xref: /openbmc/linux/drivers/edac/edac_mc.c (revision 3b23dc52)
1 /*
2  * edac_mc kernel module
3  * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Thayne Harbaugh
8  * Based on work by Dan Hollis <goemon at anime dot net> and others.
9  *	http://www.anime.net/~goemon/linux-ecc/
10  *
11  * Modified by Dave Peterson and Doug Thompson
12  *
13  */
14 
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <linux/uaccess.h>
32 #include <asm/page.h>
33 #include "edac_mc.h"
34 #include "edac_module.h"
35 #include <ras/ras_event.h>
36 
37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB
38 #include <asm/edac.h>
39 #else
40 #define edac_atomic_scrub(va, size) do { } while (0)
41 #endif
42 
43 int edac_op_state = EDAC_OPSTATE_INVAL;
44 EXPORT_SYMBOL_GPL(edac_op_state);
45 
46 static int edac_report = EDAC_REPORTING_ENABLED;
47 
48 /* lock to memory controller's control array */
49 static DEFINE_MUTEX(mem_ctls_mutex);
50 static LIST_HEAD(mc_devices);
51 
52 /*
53  * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
54  *	apei/ghes and i7core_edac to be used at the same time.
55  */
56 static const char *edac_mc_owner;
57 
58 static struct bus_type mc_bus[EDAC_MAX_MCS];
59 
60 int edac_get_report_status(void)
61 {
62 	return edac_report;
63 }
64 EXPORT_SYMBOL_GPL(edac_get_report_status);
65 
66 void edac_set_report_status(int new)
67 {
68 	if (new == EDAC_REPORTING_ENABLED ||
69 	    new == EDAC_REPORTING_DISABLED ||
70 	    new == EDAC_REPORTING_FORCE)
71 		edac_report = new;
72 }
73 EXPORT_SYMBOL_GPL(edac_set_report_status);
74 
75 static int edac_report_set(const char *str, const struct kernel_param *kp)
76 {
77 	if (!str)
78 		return -EINVAL;
79 
80 	if (!strncmp(str, "on", 2))
81 		edac_report = EDAC_REPORTING_ENABLED;
82 	else if (!strncmp(str, "off", 3))
83 		edac_report = EDAC_REPORTING_DISABLED;
84 	else if (!strncmp(str, "force", 5))
85 		edac_report = EDAC_REPORTING_FORCE;
86 
87 	return 0;
88 }
89 
90 static int edac_report_get(char *buffer, const struct kernel_param *kp)
91 {
92 	int ret = 0;
93 
94 	switch (edac_report) {
95 	case EDAC_REPORTING_ENABLED:
96 		ret = sprintf(buffer, "on");
97 		break;
98 	case EDAC_REPORTING_DISABLED:
99 		ret = sprintf(buffer, "off");
100 		break;
101 	case EDAC_REPORTING_FORCE:
102 		ret = sprintf(buffer, "force");
103 		break;
104 	default:
105 		ret = -EINVAL;
106 		break;
107 	}
108 
109 	return ret;
110 }
111 
112 static const struct kernel_param_ops edac_report_ops = {
113 	.set = edac_report_set,
114 	.get = edac_report_get,
115 };
116 
117 module_param_cb(edac_report, &edac_report_ops, &edac_report, 0644);
118 
119 unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
120 			         unsigned len)
121 {
122 	struct mem_ctl_info *mci = dimm->mci;
123 	int i, n, count = 0;
124 	char *p = buf;
125 
126 	for (i = 0; i < mci->n_layers; i++) {
127 		n = snprintf(p, len, "%s %d ",
128 			      edac_layer_name[mci->layers[i].type],
129 			      dimm->location[i]);
130 		p += n;
131 		len -= n;
132 		count += n;
133 		if (!len)
134 			break;
135 	}
136 
137 	return count;
138 }
139 
140 #ifdef CONFIG_EDAC_DEBUG
141 
142 static void edac_mc_dump_channel(struct rank_info *chan)
143 {
144 	edac_dbg(4, "  channel->chan_idx = %d\n", chan->chan_idx);
145 	edac_dbg(4, "    channel = %p\n", chan);
146 	edac_dbg(4, "    channel->csrow = %p\n", chan->csrow);
147 	edac_dbg(4, "    channel->dimm = %p\n", chan->dimm);
148 }
149 
150 static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
151 {
152 	char location[80];
153 
