scrub(va, size) do { } while (0)
41 #endif
42 
43 /* lock to memory controller's control array */
44 static DEFINE_MUTEX(mem_ctls_mutex);
45 static LIST_HEAD(mc_devices);
46 
47 /*
48  * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
49  *	apei/ghes and i7core_edac to be used at the same time.
50  */
51 static void const *edac_mc_owner;
52 
53 static struct bus_type mc_bus[EDAC_MAX_MCS];
54 
55 unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
56 			         unsigned len)
57 {
58 	struct mem_ctl_info *mci = dimm->mci;
59 	int i, n, count = 0;
60 	char *p = buf;
61 
62 	for (i = 0; i < mci->n_layers; i++) {
63 		n = snprintf(p, len, "%s %d ",
64 			      edac_layer_name[mci->layers[i].type],
65 			      dimm->location[i]);
66 		p += n;
67 		len -= n;
68 		count += n;
69 		if (!len)
70 			break;
71 	}
72 
73 	return count;
74 }
75 
76 #ifdef CONFIG_EDAC_DEBUG
77 
78 static void edac_mc_dump_channel(struct rank_info *chan)
79 {
80 	edac_dbg(4, "  channel->chan_idx = %d\n", chan->chan_idx);
81 	edac_dbg(4, "    channel = %p\n", chan);
82 	edac_dbg(4, "    channel->csrow = %p\n", chan->csrow);
83 	edac_dbg(4, "    channel->dimm = %p\n", chan->dimm);
84 }
85 
86 static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
87 {
88 	char location[80];
89 
90 	edac_dimm_info_location(dimm, location, sizeof(location));
91 
92 	edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
93 		 dimm->mci->csbased ? "rank" : "dimm",
94 		 number, location, dimm->csrow, dimm->cschannel);
95 	edac_dbg(4, "  dimm = %p\n", dimm);
96 	edac_dbg(4, "  dimm->label = '%s'\n", dimm->label);
97 	edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
98 	edac_dbg(4, "  dimm->grain = %d\n", dimm->grain);
99 	edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
100 }
101 
102 static void edac_mc_dump_csrow(struct csrow_info *csrow)
103 {
104 	edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
105 	edac_dbg(4, "  csrow = %p\n", csrow);
106 	edac_dbg(4, "  csrow->first_page = 0x%lx\n", csrow->first_page);
107 	edac_dbg(4, "  csrow->last_page = 0x%lx\n", csrow->last_page);
108 	edac_dbg(4, "  csrow->page_mask = 0x%lx\n", csrow->page_mask);
109 	edac_dbg(4, "  csrow->nr_channels = %d\n", csrow->nr_channels);
110 	edac_dbg(4, "  csrow->channels = %p\n", csrow->channels);
111 	edac_dbg(4, "  csrow->mci = %p\n", csrow->mci);
112 }
113 
114 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
115 {
116 	edac_dbg(3, "\tmci = %p\n", mci);
117 	edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
118 	edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
119 	edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
120 	edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
121 	edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
122 		 mci->nr_csrows, mci->csrows);
123 	edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
124 		 mci->tot_dimms, mci->dimms);
125 	edac_dbg(3, "\tdev = %p\n", mci->pdev);
126 	edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
127 		 mci->mod_name, mci->ctl_name);
128 	edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
129 }
130 
131 #endif				/* CONFIG_EDAC_DEBUG */
132 
133 const char * const edac_mem_types[] = {
134 	[MEM_EMPTY]	= "Empty csrow",
135 	[MEM_RESERVED]	= "Reserved csrow type",
136 	[MEM_UNKNOWN]	= "Unknown csrow type",
137 	[MEM_FPM]	= "Fast page mode RAM",
138 	[MEM_EDO]	= "Extended data out RAM",
139 	[MEM_BEDO]	= "Burst Extended data out RAM",
140 	[MEM_SDR]	= "Single data rate SDRAM",
141 	[MEM_RDR]	= "Registered single data rate SDRAM",
142 	[MEM_DDR]	= "Double data rate SDRAM",
143 	[MEM_RDDR]	= "Registered Double data rate SDRAM",
144 	[MEM_RMBS]	= "Rambus DRAM",
145 	[MEM_DDR2]	= "Unbuffered DDR2 RAM",
146 	[MEM_FB_DDR2]	= "Fully buffered DDR2",
147 	[MEM_RDDR2]	= "Registered DDR2 RAM",
148 	[MEM_XDR]	= "Rambus XDR",
149 	[MEM_DDR3]	= "Unbuffered DDR3 RAM",
150 	[MEM_RDDR3]	= "Registered DDR3 RAM",
151 	[MEM_LRDDR3]	= "Load-Reduced DDR3 RAM",
152 	[MEM_DDR4]	= "Unbuffered DDR4 RAM",
153 	[MEM_RDDR4]	= "Registered DDR4 RAM",
154 };
155 EXPORT_SYMBOL_GPL(edac_mem_types);
156 
157 /**
158  * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
159  * @p:		pointer to a pointer with the memory offset to be used. At
160  *		return, this will be incremented to point to the next offset
161  * @size:	Size of the data structure to be reserved
162  * @n_elems:	Number of elements that should be reserved
163  *
164  * If 'size' is a constant, the compiler will optimize this whole function
165  * down to either a no-op or the addition of a constant to the value of '*p'.
166  *
167  * The 'p' pointer is absolutely needed to keep the proper advancing
168  * further in memory to the proper offsets when allocating the struct along
169  * with its embedded structs, as edac_device_alloc_ctl_info() does it
170  * above, for example.
