xref: /openbmc/linux/drivers/edac/edac_mc.c (revision 4b0aaacee51eb6592a03fdefd5ce97558518e291)
1 /*
2  * edac_mc kernel module
3  * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Thayne Harbaugh
8  * Based on work by Dan Hollis <goemon at anime dot net> and others.
9  *	http://www.anime.net/~goemon/linux-ecc/
10  *
11  * Modified by Dave Peterson and Doug Thompson
12  *
13  */
14 
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <linux/uaccess.h>
32 #include <asm/page.h>
33 #include "edac_mc.h"
34 #include "edac_module.h"
35 #include <ras/ras_event.h>
36 
37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB
38 #include <asm/edac.h>
39 #else
40 #define edac_atomic_scrub(va, size) do { } while (0)
41 #endif
42 
43 int edac_op_state = EDAC_OPSTATE_INVAL;
44 EXPORT_SYMBOL_GPL(edac_op_state);
45 
46 static int edac_report = EDAC_REPORTING_ENABLED;
47 
48 /* lock to memory controller's control array */
49 static DEFINE_MUTEX(mem_ctls_mutex);
50 static LIST_HEAD(mc_devices);
51 
52 /*
53  * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
54  *	apei/ghes and i7core_edac to be used at the same time.
55  */
56 static const char *edac_mc_owner;
57 
58 static struct bus_type mc_bus[EDAC_MAX_MCS];
59 
60 int edac_get_report_status(void)
61 {
62 	return edac_report;
63 }
64 EXPORT_SYMBOL_GPL(edac_get_report_status);
65 
66 void edac_set_report_status(int new)
67 {
68 	if (new == EDAC_REPORTING_ENABLED ||
69 	    new == EDAC_REPORTING_DISABLED ||
70 	    new == EDAC_REPORTING_FORCE)
71 		edac_report = new;
72 }
73 EXPORT_SYMBOL_GPL(edac_set_report_status);
74 
75 static int edac_report_set(const char *str, const struct kernel_param *kp)
76 {
77 	if (!str)
78 		return -EINVAL;
79 
80 	if (!strncmp(str, "on", 2))
81 		edac_report = EDAC_REPORTING_ENABLED;
82 	else if (!strncmp(str, "off", 3))
83 		edac_report = EDAC_REPORTING_DISABLED;
84 	else if (!strncmp(str, "force", 5))
85 		edac_report = EDAC_REPORTING_FORCE;
86 
87 	return 0;
88 }
89 
90 static int edac_report_get(char *buffer, const struct kernel_param *kp)
91 {
92 	int ret = 0;
93 
94 	switch (edac_report) {
95 	case EDAC_REPORTING_ENABLED:
96 		ret = sprintf(buffer, "on");
97 		break;
98 	case EDAC_REPORTING_DISABLED:
99 		ret = sprintf(buffer, "off");
100 		break;
101 	case EDAC_REPORTING_FORCE:
102 		ret = sprintf(buffer, "force");
103 		break;
104 	default:
105 		ret = -EINVAL;
106 		break;
107 	}
108 
109 	return ret;
110 }
111 
112 static const struct kernel_param_ops edac_report_ops = {
113 	.set = edac_report_set,
114 	.get = edac_report_get,
115 };
116 
117 module_param_cb(edac_report, &edac_report_ops, &edac_report, 0644);
118 
119 unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
120 			         unsigned len)
121 {
122 	struct mem_ctl_info *mci = dimm->mci;
123 	int i, n, count = 0;
124 	char *p = buf;
125 
126 	for (i = 0; i < mci->n_layers; i++) {
127 		n = snprintf(p, len, "%s %d ",
128 			      edac_layer_name[mci->layers[i].type],
129 			      dimm->location[i]);
130 		p += n;
131 		len -= n;
132 		count += n;
133 		if (!len)
134 			break;
135 	}
136 
137 	return count;
138 }
139 
140 #ifdef CONFIG_EDAC_DEBUG
141 
142 static void edac_mc_dump_channel(struct rank_info *chan)
143 {
144 	edac_dbg(4, "  channel->chan_idx = %d\n", chan->chan_idx);
145 	edac_dbg(4, "    channel = %p\n", chan);
146 	edac_dbg(4, "    channel->csrow = %p\n", chan->csrow);
147 	edac_dbg(4, "    channel->dimm = %p\n", chan->dimm);
148 }
149 
150 static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
151 {
152 	char location[80];
153 
154 	edac_dimm_info_location(dimm, location, sizeof(location));
155 
156 	edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
157 		 dimm->mci->csbased ? "rank" : "dimm",
158 		 number, location, dimm->csrow, dimm->cschannel);
159 	edac_dbg(4, "  dimm = %p\n", dimm);
160 	edac_dbg(4, "  dimm->label = '%s'\n", dimm->label);