154 	edac_dimm_info_location(dimm, location, sizeof(location));
155 
156 	edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
157 		 dimm->mci->csbased ? "rank" : "dimm",
158 		 number, location, dimm->csrow, dimm->cschannel);
159 	edac_dbg(4, "  dimm = %p\n", dimm);
160 	edac_dbg(4, "  dimm->label = '%s'\n", dimm->label);
161 	edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
162 	edac_dbg(4, "  dimm->grain = %d\n", dimm->grain);
163 	edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
164 }
165 
166 static void edac_mc_dump_csrow(struct csrow_info *csrow)
167 {
168 	edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
169 	edac_dbg(4, "  csrow = %p\n", csrow);
170 	edac_dbg(4, "  csrow->first_page = 0x%lx\n", csrow->first_page);
171 	edac_dbg(4, "  csrow->last_page = 0x%lx\n", csrow->last_page);
172 	edac_dbg(4, "  csrow->page_mask = 0x%lx\n", csrow->page_mask);
173 	edac_dbg(4, "  csrow->nr_channels = %d\n", csrow->nr_channels);
174 	edac_dbg(4, "  csrow->channels = %p\n", csrow->channels);
175 	edac_dbg(4, "  csrow->mci = %p\n", csrow->mci);
176 }
177 
178 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
179 {
180 	edac_dbg(3, "\tmci = %p\n", mci);
181 	edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
182 	edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
183 	edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
184 	edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
185 	edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
186 		 mci->nr_csrows, mci->csrows);
187 	edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
188 		 mci->tot_dimms, mci->dimms);
189 	edac_dbg(3, "\tdev = %p\n", mci->pdev);
190 	edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
191 		 mci->mod_name, mci->ctl_name);
192 	edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
193 }
194 
195 #endif				/* CONFIG_EDAC_DEBUG */
196 
197 const char * const edac_mem_types[] = {
198 	[MEM_EMPTY]	= "Empty",
199 	[MEM_RESERVED]	= "Reserved",
200 	[MEM_UNKNOWN]	= "Unknown",
201 	[MEM_FPM]	= "FPM",
202 	[MEM_EDO]	= "EDO",
203 	[MEM_BEDO]	= "BEDO",
204 	[MEM_SDR]	= "Unbuffered-SDR",
205 	[MEM_RDR]	= "Registered-SDR",
206 	[MEM_DDR]	= "Unbuffered-DDR",
207 	[MEM_RDDR]	= "Registered-DDR",
208 	[MEM_RMBS]	= "RMBS",
209 	[MEM_DDR2]	= "Unbuffered-DDR2",
210 	[MEM_FB_DDR2]	= "FullyBuffered-DDR2",
211 	[MEM_RDDR2]	= "Registered-DDR2",
212 	[MEM_XDR]	= "XDR",
213 	[MEM_DDR3]	= "Unbuffered-DDR3",
214 	[MEM_RDDR3]	= "Registered-DDR3",
215 	[MEM_LRDDR3]	= "Load-Reduced-DDR3-RAM",
216 	[MEM_DDR4]	= "Unbuffered-DDR4",
217 	[MEM_RDDR4]	= "Registered-DDR4",
218 	[MEM_NVDIMM]	= "Non-volatile-RAM",
219 };
220 EXPORT_SYMBOL_GPL(edac_mem_types);
221 
222 /**
223  * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
224  * @p:		pointer to a pointer with the memory offset to be used. At
225  *		return, this will be incremented to point to the next offset
226  * @size:	Size of the data structure to be reserved
227  * @n_elems:	Number of elements that should be reserved
228  *
229  * If 'size' is a constant, the compiler will optimize this whole function
230  * down to either a no-op or the addition of a constant to the value of '*p'.
231  *
232  * The 'p' pointer is absolutely needed to keep the proper advancing
233  * further in memory to the proper offsets when allocating the struct along
234  * with its embedded structs, as edac_device_alloc_ctl_info() does it
235  * above, for example.
236  *
237  * At return, the pointer 'p' will be incremented to be used on a next call
238  * to this function.