171  *
172  * At return, the pointer 'p' will be incremented to be used on a next call
173  * to this function.
174  */
175 void *edac_align_ptr(void **p, unsigned size, int n_elems)
176 {
177 	unsigned align, r;
178 	void *ptr = *p;
179 
180 	*p += size * n_elems;
181 
182 	/*
183 	 * 'p' can possibly be an unaligned item X such that sizeof(X) is
184 	 * 'size'.  Adjust 'p' so that its alignment is at least as
185 	 * stringent as what the compiler would provide for X and return
186 	 * the aligned result.
187 	 * Here we assume that the alignment of a "long long" is the most
188 	 * stringent alignment that the compiler will ever provide by default.
189 	 * As far as I know, this is a reasonable assumption.
190 	 */
191 	if (size > sizeof(long))
192 		align = sizeof(long long);
193 	else if (size > sizeof(int))
194 		align = sizeof(long);
195 	else if (size > sizeof(short))
196 		align = sizeof(int);
197 	else if (size > sizeof(char))
198 		align = sizeof(short);
199 	else
200 		return (char *)ptr;
201 
202 	r = (unsigned long)p % align;
203 
204 	if (r == 0)
205 		return (char *)ptr;
206 
207 	*p += align - r;
208 
209 	return (void *)(((unsigned long)ptr) + align - r);
210 }
211 
212 static void _edac_mc_free(struct mem_ctl_info *mci)
213 {
214 	int i, chn, row;
215 	struct csrow_info *csr;
216 	const unsigned int tot_dimms = mci->tot_dimms;
217 	const unsigned int tot_channels = mci->num_cschannel;
218 	const unsigned int tot_csrows = mci->nr_csrows;
219 
220 	if (mci->dimms) {
221 		for (i = 0; i < tot_dimms; i++)
222 			kfree(mci->dimms[i]);
223 		kfree(mci->dimms);
224 	}
225 	if (mci->csrows) {
226 		for (row = 0; row < tot_csrows; row++) {
227 			csr = mci->csrows[row];
228 			if (csr) {
229 				if (csr->channels) {
230 					for (chn = 0; chn < tot_channels; chn++)
231 						kfree(csr->channels[chn]);
232 					kfree(csr->channels);
233 				}
234 				kfree(csr);
235 			}
236 		}
237 		kfree(mci->csrows);
238 	}
239 	kfree(mci);
240 }
241 
242 /**
243  * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure
244  * @mc_num:		Memory controller number
245  * @n_layers:		Number of MC hierarchy layers
246  * layers:		Describes each layer as seen by the Memory Controller
247  * @size_pvt:		size of private storage needed
248  *
249  *
250  * Everything is kmalloc'ed as one big chunk - more efficient.
251  * Only can be used if all structures have the same lifetime - otherwise
252  * you have to allocate and initialize your own structures.
253  *
254  * Use edac_mc_free() to free mc structures allocated by this function.
255  *
256  * NOTE: drivers handle multi-rank memories in different ways: in some
257  * drivers, one multi-rank memory stick is mapped as one entry, while, in
258  * others, a single multi-rank memory stick would be mapped into several
259  * entries. Currently, this function will allocate multiple struct dimm_info
260  * on such scenarios, as grouping the multiple ranks require drivers change.
261  *
262  * Returns:
263  *	On failure: NULL
264  *	On success: struct mem_ctl_info pointer
265  */
266 struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
267 				   unsigned n_layers,
268 				   struct edac_mc_layer *layers,
269 				   unsigned sz_pvt)
270 {
271 	struct mem_ctl_info *mci;
272 	struct edac_mc_layer *layer;
273 	struct csrow_info *csr;
274 	struct rank_info *chan;
275 	struct dimm_info *dimm;
276 	u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
277 	unsigned pos[EDAC_MAX_LAYERS];
278 	unsigned size, tot_dimms = 1, count = 1;
279 	unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
280 	void *pvt, *p, *ptr = NULL;
281 	int i, j, row, chn, n, len, off;
282 	bool per_rank = false;
283 
284 	BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
285 	/*
286 	 * Calculate the total amount of dimms and csrows/cschannels while
287 	 * in the old API emulation mode
288 	 */
289 	for (i = 0; i < n_layers; i++) {
290 		tot_dimms *= layers[i].size;
291 		if (layers[i].is_virt_csrow)
292 			tot_csrows *= layers[i].size;
293 		else
294 			tot_channels *= layers[i].size;
295 
296 		if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
297 			per_rank = true;
298 	}
299 
300 	/* Figure out the offsets of the various items from the start of an mc
301 	 * structure.  We want the alignment of each item to be at least as
302 	 * stringent as what the compiler would provide if we could simply
303 	 * hardcode everything into a single struct.
304 	 */
305 	mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
306 	layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
307 	for (i = 0; i < n_layers; i++) {
308 		count *= layers[i].size;
309 		edac_dbg(4, "errcount layer %d size %d\n", i, count);
310 		ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
311 		ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
312 		tot_errcount += 2 * count;
313 	}
314 
315 	edac_dbg(4, "allocating %d error counters\n", tot_errcount);
316 	pvt = edac_align_ptr(&ptr, sz_pvt, 1);
317 	size = ((unsigned long)pvt) + sz_pvt;
318 
319 	edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
320 		 size,
321 		 tot_dimms,
322 		 per_rank ? "ranks" : "dimms",
323 		 tot_csrows * tot_channels);
324 
325 	mci = kzalloc(size, GFP_KERNEL);
326 	if (mci == NULL)
327 		return NULL;
328 
329 	/* Adjust pointers so they point within the memory we just allocated
330 	 * rather than an imaginary chunk of memory located at address 0.