161 	edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
162 	edac_dbg(4, "  dimm->grain = %d\n", dimm->grain);
163 	edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
164 }
165 
166 static void edac_mc_dump_csrow(struct csrow_info *csrow)
167 {
168 	edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
169 	edac_dbg(4, "  csrow = %p\n", csrow);
170 	edac_dbg(4, "  csrow->first_page = 0x%lx\n", csrow->first_page);
171 	edac_dbg(4, "  csrow->last_page = 0x%lx\n", csrow->last_page);
172 	edac_dbg(4, "  csrow->page_mask = 0x%lx\n", csrow->page_mask);
173 	edac_dbg(4, "  csrow->nr_channels = %d\n", csrow->nr_channels);
174 	edac_dbg(4, "  csrow->channels = %p\n", csrow->channels);
175 	edac_dbg(4, "  csrow->mci = %p\n", csrow->mci);
176 }
177 
178 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
179 {
180 	edac_dbg(3, "\tmci = %p\n", mci);
181 	edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
182 	edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
183 	edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
184 	edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
185 	edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
186 		 mci->nr_csrows, mci->csrows);
187 	edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
188 		 mci->tot_dimms, mci->dimms);
189 	edac_dbg(3, "\tdev = %p\n", mci->pdev);
190 	edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
191 		 mci->mod_name, mci->ctl_name);
192 	edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
193 }
194 
195 #endif				/* CONFIG_EDAC_DEBUG */
196 
197 const char * const edac_mem_types[] = {
198 	[MEM_EMPTY]	= "Empty",
199 	[MEM_RESERVED]	= "Reserved",
200 	[MEM_UNKNOWN]	= "Unknown",
201 	[MEM_FPM]	= "FPM",
202 	[MEM_EDO]	= "EDO",
203 	[MEM_BEDO]	= "BEDO",
204 	[MEM_SDR]	= "Unbuffered-SDR",
205 	[MEM_RDR]	= "Registered-SDR",
206 	[MEM_DDR]	= "Unbuffered-DDR",
207 	[MEM_RDDR]	= "Registered-DDR",
208 	[MEM_RMBS]	= "RMBS",
209 	[MEM_DDR2]	= "Unbuffered-DDR2",
210 	[MEM_FB_DDR2]	= "FullyBuffered-DDR2",
211 	[MEM_RDDR2]	= "Registered-DDR2",
212 	[MEM_XDR]	= "XDR",
213 	[MEM_DDR3]	= "Unbuffered-DDR3",
214 	[MEM_RDDR3]	= "Registered-DDR3",
215 	[MEM_LRDDR3]	= "Load-Reduced-DDR3-RAM",
216 	[MEM_DDR4]	= "Unbuffered-DDR4",
217 	[MEM_RDDR4]	= "Registered-DDR4",
218 	[MEM_LRDDR4]	= "Load-Reduced-DDR4-RAM",
219 	[MEM_NVDIMM]	= "Non-volatile-RAM",
220 };
221 EXPORT_SYMBOL_GPL(edac_mem_types);
222 
223 /**
224  * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
225  * @p:		pointer to a pointer with the memory offset to be used. At
226  *		return, this will be incremented to point to the next offset
227  * @size:	Size of the data structure to be reserved
228  * @n_elems:	Number of elements that should be reserved
229  *
230  * If 'size' is a constant, the compiler will optimize this whole function
231  * down to either a no-op or the addition of a constant to the value of '*p'.
232  *
233  * The 'p' pointer is absolutely needed to keep the proper advancing
234  * further in memory to the proper offsets when allocating the struct along
235  * with its embedded structs, as edac_device_alloc_ctl_info() does it
236  * above, for example.
237  *
238  * At return, the pointer 'p' will be incremented to be used on a next call
239  * to this function.
240  */
241 void *edac_align_ptr(void **p, unsigned size, int n_elems)
242 {
243 	unsigned align, r;
244 	void *ptr = *p;
245 
246 	*p += size * n_elems;
247 
248 	/*
249 	 * 'p' can possibly be an unaligned item X such that sizeof(X) is
250 	 * 'size'.  Adjust 'p' so that its alignment is at least as
251 	 * stringent as what the compiler would provide for X and return
252 	 * the aligned result.
253 	 * Here we assume that the alignment of a "long long" is the most
254 	 * stringent alignment that the compiler will ever provide by default.
255 	 * As far as I know, this is a reasonable assumption.