239  */
240 void *edac_align_ptr(void **p, unsigned size, int n_elems)
241 {
242 	unsigned align, r;
243 	void *ptr = *p;
244 
245 	*p += size * n_elems;
246 
247 	/*
248 	 * 'p' can possibly be an unaligned item X such that sizeof(X) is
249 	 * 'size'.  Adjust 'p' so that its alignment is at least as
250 	 * stringent as what the compiler would provide for X and return
251 	 * the aligned result.
252 	 * Here we assume that the alignment of a "long long" is the most
253 	 * stringent alignment that the compiler will ever provide by default.
254 	 * As far as I know, this is a reasonable assumption.
255 	 */
256 	if (size > sizeof(long))
257 		align = sizeof(long long);
258 	else if (size > sizeof(int))
259 		align = sizeof(long);
260 	else if (size > sizeof(short))
261 		align = sizeof(int);
262 	else if (size > sizeof(char))
263 		align = sizeof(short);
264 	else
265 		return (char *)ptr;
266 
267 	r = (unsigned long)p % align;
268 
269 	if (r == 0)
270 		return (char *)ptr;
271 
272 	*p += align - r;
273 
274 	return (void *)(((unsigned long)ptr) + align - r);
275 }
276 
277 static void _edac_mc_free(struct mem_ctl_info *mci)
278 {
279 	int i, chn, row;
280 	struct csrow_info *csr;
281 	const unsigned int tot_dimms = mci->tot_dimms;
282 	const unsigned int tot_channels = mci->num_cschannel;
283 	const unsigned int tot_csrows = mci->nr_csrows;
284 
285 	if (mci->dimms) {
286 		for (i = 0; i < tot_dimms; i++)
287 			kfree(mci->dimms[i]);
288 		kfree(mci->dimms);
289 	}
290 	if (mci->csrows) {
291 		for (row = 0; row < tot_csrows; row++) {
292 			csr = mci->csrows[row];
293 			if (csr) {
294 				if (csr->channels) {
295 					for (chn = 0; chn < tot_channels; chn++)
296 						kfree(csr->channels[chn]);
297 					kfree(csr->channels);
298 				}
299 				kfree(csr);
300 			}
301 		}
302 		kfree(mci->csrows);
303 	}
304 	kfree(mci);
305 }
306 
307 struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
308 				   unsigned n_layers,
309 				   struct edac_mc_layer *layers,
310 				   unsigned sz_pvt)
311 {
312 	struct mem_ctl_info *mci;
313 	struct edac_mc_layer *layer;
314 	struct csrow_info *csr;
315 	struct rank_info *chan;
316 	struct dimm_info *dimm;
317 	u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
318 	unsigned pos[EDAC_MAX_LAYERS];
319 	unsigned size, tot_dimms = 1, count = 1;
320 	unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
321 	void *pvt, *p, *ptr = NULL;
322 	int i, j, row, chn, n, len, off;
323 	bool per_rank = false;
324 
325 	BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
326 	/*
327 	 * Calculate the total amount of dimms and csrows/cschannels while
328 	 * in the old API emulation mode
329 	 */
330 	for (i = 0; i < n_layers; i++) {
331 		tot_dimms *= layers[i].size;
332 		if (layers[i].is_virt_csrow)
333 			tot_csrows *= layers[i].size;
334 		else
335 			tot_channels *= layers[i].size;
336 
337 		if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
338 			per_rank = true;
339 	}
340 
341 	/* Figure out the offsets of the various items from the start of an mc
342 	 * structure.  We want the alignment of each item to be at least as
343 	 * stringent as what the compiler would provide if we could simply
344 	 * hardcode everything into a single struct.
345 	 */
346 	mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
347 	layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
348 	for (i = 0; i < n_layers; i++) {
349 		count *= layers[i].size;
350 		edac_dbg(4, "errcount layer %d size %d\n", i, count);
351 		ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
352 		ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
353 		tot_errcount += 2 * count;
354 	}
355 
356 	edac_dbg(4, "allocating %d error counters\n", tot_errcount);
357 	pvt = edac_align_ptr(&ptr, sz_pvt, 1);
358 	size = ((unsigned long)pvt) + sz_pvt;
359 
360 	edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
361 		 size,
362 		 tot_dimms,
363 		 per_rank ? "ranks" : "dimms",
364 		 tot_csrows * tot_channels);
365 
366 	mci = kzalloc(size, GFP_KERNEL);
367 	if (mci == NULL)
368 		return NULL;
369 
370 	/* Adjust pointers so they point within the memory we just allocated
371 	 * rather than an imaginary chunk of memory located at address 0.