331 	 */
332 	layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
333 	for (i = 0; i < n_layers; i++) {
334 		mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
335 		mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
336 	}
337 	pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
338 
339 	/* setup index and various internal pointers */
340 	mci->mc_idx = mc_num;
341 	mci->tot_dimms = tot_dimms;
342 	mci->pvt_info = pvt;
343 	mci->n_layers = n_layers;
344 	mci->layers = layer;
345 	memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
346 	mci->nr_csrows = tot_csrows;
347 	mci->num_cschannel = tot_channels;
348 	mci->csbased = per_rank;
349 
350 	/*
351 	 * Alocate and fill the csrow/channels structs
352 	 */
353 	mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
354 	if (!mci->csrows)
355 		goto error;
356 	for (row = 0; row < tot_csrows; row++) {
357 		csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
358 		if (!csr)
359 			goto error;
360 		mci->csrows[row] = csr;
361 		csr->csrow_idx = row;
362 		csr->mci = mci;
363 		csr->nr_channels = tot_channels;
364 		csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
365 					GFP_KERNEL);
366 		if (!csr->channels)
367 			goto error;
368 
369 		for (chn = 0; chn < tot_channels; chn++) {
370 			chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
371 			if (!chan)
372 				goto error;
373 			csr->channels[chn] = chan;
374 			chan->chan_idx = chn;
375 			chan->csrow = csr;
376 		}
377 	}
378 
379 	/*
380 	 * Allocate and fill the dimm structs
381 	 */
382 	mci->dimms  = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
383 	if (!mci->dimms)
384 		goto error;
385 
386 	memset(&pos, 0, sizeof(pos));
387 	row = 0;
388 	chn = 0;
389 	for (i = 0; i < tot_dimms; i++) {
390 		chan = mci->csrows[row]->channels[chn];
391 		off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
392 		if (off < 0 || off >= tot_dimms) {
393 			edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
394 			goto error;
395 		}
396 
397 		dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
398 		if (!dimm)
399 			goto error;
400 		mci->dimms[off] = dimm;
401 		dimm->mci = mci;
402 
403 		/*
404 		 * Copy DIMM location and initialize it.
405 		 */
406 		len = sizeof(dimm->label);
407 		p = dimm->label;
408 		n = snprintf(p, len, "mc#%u", mc_num);
409 		p += n;
410 		len -= n;
411 		for (j = 0; j < n_layers; j++) {
412 			n = snprintf(p, len, "%s#%u",
413 				     edac_layer_name[layers[j].type],
414 				     pos[j]);
415 			p += n;
416 			len -= n;
417 			dimm->location[j] = pos[j];
418 
419 			if (len <= 0)
420 				break;
421 		}
422 
423 		/* Link it to the csrows old API data */
424 		chan->dimm = dimm;
425 		dimm->csrow = row;
426 		dimm->cschannel = chn;
427 
428 		/* Increment csrow location */
429 		if (layers[0].is_virt_csrow) {
430 			chn++;
431 			if (chn == tot_channels) {
432 				chn = 0;
433 				row++;
434 			}
435 		} else {
436 			row++;
437 			if (row == tot_csrows) {
438 				row = 0;
439 				chn++;
440 			}
441 		}
442 
443 		/* Increment dimm location */
444 		for (j = n_layers - 1; j >= 0; j--) {
445 			pos[j]++;
446 			if (pos[j] < layers[j].size)
447 				break;
448 			pos[j] = 0;
449 		}
450 	}
451 
452 	mci->op_state = OP_ALLOC;
453 
454 	return mci;
455 
456 error:
457 	_edac_mc_free(mci);
458 
459 	return NULL;
460 }
461 EXPORT_SYMBOL_GPL(edac_mc_alloc);
462 
463 /**
464  * edac_mc_free
465  *	'Free' a previously allocated 'mci' structure
466  * @mci: pointer to a struct mem_ctl_info structure
467  */
468 void edac_mc_free(struct mem_ctl_info *mci)
469 {
470 	edac_dbg(1, "\n");
471 
472 	/* If we're not yet registered with sysfs free only what was allocated
473 	 * in edac_mc_alloc().