256 	 */
257 	if (size > sizeof(long))
258 		align = sizeof(long long);
259 	else if (size > sizeof(int))
260 		align = sizeof(long);
261 	else if (size > sizeof(short))
262 		align = sizeof(int);
263 	else if (size > sizeof(char))
264 		align = sizeof(short);
265 	else
266 		return (char *)ptr;
267 
268 	r = (unsigned long)p % align;
269 
270 	if (r == 0)
271 		return (char *)ptr;
272 
273 	*p += align - r;
274 
275 	return (void *)(((unsigned long)ptr) + align - r);
276 }
277 
278 static void _edac_mc_free(struct mem_ctl_info *mci)
279 {
280 	int i, chn, row;
281 	struct csrow_info *csr;
282 	const unsigned int tot_dimms = mci->tot_dimms;
283 	const unsigned int tot_channels = mci->num_cschannel;
284 	const unsigned int tot_csrows = mci->nr_csrows;
285 
286 	if (mci->dimms) {
287 		for (i = 0; i < tot_dimms; i++)
288 			kfree(mci->dimms[i]);
289 		kfree(mci->dimms);
290 	}
291 	if (mci->csrows) {
292 		for (row = 0; row < tot_csrows; row++) {
293 			csr = mci->csrows[row];
294 			if (csr) {
295 				if (csr->channels) {
296 					for (chn = 0; chn < tot_channels; chn++)
297 						kfree(csr->channels[chn]);
298 					kfree(csr->channels);
299 				}
300 				kfree(csr);
301 			}
302 		}
303 		kfree(mci->csrows);
304 	}
305 	kfree(mci);
306 }
307 
308 struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
309 				   unsigned n_layers,
310 				   struct edac_mc_layer *layers,
311 				   unsigned sz_pvt)
312 {
313 	struct mem_ctl_info *mci;
314 	struct edac_mc_layer *layer;
315 	struct csrow_info *csr;
316 	struct rank_info *chan;
317 	struct dimm_info *dimm;
318 	u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
319 	unsigned pos[EDAC_MAX_LAYERS];
320 	unsigned size, tot_dimms = 1, count = 1;
321 	unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
322 	void *pvt, *p, *ptr = NULL;
323 	int i, j, row, chn, n, len, off;
324 	bool per_rank = false;
325 
326 	BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
327 	/*
328 	 * Calculate the total amount of dimms and csrows/cschannels while
329 	 * in the old API emulation mode
330 	 */
331 	for (i = 0; i < n_layers; i++) {
332 		tot_dimms *= layers[i].size;
333 		if (layers[i].is_virt_csrow)
334 			tot_csrows *= layers[i].size;
335 		else
336 			tot_channels *= layers[i].size;
337 
338 		if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
339 			per_rank = true;
340 	}
341 
342 	/* Figure out the offsets of the various items from the start of an mc
343 	 * structure.  We want the alignment of each item to be at least as
344 	 * stringent as what the compiler would provide if we could simply
345 	 * hardcode everything into a single struct.
346 	 */
347 	mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
348 	layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
349 	for (i = 0; i < n_layers; i++) {
350 		count *= layers[i].size;
351 		edac_dbg(4, "errcount layer %d size %d\n", i, count);
352 		ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
353 		ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
354 		tot_errcount += 2 * count;
355 	}
356 
357 	edac_dbg(4, "allocating %d error counters\n", tot_errcount);
358 	pvt = edac_align_ptr(&ptr, sz_pvt, 1);
359 	size = ((unsigned long)pvt) + sz_pvt;
360 
361 	edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
362 		 size,
363 		 tot_dimms,
364 		 per_rank ? "ranks" : "dimms",
365 		 tot_csrows * tot_channels);
366 
367 	mci = kzalloc(size, GFP_KERNEL);
368 	if (mci == NULL)
369 		return NULL;
370 
371 	/* Adjust pointers so they point within the memory we just allocated
372 	 * rather than an imaginary chunk of memory located at address 0.
373 	 */
374 	layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
375 	for (i = 0; i < n_layers; i++) {
376 		mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
377 		mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
378 	}
379 	pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
380 
381 	/* setup index and various internal pointers */
382 	mci->mc_idx = mc_num;
383 	mci->tot_dimms = tot_dimms;
384 	mci->pvt_info = pvt;
385 	mci->n_layers = n_layers;
386 	mci->layers = layer;
387 	memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
388 	mci->nr_csrows = tot_csrows;
389 	mci->num_cschannel = tot_channels;
390 	mci->csbased = per_rank;
391 
392 	/*
393 	 * Alocate and fill the csrow/channels structs
394 	 */
395 	mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
396 	if (!mci->csrows)
397 		goto error;
398 	for (row = 0; row < tot_csrows; row++) {
399 		csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
400 		if (!csr)
401 			goto error;
402 		mci->csrows[row] = csr;
403 		csr->csrow_idx = row;
404 		csr->mci = mci;
405 		csr->nr_channels = tot_channels;
406 		csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
407 					GFP_KERNEL);
408 		if (!csr->channels)
409 			goto error;
410 
411 		for (chn = 0; chn < tot_channels; chn++) {
412 			chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
413 			if (!chan)
414 				goto error;
415 			csr->channels[chn] = chan;
416 			chan->chan_idx = chn;
417 			chan->csrow = csr;
418 		}
419 	}
420 
421 	/*
422 	 * Allocate and fill the dimm structs
423 	 */
424 	mci->dimms  = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
425 	if (!mci->dimms)
426 		goto error;
427 
428 	memset(&pos, 0, sizeof(pos));
429 	row = 0;
430 	chn = 0;
431 	for (i = 0; i < tot_dimms; i++) {
432 		chan = mci->csrows[row]->channels[chn];
433 		off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
434 		if (off < 0 || off >= tot_dimms) {
435 			edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
436 			goto error;
437 		}
438 
439 		dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
440 		if (!dimm)
441 			goto error;
442 		mci->dimms[off] = dimm;
443 		dimm->mci = mci;
444 
445 		/*
446 		 * Copy DIMM location and initialize it.