372 	 */
373 	layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
374 	for (i = 0; i < n_layers; i++) {
375 		mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
376 		mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
377 	}
378 	pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
379 
380 	/* setup index and various internal pointers */
381 	mci->mc_idx = mc_num;
382 	mci->tot_dimms = tot_dimms;
383 	mci->pvt_info = pvt;
384 	mci->n_layers = n_layers;
385 	mci->layers = layer;
386 	memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
387 	mci->nr_csrows = tot_csrows;
388 	mci->num_cschannel = tot_channels;
389 	mci->csbased = per_rank;
390 
391 	/*
392 	 * Alocate and fill the csrow/channels structs
393 	 */
394 	mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
395 	if (!mci->csrows)
396 		goto error;
397 	for (row = 0; row < tot_csrows; row++) {
398 		csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
399 		if (!csr)
400 			goto error;
401 		mci->csrows[row] = csr;
402 		csr->csrow_idx = row;
403 		csr->mci = mci;
404 		csr->nr_channels = tot_channels;
405 		csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
406 					GFP_KERNEL);
407 		if (!csr->channels)
408 			goto error;
409 
410 		for (chn = 0; chn < tot_channels; chn++) {
411 			chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
412 			if (!chan)
413 				goto error;
414 			csr->channels[chn] = chan;
415 			chan->chan_idx = chn;
416 			chan->csrow = csr;
417 		}
418 	}
419 
420 	/*
421 	 * Allocate and fill the dimm structs
422 	 */
423 	mci->dimms  = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
424 	if (!mci->dimms)
425 		goto error;
426 
427 	memset(&pos, 0, sizeof(pos));
428 	row = 0;
429 	chn = 0;
430 	for (i = 0; i < tot_dimms; i++) {
431 		chan = mci->csrows[row]->channels[chn];
432 		off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
433 		if (off < 0 || off >= tot_dimms) {
434 			edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
435 			goto error;
436 		}
437 
438 		dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
439 		if (!dimm)
440 			goto error;
441 		mci->dimms[off] = dimm;
442 		dimm->mci = mci;
443 
444 		/*
445 		 * Copy DIMM location and initialize it.
446 		 */
447 		len = sizeof(dimm->label);
448 		p = dimm->label;
449 		n = snprintf(p, len, "mc#%u", mc_num);
450 		p += n;
451 		len -= n;
452 		for (j = 0; j < n_layers; j++) {
453 			n = snprintf(p, len, "%s#%u",
454 				     edac_layer_name[layers[j].type],
455 				     pos[j]);
456 			p += n;
457 			len -= n;
458 			dimm->location[j] = pos[j];
459 
460 			if (len <= 0)
461 				break;
462 		}
463 
464 		/* Link it to the csrows old API data */
465 		chan->dimm = dimm;
466 		dimm->csrow = row;
467 		dimm->cschannel = chn;
468 
469 		/* Increment csrow location */
470 		if (layers[0].is_virt_csrow) {
471 			chn++;
472 			if (chn == tot_channels) {
473 				chn = 0;
474 				row++;
475 			}
476 		} else {
477 			row++;
478 			if (row == tot_csrows) {
479 				row = 0;
480 				chn++;
481 			}
482 		}
483 
484 		/* Increment dimm location */
485 		for (j = n_layers - 1; j >= 0; j--) {
486 			pos[j]++;
487 			if (pos[j] < layers[j].size)
488 				break;
489 			pos[j] = 0;
490 		}
491 	}
492 
493 	mci->op_state = OP_ALLOC;
494 
495 	return mci;
496 
497 error:
498 	_edac_mc_free(mci);
499 
500 	return NULL;
501 }
502 EXPORT_SYMBOL_GPL(edac_mc_alloc);
503 
504 void edac_mc_free(struct mem_ctl_info *mci)
505 {
506 	edac_dbg(1, "\n");
507 
508 	/* If we're not yet registered with sysfs free only what was allocated
509 	 * in edac_mc_alloc().