474 	 */
475 	if (!device_is_registered(&mci->dev)) {
476 		_edac_mc_free(mci);
477 		return;
478 	}
479 
480 	/* the mci instance is freed here, when the sysfs object is dropped */
481 	edac_unregister_sysfs(mci);
482 }
483 EXPORT_SYMBOL_GPL(edac_mc_free);
484 
485 
486 /**
487  * find_mci_by_dev
488  *
489  *	scan list of controllers looking for the one that manages
490  *	the 'dev' device
491  * @dev: pointer to a struct device related with the MCI
492  */
493 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
494 {
495 	struct mem_ctl_info *mci;
496 	struct list_head *item;
497 
498 	edac_dbg(3, "\n");
499 
500 	list_for_each(item, &mc_devices) {
501 		mci = list_entry(item, struct mem_ctl_info, link);
502 
503 		if (mci->pdev == dev)
504 			return mci;
505 	}
506 
507 	return NULL;
508 }
509 EXPORT_SYMBOL_GPL(find_mci_by_dev);
510 
511 /*
512  * handler for EDAC to check if NMI type handler has asserted interrupt
513  */
514 static int edac_mc_assert_error_check_and_clear(void)
515 {
516 	int old_state;
517 
518 	if (edac_op_state == EDAC_OPSTATE_POLL)
519 		return 1;
520 
521 	old_state = edac_err_assert;
522 	edac_err_assert = 0;
523 
524 	return old_state;
525 }
526 
527 /*
528  * edac_mc_workq_function
529  *	performs the operation scheduled by a workq request
530  */
531 static void edac_mc_workq_function(struct work_struct *work_req)
532 {
533 	struct delayed_work *d_work = to_delayed_work(work_req);
534 	struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
535 
536 	mutex_lock(&mem_ctls_mutex);
537 
538 	/* if this control struct has movd to offline state, we are done */
539 	if (mci->op_state == OP_OFFLINE) {
540 		mutex_unlock(&mem_ctls_mutex);
541 		return;
542 	}
543 
544 	/* Only poll controllers that are running polled and have a check */
545 	if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL))
546 		mci->edac_check(mci);
547 
548 	mutex_unlock(&mem_ctls_mutex);
549 
550 	/* Reschedule */
551 	queue_delayed_work(edac_workqueue, &mci->work,
552 			msecs_to_jiffies(edac_mc_get_poll_msec()));
553 }
554 
555 /*
556  * edac_mc_workq_setup
557  *	initialize a workq item for this mci
558  *	passing in the new delay period in msec
559  *
560  *	locking model:
561  *
562  *		called with the mem_ctls_mutex held
563  */
564 static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec,
565 				bool init)
566 {
567 	edac_dbg(0, "\n");
568 
569 	/* if this instance is not in the POLL state, then simply return */
570 	if (mci->op_state != OP_RUNNING_POLL)
571 		return;
572 
573 	if (init)
574 		INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
575 
576 	mod_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec));
577 }
578 
579 /*
580  * edac_mc_workq_teardown
581  *	stop the workq processing on this mci
582  *
583  *	locking model:
584  *
585  *		called WITHOUT lock held
586  */
587 static void edac_mc_workq_teardown(struct mem_ctl_info *mci)
588 {
589 	int status;
590 
591 	if (mci->op_state != OP_RUNNING_POLL)
592 		return;
593 
594 	status = cancel_delayed_work(&mci->work);
595 	if (status == 0) {
596 		edac_dbg(0, "not canceled, flush the queue\n");
597 
598 		/* workq instance might be running, wait for it */
599 		flush_workqueue(edac_workqueue);
600 	}
601 }
602 
603 /*
604  * edac_mc_reset_delay_period(unsigned long value)
605  *
606  *	user space has updated our poll period value, need to
607  *	reset our workq delays
608  */
609 void edac_mc_reset_delay_period(unsigned long value)
610 {
611 	struct mem_ctl_info *mci;
612 	struct list_head *item;
613 
614 	mutex_lock(&mem_ctls_mutex);
615 
616 	list_for_each(item, &mc_devices) {
617 		mci = list_entry(item, struct mem_ctl_info, link);
618 
619 		edac_mc_workq_setup(mci, value, false);
620 	}
621 
622 	mutex_unlock(&mem_ctls_mutex);
623 }
624 
625 
626 
627 /* Return 0 on success, 1 on failure.
628  * Before calling this function, caller must
629  * assign a unique value to mci->mc_idx.
630  *
631  *	locking model:
632  *
633  *		called with the mem_ctls_mutex lock held
634  */
635 static int add_mc_to_global_list(struct mem_ctl_info *mci)
636 {
637 	struct list_head *item, *insert_before;
638 	struct mem_ctl_info *p;
639 
640 	insert_before = &mc_devices;
641 
642 	p = find_mci_by_dev(mci->pdev);
643 	if (unlikely(p != NULL))
644 		goto fail0;
645 
646 	list_for_each(item, &mc_devices) {
647 		p = list_entry(item, struct mem_ctl_info, link);
648 
649 		if (p->mc_idx >= mci->mc_idx) {
650 			if (unlikely(p->mc_idx == mci->mc_idx))
651 				goto fail1;
652 
653 			insert_before = item;
654 			break;
655 		}
656 	}
657 
658 	list_add_tail_rcu(&mci->link, insert_before);
659 	atomic_inc(&edac_handlers);
660 	return 0;
661 
662 fail0:
663 	edac_printk(KERN_WARNING, EDAC_MC,
664 		"%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
665 		edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
666 	return 1;
667 
668 fail1:
669 	edac_printk(KERN_WARNING, EDAC_MC,
670 		"bug in low-level driver: attempt to assign\n"
671 		"    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
672 	return 1;
673 }
674 
675 static int del_mc_from_global_list(struct mem_ctl_info *mci)
676 {
677 	int handlers = atomic_dec_return(&edac_handlers);
678 	list_del_rcu(&mci->link);
679 
680 	/* these are for safe removal of devices from global list while
681 	 * NMI handlers may be traversing list
682 	 */
683 	synchronize_rcu();
684 	INIT_LIST_HEAD(&mci->link);
685 
686 	return handlers;
687 }
688 
689 /**
690  * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
691  *
692  * If found, return a pointer to the structure.
693  * Else return NULL.
694  *
695  * Caller must hold mem_ctls_mutex.