447 		 */
448 		len = sizeof(dimm->label);
449 		p = dimm->label;
450 		n = snprintf(p, len, "mc#%u", mc_num);
451 		p += n;
452 		len -= n;
453 		for (j = 0; j < n_layers; j++) {
454 			n = snprintf(p, len, "%s#%u",
455 				     edac_layer_name[layers[j].type],
456 				     pos[j]);
457 			p += n;
458 			len -= n;
459 			dimm->location[j] = pos[j];
460 
461 			if (len <= 0)
462 				break;
463 		}
464 
465 		/* Link it to the csrows old API data */
466 		chan->dimm = dimm;
467 		dimm->csrow = row;
468 		dimm->cschannel = chn;
469 
470 		/* Increment csrow location */
471 		if (layers[0].is_virt_csrow) {
472 			chn++;
473 			if (chn == tot_channels) {
474 				chn = 0;
475 				row++;
476 			}
477 		} else {
478 			row++;
479 			if (row == tot_csrows) {
480 				row = 0;
481 				chn++;
482 			}
483 		}
484 
485 		/* Increment dimm location */
486 		for (j = n_layers - 1; j >= 0; j--) {
487 			pos[j]++;
488 			if (pos[j] < layers[j].size)
489 				break;
490 			pos[j] = 0;
491 		}
492 	}
493 
494 	mci->op_state = OP_ALLOC;
495 
496 	return mci;
497 
498 error:
499 	_edac_mc_free(mci);
500 
501 	return NULL;
502 }
503 EXPORT_SYMBOL_GPL(edac_mc_alloc);
504 
505 void edac_mc_free(struct mem_ctl_info *mci)
506 {
507 	edac_dbg(1, "\n");
508 
509 	/* If we're not yet registered with sysfs free only what was allocated
510 	 * in edac_mc_alloc().
511 	 */
512 	if (!device_is_registered(&mci->dev)) {
513 		_edac_mc_free(mci);
514 		return;
515 	}
516 
517 	/* the mci instance is freed here, when the sysfs object is dropped */
518 	edac_unregister_sysfs(mci);
519 }
520 EXPORT_SYMBOL_GPL(edac_mc_free);
521 
522 bool edac_has_mcs(void)
523 {
524 	bool ret;
525 
526 	mutex_lock(&mem_ctls_mutex);
527 
528 	ret = list_empty(&mc_devices);
529 
530 	mutex_unlock(&mem_ctls_mutex);
531 
532 	return !ret;
533 }
534 EXPORT_SYMBOL_GPL(edac_has_mcs);
535 
536 /* Caller must hold mem_ctls_mutex */
537 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
538 {
539 	struct mem_ctl_info *mci;
540 	struct list_head *item;
541 
542 	edac_dbg(3, "\n");
543 
544 	list_for_each(item, &mc_devices) {
545 		mci = list_entry(item, struct mem_ctl_info, link);
546 
547 		if (mci->pdev == dev)
548 			return mci;
549 	}
550 
551 	return NULL;
552 }
553 
554 /**
555  * find_mci_by_dev
556  *
557  *	scan list of controllers looking for the one that manages
558  *	the 'dev' device
559  * @dev: pointer to a struct device related with the MCI
560  */
561 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
562 {
563 	struct mem_ctl_info *ret;
564 
565 	mutex_lock(&mem_ctls_mutex);
566 	ret = __find_mci_by_dev(dev);
567 	mutex_unlock(&mem_ctls_mutex);
568 
569 	return ret;
570 }
571 EXPORT_SYMBOL_GPL(find_mci_by_dev);
572 
573 /*
574  * edac_mc_workq_function
575  *	performs the operation scheduled by a workq request
576  */
577 static void edac_mc_workq_function(struct work_struct *work_req)
578 {
579 	struct delayed_work *d_work = to_delayed_work(work_req);
580 	struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
581 
582 	mutex_lock(&mem_ctls_mutex);
583 
584 	if (mci->op_state != OP_RUNNING_POLL) {
585 		mutex_unlock(&mem_ctls_mutex);
586 		return;
587 	}
588 
589 	if (edac_op_state == EDAC_OPSTATE_POLL)
590 		mci->edac_check(mci);
591 
592 	mutex_unlock(&mem_ctls_mutex);
593 
594 	/* Queue ourselves again. */
595 	edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
596 }
597 
598 /*
599  * edac_mc_reset_delay_period(unsigned long value)
600  *
601  *	user space has updated our poll period value, need to
602  *	reset our workq delays
603  */
604 void edac_mc_reset_delay_period(unsigned long value)
605 {
606 	struct mem_ctl_info *mci;
607 	struct list_head *item;
608 
609 	mutex_lock(&mem_ctls_mutex);
610 
611 	list_for_each(item, &mc_devices) {
612 		mci = list_entry(item, struct mem_ctl_info, link);
613 
614 		if (mci->op_state == OP_RUNNING_POLL)
615 			edac_mod_work(&mci->work, value);
616 	}
617 	mutex_unlock(&mem_ctls_mutex);
618 }
619 
620 
621 
622 /* Return 0 on success, 1 on failure.
623  * Before calling this function, caller must
624  * assign a unique value to mci->mc_idx.