510 	 */
511 	if (!device_is_registered(&mci->dev)) {
512 		_edac_mc_free(mci);
513 		return;
514 	}
515 
516 	/* the mci instance is freed here, when the sysfs object is dropped */
517 	edac_unregister_sysfs(mci);
518 }
519 EXPORT_SYMBOL_GPL(edac_mc_free);
520 
521 bool edac_has_mcs(void)
522 {
523 	bool ret;
524 
525 	mutex_lock(&mem_ctls_mutex);
526 
527 	ret = list_empty(&mc_devices);
528 
529 	mutex_unlock(&mem_ctls_mutex);
530 
531 	return !ret;
532 }
533 EXPORT_SYMBOL_GPL(edac_has_mcs);
534 
535 /* Caller must hold mem_ctls_mutex */
536 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
537 {
538 	struct mem_ctl_info *mci;
539 	struct list_head *item;
540 
541 	edac_dbg(3, "\n");
542 
543 	list_for_each(item, &mc_devices) {
544 		mci = list_entry(item, struct mem_ctl_info, link);
545 
546 		if (mci->pdev == dev)
547 			return mci;
548 	}
549 
550 	return NULL;
551 }
552 
553 /**
554  * find_mci_by_dev
555  *
556  *	scan list of controllers looking for the one that manages
557  *	the 'dev' device
558  * @dev: pointer to a struct device related with the MCI
559  */
560 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
561 {
562 	struct mem_ctl_info *ret;
563 
564 	mutex_lock(&mem_ctls_mutex);
565 	ret = __find_mci_by_dev(dev);
566 	mutex_unlock(&mem_ctls_mutex);
567 
568 	return ret;
569 }
570 EXPORT_SYMBOL_GPL(find_mci_by_dev);
571 
572 /*
573  * edac_mc_workq_function
574  *	performs the operation scheduled by a workq request
575  */
576 static void edac_mc_workq_function(struct work_struct *work_req)
577 {
578 	struct delayed_work *d_work = to_delayed_work(work_req);
579 	struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
580 
581 	mutex_lock(&mem_ctls_mutex);
582 
583 	if (mci->op_state != OP_RUNNING_POLL) {
584 		mutex_unlock(&mem_ctls_mutex);
585 		return;
586 	}
587 
588 	if (edac_op_state == EDAC_OPSTATE_POLL)
589 		mci->edac_check(mci);
590 
591 	mutex_unlock(&mem_ctls_mutex);
592 
593 	/* Queue ourselves again. */
594 	edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
595 }
596 
597 /*
598  * edac_mc_reset_delay_period(unsigned long value)
599  *
600  *	user space has updated our poll period value, need to
601  *	reset our workq delays
602  */
603 void edac_mc_reset_delay_period(unsigned long value)
604 {
605 	struct mem_ctl_info *mci;
606 	struct list_head *item;
607 
608 	mutex_lock(&mem_ctls_mutex);
609 
610 	list_for_each(item, &mc_devices) {
611 		mci = list_entry(item, struct mem_ctl_info, link);
612 
613 		if (mci->op_state == OP_RUNNING_POLL)
614 			edac_mod_work(&mci->work, value);
615 	}
616 	mutex_unlock(&mem_ctls_mutex);
617 }
618 
619 
620 
621 /* Return 0 on success, 1 on failure.
622  * Before calling this function, caller must
623  * assign a unique value to mci->mc_idx.