696  */
697 struct mem_ctl_info *edac_mc_find(int idx)
698 {
699 	struct list_head *item;
700 	struct mem_ctl_info *mci;
701 
702 	list_for_each(item, &mc_devices) {
703 		mci = list_entry(item, struct mem_ctl_info, link);
704 
705 		if (mci->mc_idx >= idx) {
706 			if (mci->mc_idx == idx)
707 				return mci;
708 
709 			break;
710 		}
711 	}
712 
713 	return NULL;
714 }
715 EXPORT_SYMBOL(edac_mc_find);
716 
717 /**
718  * edac_mc_add_mc_with_groups: Insert the 'mci' structure into the mci
719  *	global list and create sysfs entries associated with mci structure
720  * @mci: pointer to the mci structure to be added to the list
721  * @groups: optional attribute groups for the driver-specific sysfs entries
722  *
723  * Return:
724  *	0	Success
725  *	!0	Failure
726  */
727 
728 /* FIXME - should a warning be printed if no error detection? correction? */
729 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
730 			       const struct attribute_group **groups)
731 {
732 	int ret = -EINVAL;
733 	edac_dbg(0, "\n");
734 
735 	if (mci->mc_idx >= EDAC_MAX_MCS) {
736 		pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx);
737 		return -ENODEV;
738 	}
739 
740 #ifdef CONFIG_EDAC_DEBUG
741 	if (edac_debug_level >= 3)
742 		edac_mc_dump_mci(mci);
743 
744 	if (edac_debug_level >= 4) {
745 		int i;
746 
747 		for (i = 0; i < mci->nr_csrows; i++) {
748 			struct csrow_info *csrow = mci->csrows[i];
749 			u32 nr_pages = 0;
750 			int j;
751 
752 			for (j = 0; j < csrow->nr_channels; j++)
753 				nr_pages += csrow->channels[j]->dimm->nr_pages;
754 			if (!nr_pages)
755 				continue;
756 			edac_mc_dump_csrow(csrow);
757 			for (j = 0; j < csrow->nr_channels; j++)
758 				if (csrow->channels[j]->dimm->nr_pages)
759 					edac_mc_dump_channel(csrow->channels[j]);
760 		}
761 		for (i = 0; i < mci->tot_dimms; i++)
762 			if (mci->dimms[i]->nr_pages)
763 				edac_mc_dump_dimm(mci->dimms[i], i);
764 	}
765 #endif
766 	mutex_lock(&mem_ctls_mutex);
767 
768 	if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
769 		ret = -EPERM;
770 		goto fail0;
771 	}
772 
773 	if (add_mc_to_global_list(mci))
774 		goto fail0;
775 
776 	/* set load time so that error rate can be tracked */
777 	mci->start_time = jiffies;
778 
779 	mci->bus = &mc_bus[mci->mc_idx];
780 
781 	if (edac_create_sysfs_mci_device(mci, groups)) {
782 		edac_mc_printk(mci, KERN_WARNING,
783 			"failed to create sysfs device\n");
784 		goto fail1;
785 	}
786 
787 	/* If there IS a check routine, then we are running POLLED */
788 	if (mci->edac_check != NULL) {
789 		/* This instance is NOW RUNNING */
790 		mci->op_state = OP_RUNNING_POLL;
791 
792 		edac_mc_workq_setup(mci, edac_mc_get_poll_msec(), true);
793 	} else {
794 		mci->op_state = OP_RUNNING_INTERRUPT;
795 	}
796 
797 	/* Report action taken */
798 	edac_mc_printk(mci, KERN_INFO,
799 		"Giving out device to module %s controller %s: DEV %s (%s)\n",
800 		mci->mod_name, mci->ctl_name, mci->dev_name,
801 		edac_op_state_to_string(mci->op_state));
802 
803 	edac_mc_owner = mci->mod_name;
804 
805 	mutex_unlock(&mem_ctls_mutex);
806 	return 0;
807 
808 fail1:
809 	del_mc_from_global_list(mci);
810 
811 fail0:
812 	mutex_unlock(&mem_ctls_mutex);
813 	return ret;
814 }
815 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
816 
817 /**
818  * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
819  *                 remove mci structure from global list
820  * @pdev: Pointer to 'struct device' representing mci structure to remove.
821  *
822  * Return pointer to removed mci structure, or NULL if device not found.