625  *
626  *	locking model:
627  *
628  *		called with the mem_ctls_mutex lock held
629  */
630 static int add_mc_to_global_list(struct mem_ctl_info *mci)
631 {
632 	struct list_head *item, *insert_before;
633 	struct mem_ctl_info *p;
634 
635 	insert_before = &mc_devices;
636 
637 	p = __find_mci_by_dev(mci->pdev);
638 	if (unlikely(p != NULL))
639 		goto fail0;
640 
641 	list_for_each(item, &mc_devices) {
642 		p = list_entry(item, struct mem_ctl_info, link);
643 
644 		if (p->mc_idx >= mci->mc_idx) {
645 			if (unlikely(p->mc_idx == mci->mc_idx))
646 				goto fail1;
647 
648 			insert_before = item;
649 			break;
650 		}
651 	}
652 
653 	list_add_tail_rcu(&mci->link, insert_before);
654 	return 0;
655 
656 fail0:
657 	edac_printk(KERN_WARNING, EDAC_MC,
658 		"%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
659 		edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
660 	return 1;
661 
662 fail1:
663 	edac_printk(KERN_WARNING, EDAC_MC,
664 		"bug in low-level driver: attempt to assign\n"
665 		"    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
666 	return 1;
667 }
668 
669 static int del_mc_from_global_list(struct mem_ctl_info *mci)
670 {
671 	list_del_rcu(&mci->link);
672 
673 	/* these are for safe removal of devices from global list while
674 	 * NMI handlers may be traversing list
675 	 */
676 	synchronize_rcu();
677 	INIT_LIST_HEAD(&mci->link);
678 
679 	return list_empty(&mc_devices);
680 }
681 
682 struct mem_ctl_info *edac_mc_find(int idx)
683 {
684 	struct mem_ctl_info *mci = NULL;
685 	struct list_head *item;
686 
687 	mutex_lock(&mem_ctls_mutex);
688 
689 	list_for_each(item, &mc_devices) {
690 		mci = list_entry(item, struct mem_ctl_info, link);
691 
692 		if (mci->mc_idx >= idx) {
693 			if (mci->mc_idx == idx) {
694 				goto unlock;
695 			}
696 			break;
697 		}
698 	}
699 
700 unlock:
701 	mutex_unlock(&mem_ctls_mutex);
702 	return mci;
703 }
704 EXPORT_SYMBOL(edac_mc_find);
705 
706 const char *edac_get_owner(void)
707 {
708 	return edac_mc_owner;
709 }
710 EXPORT_SYMBOL_GPL(edac_get_owner);
711 
712 /* FIXME - should a warning be printed if no error detection? correction? */
713 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
714 			       const struct attribute_group **groups)
715 {
716 	int ret = -EINVAL;
717 	edac_dbg(0, "\n");
718 
719 	if (mci->mc_idx >= EDAC_MAX_MCS) {
720 		pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx);
721 		return -ENODEV;
722 	}
723 
724 #ifdef CONFIG_EDAC_DEBUG
725 	if (edac_debug_level >= 3)
726 		edac_mc_dump_mci(mci);
727 
728 	if (edac_debug_level >= 4) {
729 		int i;
730 
731 		for (i = 0; i < mci->nr_csrows; i++) {
732 			struct csrow_info *csrow = mci->csrows[i];
733 			u32 nr_pages = 0;
734 			int j;
735 
736 			for (j = 0; j < csrow->nr_channels; j++)
737 				nr_pages += csrow->channels[j]->dimm->nr_pages;
738 			if (!nr_pages)
739 				continue;
740 			edac_mc_dump_csrow(csrow);
741 			for (j = 0; j < csrow->nr_channels; j++)
742 				if (csrow->channels[j]->dimm->nr_pages)
743 					edac_mc_dump_channel(csrow->channels[j]);
744 		}
745 		for (i = 0; i < mci->tot_dimms; i++)
746 			if (mci->dimms[i]->nr_pages)
747 				edac_mc_dump_dimm(mci->dimms[i], i);
748 	}
749 #endif
750 	mutex_lock(&mem_ctls_mutex);
751 
752 	if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
753 		ret = -EPERM;
754 		goto fail0;
755 	}
756 
757 	if (add_mc_to_global_list(mci))
758 		goto fail0;
759 
760 	/* set load time so that error rate can be tracked */
761 	mci->start_time = jiffies;
762 
763 	mci->bus = &mc_bus[mci->mc_idx];
764 
765 	if (edac_create_sysfs_mci_device(mci, groups)) {
766 		edac_mc_printk(mci, KERN_WARNING,
767 			"failed to create sysfs device\n");
768 		goto fail1;
769 	}
770 
771 	if (mci->edac_check) {
772 		mci->op_state = OP_RUNNING_POLL;
773 
774 		INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
775 		edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
776 
777 	} else {
778 		mci->op_state = OP_RUNNING_INTERRUPT;
779 	}
780 
781 	/* Report action taken */
782 	edac_mc_printk(mci, KERN_INFO,
783 		"Giving out device to module %s controller %s: DEV %s (%s)\n",
784 		mci->mod_name, mci->ctl_name, mci->dev_name,
785 		edac_op_state_to_string(mci->op_state));
786 
787 	edac_mc_owner = mci->mod_name;
788 
789 	mutex_unlock(&mem_ctls_mutex);
790 	return 0;
791 
792 fail1:
793 	del_mc_from_global_list(mci);
794 
795 fail0:
796 	mutex_unlock(&mem_ctls_mutex);
797 	return ret;
798 }
799 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
800 
801 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
802 {
803 	struct mem_ctl_info *mci;
804 
805 	edac_dbg(0, "\n");
806 
807 	mutex_lock(&mem_ctls_mutex);
808 
809 	/* find the requested mci struct in the global list */
810 	mci = __find_mci_by_dev(dev);
811 	if (mci == NULL) {
812 		mutex_unlock(&mem_ctls_mutex);
813 		return NULL;
814 	}
815 
816 	/* mark MCI offline: */
817 	mci->op_state = OP_OFFLINE;
818 
819 	if (del_mc_from_global_list(mci))
820 		edac_mc_owner = NULL;
821 
822 	mutex_unlock(&mem_ctls_mutex);
823 