624  *
625  *	locking model:
626  *
627  *		called with the mem_ctls_mutex lock held
628  */
629 static int add_mc_to_global_list(struct mem_ctl_info *mci)
630 {
631 	struct list_head *item, *insert_before;
632 	struct mem_ctl_info *p;
633 
634 	insert_before = &mc_devices;
635 
636 	p = __find_mci_by_dev(mci->pdev);
637 	if (unlikely(p != NULL))
638 		goto fail0;
639 
640 	list_for_each(item, &mc_devices) {
641 		p = list_entry(item, struct mem_ctl_info, link);
642 
643 		if (p->mc_idx >= mci->mc_idx) {
644 			if (unlikely(p->mc_idx == mci->mc_idx))
645 				goto fail1;
646 
647 			insert_before = item;
648 			break;
649 		}
650 	}
651 
652 	list_add_tail_rcu(&mci->link, insert_before);
653 	return 0;
654 
655 fail0:
656 	edac_printk(KERN_WARNING, EDAC_MC,
657 		"%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
658 		edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
659 	return 1;
660 
661 fail1:
662 	edac_printk(KERN_WARNING, EDAC_MC,
663 		"bug in low-level driver: attempt to assign\n"
664 		"    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
665 	return 1;
666 }
667 
668 static int del_mc_from_global_list(struct mem_ctl_info *mci)
669 {
670 	list_del_rcu(&mci->link);
671 
672 	/* these are for safe removal of devices from global list while
673 	 * NMI handlers may be traversing list
674 	 */
675 	synchronize_rcu();
676 	INIT_LIST_HEAD(&mci->link);
677 
678 	return list_empty(&mc_devices);
679 }
680 
681 struct mem_ctl_info *edac_mc_find(int idx)
682 {
683 	struct mem_ctl_info *mci = NULL;
684 	struct list_head *item;
685 
686 	mutex_lock(&mem_ctls_mutex);
687 
688 	list_for_each(item, &mc_devices) {
689 		mci = list_entry(item, struct mem_ctl_info, link);
690 
691 		if (mci->mc_idx >= idx) {
692 			if (mci->mc_idx == idx) {
693 				goto unlock;
694 			}
695 			break;
696 		}
697 	}
698 
699 unlock:
700 	mutex_unlock(&mem_ctls_mutex);
701 	return mci;
702 }
703 EXPORT_SYMBOL(edac_mc_find);
704 
705 const char *edac_get_owner(void)
706 {
707 	return edac_mc_owner;
708 }
709 EXPORT_SYMBOL_GPL(edac_get_owner);
710 
711 /* FIXME - should a warning be printed if no error detection? correction? */
712 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
713 			       const struct attribute_group **groups)
714 {
715 	int ret = -EINVAL;
716 	edac_dbg(0, "\n");
717 
718 	if (mci->mc_idx >= EDAC_MAX_MCS) {
719 		pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx);
720 		return -ENODEV;
721 	}
722 
723 #ifdef CONFIG_EDAC_DEBUG
724 	if (edac_debug_level >= 3)
725 		edac_mc_dump_mci(mci);
726 
727 	if (edac_debug_level >= 4) {
728 		int i;
729 
730 		for (i = 0; i < mci->nr_csrows; i++) {
731 			struct csrow_info *csrow = mci->csrows[i];
732 			u32 nr_pages = 0;
733 			int j;
734 
735 			for (j = 0; j < csrow->nr_channels; j++)
736 				nr_pages += csrow->channels[j]->dimm->nr_pages;
737 			if (!nr_pages)
738 				continue;
739 			edac_mc_dump_csrow(csrow);
740 			for (j = 0; j < csrow->nr_channels; j++)
741 				if (csrow->channels[j]->dimm->nr_pages)
742 					edac_mc_dump_channel(csrow->channels[j]);
743 		}
744 		for (i = 0; i < mci->tot_dimms; i++)
745 			if (mci->dimms[i]->nr_pages)
746 				edac_mc_dump_dimm(mci->dimms[i], i);
747 	}
748 #endif
749 	mutex_lock(&mem_ctls_mutex);
750 
751 	if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
752 		ret = -EPERM;
753 		goto fail0;
754 	}
755 
756 	if (add_mc_to_global_list(mci))
757 		goto fail0;
758 
759 	/* set load time so that error rate can be tracked */
760 	mci->start_time = jiffies;
761 
762 	mci->bus = &mc_bus[mci->mc_idx];
763 
764 	if (edac_create_sysfs_mci_device(mci, groups)) {
765 		edac_mc_printk(mci, KERN_WARNING,
766 			"failed to create sysfs device\n");
767 		goto fail1;
768 	}