823  */
824 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
825 {
826 	struct mem_ctl_info *mci;
827 
828 	edac_dbg(0, "\n");
829 
830 	mutex_lock(&mem_ctls_mutex);
831 
832 	/* find the requested mci struct in the global list */
833 	mci = find_mci_by_dev(dev);
834 	if (mci == NULL) {
835 		mutex_unlock(&mem_ctls_mutex);
836 		return NULL;
837 	}
838 
839 	if (!del_mc_from_global_list(mci))
840 		edac_mc_owner = NULL;
841 	mutex_unlock(&mem_ctls_mutex);
842 
843 	/* flush workq processes */
844 	edac_mc_workq_teardown(mci);
845 
846 	/* marking MCI offline */
847 	mci->op_state = OP_OFFLINE;
848 
849 	/* remove from sysfs */
850 	edac_remove_sysfs_mci_device(mci);
851 
852 	edac_printk(KERN_INFO, EDAC_MC,
853 		"Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
854 		mci->mod_name, mci->ctl_name, edac_dev_name(mci));
855 
856 	return mci;
857 }
858 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
859 
860 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
861 				u32 size)
862 {
863 	struct page *pg;
864 	void *virt_addr;
865 	unsigned long flags = 0;
866 
867 	edac_dbg(3, "\n");
868 
869 	/* ECC error page was not in our memory. Ignore it. */
870 	if (!pfn_valid(page))
871 		return;
872 
873 	/* Find the actual page structure then map it and fix */
874 	pg = pfn_to_page(page);
875 
876 	if (PageHighMem(pg))
877 		local_irq_save(flags);
878 
879 	virt_addr = kmap_atomic(pg);
880 
881 	/* Perform architecture specific atomic scrub operation */
882 	edac_atomic_scrub(virt_addr + offset, size);
883 
884 	/* Unmap and complete */
885 	kunmap_atomic(virt_addr);
886 
887 	if (PageHighMem(pg))
888 		local_irq_restore(flags);
889 }
890 
891 /* FIXME - should return -1 */
892 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
893 {
894 	struct csrow_info **csrows = mci->csrows;
895 	int row, i, j, n;
896 
897 	edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
898 	row = -1;
899 
900 	for (i = 0; i < mci->nr_csrows; i++) {
901 		struct csrow_info *csrow = csrows[i];
902 		n = 0;
903 		for (j = 0; j < csrow->nr_channels; j++) {
904 			struct dimm_info *dimm = csrow->channels[j]->dimm;
905 			n += dimm->nr_pages;
906 		}
907 		if (n == 0)
908 			continue;
909 
910 		edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
911 			 mci->mc_idx,
912 			 csrow->first_page, page, csrow->last_page,
913 			 csrow->page_mask);
914 
915 		if ((page >= csrow->first_page) &&
916 		    (page <= csrow->last_page) &&
917 		    ((page & csrow->page_mask) ==
918 		     (csrow->first_page & csrow->page_mask))) {
919 			row = i;
920 			break;
921 		}
922 	}
923 
924 	if (row == -1)
925 		edac_mc_printk(mci, KERN_ERR,
926 			"could not look up page error address %lx\n",
927 			(unsigned long)page);
928 
929 	return row;
930 }
931 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
932 
933 const char *edac_layer_name[] = {
934 	[EDAC_MC_LAYER_BRANCH] = "branch",
935 	[EDAC_MC_LAYER_CHANNEL] = "channel",
936 	[EDAC_MC_LAYER_SLOT] = "slot",
937 	[EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
938 	[EDAC_MC_LAYER_ALL_MEM] = "memory",
939 };
940 EXPORT_SYMBOL_GPL(edac_layer_name);
941 
942 static void edac_inc_ce_error(struct mem_ctl_info *mci,
943 			      bool enable_per_layer_report,
944 			      const int pos[EDAC_MAX_LAYERS],
945 			      const u16 count)
946 {
947 	int i, index = 0;
948 
949 	mci->ce_mc += count;
950 
951 	if (!enable_per_layer_report) {
952 		mci->ce_noinfo_count += count;
953 		return;
954 	}
955 
956 	for (i = 0; i < mci->n_layers; i++) {
957 		if (pos[i] < 0)
958 			break;
959 		index += pos[i];
960 		mci->ce_per_layer[i][index] += count;
961 
962 		if (i < mci->n_layers - 1)
963 			index *= mci->layers[i + 1].size;
964 	}
965 }
966 
967 static void edac_inc_ue_error(struct mem_ctl_info *mci,
968 				    bool enable_per_layer_report,
969 				    const int pos[EDAC_MAX_LAYERS],
970 				    const u16 count)
971 {
972 	int i, index = 0;
973 
974 	mci->ue_mc += count;
975 
976 	if (!enable_per_layer_report) {
977 		mci->ce_noinfo_count += count;
978 		return;
979 	}
980 
981 	for (i = 0; i < mci->n_layers; i++) {
982 		if (pos[i] < 0)
983 			break;
984 		index += pos[i];
985 		mci->ue_per_layer[i][index] += count;
986 
987 		if (i < mci->n_layers - 1)
988 			index *= mci->layers[i + 1].size;
989 	}
990 }
991 
992 static void edac_ce_error(struct mem_ctl_info *mci,
993 			  const u16 error_count,
994 			  const int pos[EDAC_MAX_LAYERS],
995 			  const char *msg,
996 			  const char *location,
997 			  const char *label,
998 			  const char *detail,
999 			  const char *other_detail,
1000 			  const bool enable_per_layer_report,
1001 			  const unsigned long page_frame_number,
1002 			  const unsigned long offset_in_page,
1003 			  long grain)
1004 {
1005 	unsigned long remapped_page;
1006 	char *msg_aux = "";
1007 
1008 	if (*msg)
1009 		msg_aux = " ";
1010 
1011 	if (edac_mc_get_log_ce()) {
1012 		if (other_detail && *other_detail)
1013 			edac_mc_printk(mci, KERN_WARNING,
1014 				       "%d CE %s%son %s (%s %s - %s)\n",
1015 				       error_count, msg, msg_aux, label,
1016 				       location, detail, other_detail);
1017 		else
1018 			edac_mc_printk(mci, KERN_WARNING,
1019 				       "%d CE %s%son %s (%s %s)\n",
1020 				       error_count, msg, msg_aux, label,
1021 				       location, detail);
1022 	}
1023 	edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
1024 
1025 	if (mci->scrub_mode == SCRUB_SW_SRC) {
1026 		/*
1027 			* Some memory controllers (called MCs below) can remap
1028 			* memory so that it is still available at a different
1029 			* address when PCI devices map into memory.
1030 			* MC's that can't do this, lose the memory where PCI
1031 			* devices are mapped. This mapping is MC-dependent
1032 			* and so we call back into the MC driver for it to
1033 			* map the MC page to a physical (CPU) page which can
1034 			* then be mapped to a virtual page - which can then
1035 			* be scrubbed.