824 	if (mci->edac_check)
825 		edac_stop_work(&mci->work);
826 
827 	/* remove from sysfs */
828 	edac_remove_sysfs_mci_device(mci);
829 
830 	edac_printk(KERN_INFO, EDAC_MC,
831 		"Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
832 		mci->mod_name, mci->ctl_name, edac_dev_name(mci));
833 
834 	return mci;
835 }
836 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
837 
838 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
839 				u32 size)
840 {
841 	struct page *pg;
842 	void *virt_addr;
843 	unsigned long flags = 0;
844 
845 	edac_dbg(3, "\n");
846 
847 	/* ECC error page was not in our memory. Ignore it. */
848 	if (!pfn_valid(page))
849 		return;
850 
851 	/* Find the actual page structure then map it and fix */
852 	pg = pfn_to_page(page);
853 
854 	if (PageHighMem(pg))
855 		local_irq_save(flags);
856 
857 	virt_addr = kmap_atomic(pg);
858 
859 	/* Perform architecture specific atomic scrub operation */
860 	edac_atomic_scrub(virt_addr + offset, size);
861 
862 	/* Unmap and complete */
863 	kunmap_atomic(virt_addr);
864 
865 	if (PageHighMem(pg))
866 		local_irq_restore(flags);
867 }
868 
869 /* FIXME - should return -1 */
870 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
871 {
872 	struct csrow_info **csrows = mci->csrows;
873 	int row, i, j, n;
874 
875 	edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
876 	row = -1;
877 
878 	for (i = 0; i < mci->nr_csrows; i++) {
879 		struct csrow_info *csrow = csrows[i];
880 		n = 0;
881 		for (j = 0; j < csrow->nr_channels; j++) {
882 			struct dimm_info *dimm = csrow->channels[j]->dimm;
883 			n += dimm->nr_pages;
884 		}
885 		if (n == 0)
886 			continue;
887 
888 		edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
889 			 mci->mc_idx,
890 			 csrow->first_page, page, csrow->last_page,
891 			 csrow->page_mask);
892 
893 		if ((page >= csrow->first_page) &&
894 		    (page <= csrow->last_page) &&
895 		    ((page & csrow->page_mask) ==
896 		     (csrow->first_page & csrow->page_mask))) {
897 			row = i;
898 			break;
899 		}
900 	}
901 
902 	if (row == -1)
903 		edac_mc_printk(mci, KERN_ERR,
904 			"could not look up page error address %lx\n",
905 			(unsigned long)page);
906 
907 	return row;
908 }
909 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
910 
911 const char *edac_layer_name[] = {
912 	[EDAC_MC_LAYER_BRANCH] = "branch",
913 	[EDAC_MC_LAYER_CHANNEL] = "channel",
914 	[EDAC_MC_LAYER_SLOT] = "slot",
915 	[EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
916 	[EDAC_MC_LAYER_ALL_MEM] = "memory",
917 };
918 EXPORT_SYMBOL_GPL(edac_layer_name);
919 
920 static void edac_inc_ce_error(struct mem_ctl_info *mci,
921 			      bool enable_per_layer_report,
922 			      const int pos[EDAC_MAX_LAYERS],
923 			      const u16 count)
924 {
925 	int i, index = 0;
926 
927 	mci->ce_mc += count;
928 
929 	if (!enable_per_layer_report) {
930 		mci->ce_noinfo_count += count;
931 		return;
932 	}
933 
934 	for (i = 0; i < mci->n_layers; i++) {
935 		if (pos[i] < 0)
936 			break;
937 		index += pos[i];
938 		mci->ce_per_layer[i][index] += count;
939 
940 		if (i < mci->n_layers - 1)
941 			index *= mci->layers[i + 1].size;
942 	}
943 }
944 
945 static void edac_inc_ue_error(struct mem_ctl_info *mci,
946 				    bool enable_per_layer_report,
947 				    const int pos[EDAC_MAX_LAYERS],
948 				    const u16 count)
949 {
950 	int i, index = 0;
951 
952 	mci->ue_mc += count;
953 
954 	if (!enable_per_layer_report) {
955 		mci->ue_noinfo_count += count;
956 		return;
957 	}
958 
959 	for (i = 0; i < mci->n_layers; i++) {
960 		if (pos[i] < 0)
961 			break;
962 		index += pos[i];
963 		mci->ue_per_layer[i][index] += count;
964 
965 		if (i < mci->n_layers - 1)
966 			index *= mci->layers[i + 1].size;
967 	}
968 }
969 
970 static void edac_ce_error(struct mem_ctl_info *mci,
971 			  const u16 error_count,
972 			  const int pos[EDAC_MAX_LAYERS],
973 			  const char *msg,
974 			  const char *location,
975 			  const char *label,
976 			  const char *detail,
977 			  const char *other_detail,
978 			  const bool enable_per_layer_report,
979 			  const unsigned long page_frame_number,
980 			  const unsigned long offset_in_page,
981 			  long grain)
982 {
983 	unsigned long remapped_page;
984 	char *msg_aux = "";
985 
986 	if (*msg)
987 		msg_aux = " ";
988 
989 	if (edac_mc_get_log_ce()) {
990 		if (other_detail && *other_detail)
991 			edac_mc_printk(mci, KERN_WARNING,
992 				       "%d CE %s%son %s (%s %s - %s)\n",
993 				       error_count, msg, msg_aux, label,
994 				       location, detail, other_detail);
995 		else
996 			edac_mc_printk(mci, KERN_WARNING,
997 				       "%d CE %s%son %s (%s %s)\n",
998 				       error_count, msg, msg_aux, label,
999 				       location, detail);
1000 	}
1001 	edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
1002 
1003 	if (mci->scrub_mode == SCRUB_SW_SRC) {
1004 		/*
1005 			* Some memory controllers (called MCs below) can remap
1006 			* memory so that it is still available at a different
1007 			* address when PCI devices map into memory.