769 
770 	if (mci->edac_check) {
771 		mci->op_state = OP_RUNNING_POLL;
772 
773 		INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
774 		edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
775 
776 	} else {
777 		mci->op_state = OP_RUNNING_INTERRUPT;
778 	}
779 
780 	/* Report action taken */
781 	edac_mc_printk(mci, KERN_INFO,
782 		"Giving out device to module %s controller %s: DEV %s (%s)\n",
783 		mci->mod_name, mci->ctl_name, mci->dev_name,
784 		edac_op_state_to_string(mci->op_state));
785 
786 	edac_mc_owner = mci->mod_name;
787 
788 	mutex_unlock(&mem_ctls_mutex);
789 	return 0;
790 
791 fail1:
792 	del_mc_from_global_list(mci);
793 
794 fail0:
795 	mutex_unlock(&mem_ctls_mutex);
796 	return ret;
797 }
798 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
799 
800 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
801 {
802 	struct mem_ctl_info *mci;
803 
804 	edac_dbg(0, "\n");
805 
806 	mutex_lock(&mem_ctls_mutex);
807 
808 	/* find the requested mci struct in the global list */
809 	mci = __find_mci_by_dev(dev);
810 	if (mci == NULL) {
811 		mutex_unlock(&mem_ctls_mutex);
812 		return NULL;
813 	}
814 
815 	/* mark MCI offline: */
816 	mci->op_state = OP_OFFLINE;
817 
818 	if (del_mc_from_global_list(mci))
819 		edac_mc_owner = NULL;
820 
821 	mutex_unlock(&mem_ctls_mutex);
822 
823 	if (mci->edac_check)
824 		edac_stop_work(&mci->work);
825 
826 	/* remove from sysfs */
827 	edac_remove_sysfs_mci_device(mci);
828 
829 	edac_printk(KERN_INFO, EDAC_MC,
830 		"Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
831 		mci->mod_name, mci->ctl_name, edac_dev_name(mci));
832 
833 	return mci;
834 }
835 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
836 
837 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
838 				u32 size)
839 {
840 	struct page *pg;
841 	void *virt_addr;
842 	unsigned long flags = 0;
843 
844 	edac_dbg(3, "\n");
845 
846 	/* ECC error page was not in our memory. Ignore it. */
847 	if (!pfn_valid(page))
848 		return;
849 
850 	/* Find the actual page structure then map it and fix */
851 	pg = pfn_to_page(page);
852 
853 	if (PageHighMem(pg))
854 		local_irq_save(flags);
855 
856 	virt_addr = kmap_atomic(pg);
857 
858 	/* Perform architecture specific atomic scrub operation */
859 	edac_atomic_scrub(virt_addr + offset, size);
860 
861 	/* Unmap and complete */
862 	kunmap_atomic(virt_addr);
863 
864 	if (PageHighMem(pg))
865 		local_irq_restore(flags);
866 }
867 
868 /* FIXME - should return -1 */
869 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
870 {
871 	struct csrow_info **csrows = mci->csrows;
872 	int row, i, j, n;
873 
874 	edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
875 	row = -1;
876 
877 	for (i = 0; i < mci->nr_csrows; i++) {
878 		struct csrow_info *csrow = csrows[i];
879 		n = 0;
880 		for (j = 0; j < csrow->nr_channels; j++) {
881 			struct dimm_info *dimm = csrow->channels[j]->dimm;
882 			n += dimm->nr_pages;
883 		}
884 		if (n == 0)
885 			continue;
886 
887 		edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
888 			 mci->mc_idx,
889 			 csrow->first_page, page, csrow->last_page,
890 			 csrow->page_mask);
891 
892 		if ((page >= csrow->first_page) &&
893 		    (page <= csrow->last_page) &&
894 		    ((page & csrow->page_mask) ==
895 		     (csrow->first_page & csrow->page_mask))) {
896 			row = i;
897 			break;
898 		}
899 	}
900 
901 	if (row == -1)
902 		edac_mc_printk(mci, KERN_ERR,
903 			"could not look up page error address %lx\n",
904 			(unsigned long)page);
905 
906 	return row;
907 }
908 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
909 
910 const char *edac_layer_name[] = {
911 	[EDAC_MC_LAYER_BRANCH] = "branch",
912 	[EDAC_MC_LAYER_CHANNEL] = "channel",