1036 			*/
1037 		remapped_page = mci->ctl_page_to_phys ?
1038 			mci->ctl_page_to_phys(mci, page_frame_number) :
1039 			page_frame_number;
1040 
1041 		edac_mc_scrub_block(remapped_page,
1042 					offset_in_page, grain);
1043 	}
1044 }
1045 
1046 static void edac_ue_error(struct mem_ctl_info *mci,
1047 			  const u16 error_count,
1048 			  const int pos[EDAC_MAX_LAYERS],
1049 			  const char *msg,
1050 			  const char *location,
1051 			  const char *label,
1052 			  const char *detail,
1053 			  const char *other_detail,
1054 			  const bool enable_per_layer_report)
1055 {
1056 	char *msg_aux = "";
1057 
1058 	if (*msg)
1059 		msg_aux = " ";
1060 
1061 	if (edac_mc_get_log_ue()) {
1062 		if (other_detail && *other_detail)
1063 			edac_mc_printk(mci, KERN_WARNING,
1064 				       "%d UE %s%son %s (%s %s - %s)\n",
1065 				       error_count, msg, msg_aux, label,
1066 				       location, detail, other_detail);
1067 		else
1068 			edac_mc_printk(mci, KERN_WARNING,
1069 				       "%d UE %s%son %s (%s %s)\n",
1070 				       error_count, msg, msg_aux, label,
1071 				       location, detail);
1072 	}
1073 
1074 	if (edac_mc_get_panic_on_ue()) {
1075 		if (other_detail && *other_detail)
1076 			panic("UE %s%son %s (%s%s - %s)\n",
1077 			      msg, msg_aux, label, location, detail, other_detail);
1078 		else
1079 			panic("UE %s%son %s (%s%s)\n",
1080 			      msg, msg_aux, label, location, detail);
1081 	}
1082 
1083 	edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
1084 }
1085 
1086 /**
1087  * edac_raw_mc_handle_error - reports a memory event to userspace without doing
1088  *			      anything to discover the error location
1089  *
1090  * @type:		severity of the error (CE/UE/Fatal)
1091  * @mci:		a struct mem_ctl_info pointer
1092  * @e:			error description
1093  *
1094  * This raw function is used internally by edac_mc_handle_error(). It should
1095  * only be called directly when the hardware error come directly from BIOS,
1096  * like in the case of APEI GHES driver.
1097  */
1098 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
1099 			      struct mem_ctl_info *mci,
1100 			      struct edac_raw_error_desc *e)
1101 {
1102 	char detail[80];
1103 	int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
1104 
1105 	/* Memory type dependent details about the error */
1106 	if (type == HW_EVENT_ERR_CORRECTED) {
1107 		snprintf(detail, sizeof(detail),
1108 			"page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1109 			e->page_frame_number, e->offset_in_page,
1110 			e->grain, e->syndrome);
1111 		edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1112 			      detail, e->other_detail, e->enable_per_layer_report,
1113 			      e->page_frame_number, e->offset_in_page, e->grain);
1114 	} else {
1115 		snprintf(detail, sizeof(detail),
1116 			"page:0x%lx offset:0x%lx grain:%ld",
1117 			e->page_frame_number, e->offset_in_page, e->grain);
1118 
1119 		edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1120 			      detail, e->other_detail, e->enable_per_layer_report);
1121 	}
1122 
1123 
1124 }
1125 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1126 
1127 /**
1128  * edac_mc_handle_error - reports a memory event to userspace
1129  *
1130  * @type:		severity of the error (CE/UE/Fatal)
1131  * @mci:		a struct mem_ctl_info pointer
1132  * @error_count:	Number of errors of the same type
1133  * @page_frame_number:	mem page where the error occurred
1134  * @offset_in_page:	offset of the error inside the page
1135  * @syndrome:		ECC syndrome
1136  * @top_layer:		Memory layer[0] position
1137  * @mid_layer:		Memory layer[1] position
1138  * @low_layer:		Memory layer[2] position
1139  * @msg:		Message meaningful to the end users that
1140  *			explains the event
1141  * @other_detail:	Technical details about the event that
1142  *			may help hardware manufacturers and
1143  *			EDAC developers to analyse the event
1144  */
1145 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1146 			  struct mem_ctl_info *mci,
1147 			  const u16 error_count,
1148 			  const unsigned long page_frame_number,
1149 			  const unsigned long offset_in_page,
1150 			  const unsigned long syndrome,
1151 			  const int top_layer,
1152 			  const int mid_layer,
1153 			  const int low_layer,
1154 			  const char *msg,
1155 			  const char *other_detail)
1156 {
1157 	char *p;
1158 	int row = -1, chan = -1;
1159 	int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1160 	int i, n_labels = 0;
1161 	u8 grain_bits;
1162 	struct edac_raw_error_desc *e = &mci->error_desc;
1163 
1164 	edac_dbg(3, "MC%d\n", mci->mc_idx);
1165 
1166 	/* Fills the error report buffer */
1167 	memset(e, 0, sizeof (*e));
1168 	e->error_count = error_count;
1169 	e->top_layer = top_layer;
1170 	e->mid_layer = mid_layer;
1171 	e->low_layer = low_layer;
1172 	e->page_frame_number = page_frame_number;
1173 	e->offset_in_page = offset_in_page;
1174 	e->syndrome = syndrome;
1175 	e->msg = msg;
1176 	e->other_detail = other_detail;
1177 
1178 	/*
1179 	 * Check if the event report is consistent and if the memory
1180 	 * location is known. If it is known, enable_per_layer_report will be
1181 	 * true, the DIMM(s) label info will be filled and the per-layer
1182 	 * error counters will be incremented.