1008 			* MC's that can't do this, lose the memory where PCI
1009 			* devices are mapped. This mapping is MC-dependent
1010 			* and so we call back into the MC driver for it to
1011 			* map the MC page to a physical (CPU) page which can
1012 			* then be mapped to a virtual page - which can then
1013 			* be scrubbed.
1014 			*/
1015 		remapped_page = mci->ctl_page_to_phys ?
1016 			mci->ctl_page_to_phys(mci, page_frame_number) :
1017 			page_frame_number;
1018 
1019 		edac_mc_scrub_block(remapped_page,
1020 					offset_in_page, grain);
1021 	}
1022 }
1023 
1024 static void edac_ue_error(struct mem_ctl_info *mci,
1025 			  const u16 error_count,
1026 			  const int pos[EDAC_MAX_LAYERS],
1027 			  const char *msg,
1028 			  const char *location,
1029 			  const char *label,
1030 			  const char *detail,
1031 			  const char *other_detail,
1032 			  const bool enable_per_layer_report)
1033 {
1034 	char *msg_aux = "";
1035 
1036 	if (*msg)
1037 		msg_aux = " ";
1038 
1039 	if (edac_mc_get_log_ue()) {
1040 		if (other_detail && *other_detail)
1041 			edac_mc_printk(mci, KERN_WARNING,
1042 				       "%d UE %s%son %s (%s %s - %s)\n",
1043 				       error_count, msg, msg_aux, label,
1044 				       location, detail, other_detail);
1045 		else
1046 			edac_mc_printk(mci, KERN_WARNING,
1047 				       "%d UE %s%son %s (%s %s)\n",
1048 				       error_count, msg, msg_aux, label,
1049 				       location, detail);
1050 	}
1051 
1052 	if (edac_mc_get_panic_on_ue()) {
1053 		if (other_detail && *other_detail)
1054 			panic("UE %s%son %s (%s%s - %s)\n",
1055 			      msg, msg_aux, label, location, detail, other_detail);
1056 		else
1057 			panic("UE %s%son %s (%s%s)\n",
1058 			      msg, msg_aux, label, location, detail);
1059 	}
1060 
1061 	edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
1062 }
1063 
1064 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
1065 			      struct mem_ctl_info *mci,
1066 			      struct edac_raw_error_desc *e)
1067 {
1068 	char detail[80];
1069 	int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
1070 
1071 	/* Memory type dependent details about the error */
1072 	if (type == HW_EVENT_ERR_CORRECTED) {
1073 		snprintf(detail, sizeof(detail),
1074 			"page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1075 			e->page_frame_number, e->offset_in_page,
1076 			e->grain, e->syndrome);
1077 		edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1078 			      detail, e->other_detail, e->enable_per_layer_report,
1079 			      e->page_frame_number, e->offset_in_page, e->grain);
1080 	} else {
1081 		snprintf(detail, sizeof(detail),
1082 			"page:0x%lx offset:0x%lx grain:%ld",
1083 			e->page_frame_number, e->offset_in_page, e->grain);
1084 
1085 		edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1086 			      detail, e->other_detail, e->enable_per_layer_report);
1087 	}
1088 
1089 
1090 }
1091 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1092 
1093 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1094 			  struct mem_ctl_info *mci,
1095 			  const u16 error_count,
1096 			  const unsigned long page_frame_number,
1097 			  const unsigned long offset_in_page,
1098 			  const unsigned long syndrome,
1099 			  const int top_layer,
1100 			  const int mid_layer,
1101 			  const int low_layer,
1102 			  const char *msg,
1103 			  const char *other_detail)
1104 {
1105 	char *p;
1106 	int row = -1, chan = -1;
1107 	int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1108 	int i, n_labels = 0;
1109 	u8 grain_bits;
1110 	struct edac_raw_error_desc *e = &mci->error_desc;
1111 
1112 	edac_dbg(3, "MC%d\n", mci->mc_idx);
1113 
1114 	/* Fills the error report buffer */
1115 	memset(e, 0, sizeof (*e));
1116 	e->error_count = error_count;
1117 	e->top_layer = top_layer;
1118 	e->mid_layer = mid_layer;
1119 	e->low_layer = low_layer;
1120 	e->page_frame_number = page_frame_number;
1121 	e->offset_in_page = offset_in_page;
1122 	e->syndrome = syndrome;
1123 	e->msg = msg;
1124 	e->other_detail = other_detail;
1125 
1126 	/*
1127 	 * Check if the event report is consistent and if the memory
1128 	 * location is known. If it is known, enable_per_layer_report will be
1129 	 * true, the DIMM(s) label info will be filled and the per-layer
1130 	 * error counters will be incremented.
1131 	 */
1132 	for (i = 0; i < mci->n_layers; i++) {
1133 		if (pos[i] >= (int)mci->layers[i].size) {
1134 
1135 			edac_mc_printk(mci, KERN_ERR,
1136 				       "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1137 				       edac_layer_name[mci->layers[i].type],
1138 				       pos[i], mci->layers[i].size);
1139 			/*
1140 			 * Instead of just returning it, let's use what's
1141 			 * known about the error. The increment routines and
1142 			 * the DIMM filter logic will do the right thing by
1143 			 * pointing the likely damaged DIMMs.
1144 			 */
1145 			pos[i] = -1;
1146 		}
1147 		if (pos[i] >= 0)
1148 			e->enable_per_layer_report = true;
1149 	}
1150 
1151 	/*
1152 	 * Get the dimm label/grain that applies to the match criteria.
1153 	 * As the error algorithm may not be able to point to just one memory
1154 	 * stick, the logic here will get all possible labels that could
1155 	 * pottentially be affected by the error.
1156 	 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1157 	 * to have only the MC channel and the MC dimm (also called "branch")
1158 	 * but the channel is not known, as the memory is arranged in pairs,
1159 	 * where each memory belongs to a separate channel within the same
1160 	 * branch.
1161 	 */
1162 	p = e->label;
1163 	*p = '\0';
1164 
1165 	for (i = 0; i < mci->tot_dimms; i++) {
1166 		struct dimm_info *dimm = mci->dimms[i];
1167 
1168 		if (top_layer >= 0 && top_layer != dimm->location[0])
1169 			continue;
1170 		if (mid_layer >= 0 && mid_layer != dimm->location[1])
1171 			continue;
1172 		if (low_layer >= 0 && low_layer != dimm->location[2])
1173 			continue;
1174 
1175 		/* get the max grain, over the error match range */
1176 		if (dimm->grain > e->grain)
1177 			e->grain = dimm->grain;
1178 
1179 		/*
1180 		 * If the error is memory-controller wide, there's no need to
1181 		 * seek for the affected DIMMs because the whole
1182 		 * channel/memory controller/...  may be affected.
1183 		 * Also, don't show errors for empty DIMM slots.
1184 		 */
1185 		if (e->enable_per_layer_report && dimm->nr_pages) {
1186 			if (n_labels >= EDAC_MAX_LABELS) {
1187 				e->enable_per_layer_report = false;
1188 				break;
1189 			}
1190 			n_labels++;
1191 			if (p != e->label) {
1192 				strcpy(p, OTHER_LABEL);
1193 				p += strlen(OTHER_LABEL);
1194 			}
1195 			strcpy(p, dimm->label);
1196 			p += strlen(p);
1197 			*p = '\0';
1198 
1199 			/*
1200 			 * get csrow/channel of the DIMM, in order to allow
1201 			 * incrementing the compat API counters
1202 			 */
1203 			edac_dbg(4, "%s csrows map: (%d,%d)\n",
1204 				 mci->csbased ? "rank" : "dimm",
1205 				 dimm->csrow, dimm->cschannel);
1206 			if (row == -1)
1207 				row = dimm->csrow;
1208 			else if (row >= 0 && row != dimm->csrow)
1209 				row = -2;
1210 
1211 			if (chan == -1)
1212 				chan = dimm->cschannel;
1213 			else if (chan >= 0 && chan != dimm->cschannel)
1214 				chan = -2;
1215 		}
1216 	}
1217 
1218 	if (!e->enable_per_layer_report) {
1219 		strcpy(e->label, "any memory");
1220 	} else {
1221 		edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
1222 		if (p == e->label)
1223 			strcpy(e->label, "unknown memory");
1224 		if (type == HW_EVENT_ERR_CORRECTED) {
1225 			if (row >= 0) {
1226 				mci->csrows[row]->ce_count += error_count;
1227 				if (chan >= 0)
1228 					mci->csrows[row]->channels[chan]->ce_count += error_count;
1229 			}
1230 		} else
1231 			if (row >= 0)
1232 				mci->csrows[row]->ue_count += error_count;
1233 	}
1234 
1235 	/* Fill the RAM location data */
1236 	p = e->location;
1237 
1238 	for (i = 0; i < mci->n_layers; i++) {
1239 		if (pos[i] < 0)
1240 			continue;
1241 
1242 		p += sprintf(p, "%s:%d ",
1243 			     edac_layer_name[mci->layers[i].type],
1244 			     pos[i]);
1245 	}
1246 	if (p > e->location)
1247 		*(p - 1) = '\0';
1248 
1249 	/* Report the error via the trace interface */
1250 	grain_bits = fls_long(e->grain) + 1;
1251 
1252 	if (IS_ENABLED(CONFIG_RAS))
1253 		trace_mc_event(type, e->msg, e->label, e->error_count,
1254 			       mci->mc_idx, e->top_layer, e->mid_layer,
1255 			       e->low_layer,
1256 			       (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
1257 			       grain_bits, e->syndrome, e->other_detail);
1258 
1259 	edac_raw_mc_handle_error(type, mci, e);
1260 }
1261 EXPORT_SYMBOL_GPL(edac_mc_handle_error);
1262