1183 	 */
1184 	for (i = 0; i < mci->n_layers; i++) {
1185 		if (pos[i] >= (int)mci->layers[i].size) {
1186 
1187 			edac_mc_printk(mci, KERN_ERR,
1188 				       "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1189 				       edac_layer_name[mci->layers[i].type],
1190 				       pos[i], mci->layers[i].size);
1191 			/*
1192 			 * Instead of just returning it, let's use what's
1193 			 * known about the error. The increment routines and
1194 			 * the DIMM filter logic will do the right thing by
1195 			 * pointing the likely damaged DIMMs.
1196 			 */
1197 			pos[i] = -1;
1198 		}
1199 		if (pos[i] >= 0)
1200 			e->enable_per_layer_report = true;
1201 	}
1202 
1203 	/*
1204 	 * Get the dimm label/grain that applies to the match criteria.
1205 	 * As the error algorithm may not be able to point to just one memory
1206 	 * stick, the logic here will get all possible labels that could
1207 	 * pottentially be affected by the error.
1208 	 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1209 	 * to have only the MC channel and the MC dimm (also called "branch")
1210 	 * but the channel is not known, as the memory is arranged in pairs,
1211 	 * where each memory belongs to a separate channel within the same
1212 	 * branch.
1213 	 */
1214 	p = e->label;
1215 	*p = '\0';
1216 
1217 	for (i = 0; i < mci->tot_dimms; i++) {
1218 		struct dimm_info *dimm = mci->dimms[i];
1219 
1220 		if (top_layer >= 0 && top_layer != dimm->location[0])
1221 			continue;
1222 		if (mid_layer >= 0 && mid_layer != dimm->location[1])
1223 			continue;
1224 		if (low_layer >= 0 && low_layer != dimm->location[2])
1225 			continue;
1226 
1227 		/* get the max grain, over the error match range */
1228 		if (dimm->grain > e->grain)
1229 			e->grain = dimm->grain;
1230 
1231 		/*
1232 		 * If the error is memory-controller wide, there's no need to
1233 		 * seek for the affected DIMMs because the whole
1234 		 * channel/memory controller/...  may be affected.
1235 		 * Also, don't show errors for empty DIMM slots.
1236 		 */
1237 		if (e->enable_per_layer_report && dimm->nr_pages) {
1238 			if (n_labels >= EDAC_MAX_LABELS) {
1239 				e->enable_per_layer_report = false;
1240 				break;
1241 			}
1242 			n_labels++;
1243 			if (p != e->label) {
1244 				strcpy(p, OTHER_LABEL);
1245 				p += strlen(OTHER_LABEL);
1246 			}
1247 			strcpy(p, dimm->label);
1248 			p += strlen(p);
1249 			*p = '\0';
1250 
1251 			/*
1252 			 * get csrow/channel of the DIMM, in order to allow
1253 			 * incrementing the compat API counters
1254 			 */
1255 			edac_dbg(4, "%s csrows map: (%d,%d)\n",
1256 				 mci->csbased ? "rank" : "dimm",
1257 				 dimm->csrow, dimm->cschannel);
1258 			if (row == -1)
1259 				row = dimm->csrow;
1260 			else if (row >= 0 && row != dimm->csrow)
1261 				row = -2;
1262 
1263 			if (chan == -1)
1264 				chan = dimm->cschannel;
1265 			else if (chan >= 0 && chan != dimm->cschannel)
1266 				chan = -2;
1267 		}
1268 	}
1269 
1270 	if (!e->enable_per_layer_report) {
1271 		strcpy(e->label, "any memory");
1272 	} else {
1273 		edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
1274 		if (p == e->label)
1275 			strcpy(e->label, "unknown memory");
1276 		if (type == HW_EVENT_ERR_CORRECTED) {
1277 			if (row >= 0) {
1278 				mci->csrows[row]->ce_count += error_count;
1279 				if (chan >= 0)
1280 					mci->csrows[row]->channels[chan]->ce_count += error_count;
1281 			}
1282 		} else
1283 			if (row >= 0)
1284 				mci->csrows[row]->ue_count += error_count;
1285 	}
1286 
1287 	/* Fill the RAM location data */
1288 	p = e->location;
1289 
1290 	for (i = 0; i < mci->n_layers; i++) {
1291 		if (pos[i] < 0)
1292 			continue;
1293 
1294 		p += sprintf(p, "%s:%d ",
1295 			     edac_layer_name[mci->layers[i].type],
1296 			     pos[i]);
1297 	}
1298 	if (p > e->location)
1299 		*(p - 1) = '\0';
1300 
1301 	/* Report the error via the trace interface */
1302 	grain_bits = fls_long(e->grain) + 1;
1303 	trace_mc_event(type, e->msg, e->label, e->error_count,
1304 		       mci->mc_idx, e->top_layer, e->mid_layer, e->low_layer,
1305 		       PAGES_TO_MiB(e->page_frame_number) | e->offset_in_page,
1306 		       grain_bits, e->syndrome, e->other_detail);
1307 
1308 	edac_raw_mc_handle_error(type, mci, e);
1309 }
1310 EXPORT_SYMBOL_GPL(edac_mc_handle_error);
1311