913 	[EDAC_MC_LAYER_SLOT] = "slot",
914 	[EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
915 	[EDAC_MC_LAYER_ALL_MEM] = "memory",
916 };
917 EXPORT_SYMBOL_GPL(edac_layer_name);
918 
919 static void edac_inc_ce_error(struct mem_ctl_info *mci,
920 			      bool enable_per_layer_report,
921 			      const int pos[EDAC_MAX_LAYERS],
922 			      const u16 count)
923 {
924 	int i, index = 0;
925 
926 	mci->ce_mc += count;
927 
928 	if (!enable_per_layer_report) {
929 		mci->ce_noinfo_count += count;
930 		return;
931 	}
932 
933 	for (i = 0; i < mci->n_layers; i++) {
934 		if (pos[i] < 0)
935 			break;
936 		index += pos[i];
937 		mci->ce_per_layer[i][index] += count;
938 
939 		if (i < mci->n_layers - 1)
940 			index *= mci->layers[i + 1].size;
941 	}
942 }
943 
944 static void edac_inc_ue_error(struct mem_ctl_info *mci,
945 				    bool enable_per_layer_report,
946 				    const int pos[EDAC_MAX_LAYERS],
947 				    const u16 count)
948 {
949 	int i, index = 0;
950 
951 	mci->ue_mc += count;
952 
953 	if (!enable_per_layer_report) {
954 		mci->ue_noinfo_count += count;
955 		return;
956 	}
957 
958 	for (i = 0; i < mci->n_layers; i++) {
959 		if (pos[i] < 0)
960 			break;
961 		index += pos[i];
962 		mci->ue_per_layer[i][index] += count;
963 
964 		if (i < mci->n_layers - 1)
965 			index *= mci->layers[i + 1].size;
966 	}
967 }
968 
969 static void edac_ce_error(struct mem_ctl_info *mci,
970 			  const u16 error_count,
971 			  const int pos[EDAC_MAX_LAYERS],
972 			  const char *msg,
973 			  const char *location,
974 			  const char *label,
975 			  const char *detail,
976 			  const char *other_detail,
977 			  const bool enable_per_layer_report,
978 			  const unsigned long page_frame_number,
979 			  const unsigned long offset_in_page,
980 			  long grain)
981 {
982 	unsigned long remapped_page;
983 	char *msg_aux = "";
984 
985 	if (*msg)
986 		msg_aux = " ";
987 
988 	if (edac_mc_get_log_ce()) {
989 		if (other_detail && *other_detail)
990 			edac_mc_printk(mci, KERN_WARNING,
991 				       "%d CE %s%son %s (%s %s - %s)\n",
992 				       error_count, msg, msg_aux, label,
993 				       location, detail, other_detail);
994 		else
995 			edac_mc_printk(mci, KERN_WARNING,
996 				       "%d CE %s%son %s (%s %s)\n",
997 				       error_count, msg, msg_aux, label,
998 				       location, detail);
999 	}
1000 	edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
1001 
1002 	if (mci->scrub_mode == SCRUB_SW_SRC) {
1003 		/*
1004 			* Some memory controllers (called MCs below) can remap
1005 			* memory so that it is still available at a different
1006 			* address when PCI devices map into memory.
1007 			* MC's that can't do this, lose the memory where PCI
1008 			* devices are mapped. This mapping is MC-dependent
1009 			* and so we call back into the MC driver for it to
1010 			* map the MC page to a physical (CPU) page which can
1011 			* then be mapped to a virtual page - which can then
1012 			* be scrubbed.
1013 			*/
1014 		remapped_page = mci->ctl_page_to_phys ?
1015 			mci->ctl_page_to_phys(mci, page_frame_number) :
1016 			page_frame_number;
1017 
1018 		edac_mc_scrub_block(remapped_page,
1019 					offset_in_page, grain);
1020 	}
1021 }
1022 
1023 static void edac_ue_error(struct mem_ctl_info *mci,
1024 			  const u16 error_count,
1025 			  const int pos[EDAC_MAX_LAYERS],
1026 			  const char *msg,
1027 			  const char *location,
1028 			  const char *label,
1029 			  const char *detail,
1030 			  const char *other_detail,
1031 			  const bool enable_per_layer_report)
1032 {
1033 	char *msg_aux = "";
1034 
1035 	if (*msg)
1036 		msg_aux = " ";
1037 
1038 	if (edac_mc_get_log_ue()) {
1039 		if (other_detail && *other_detail)
1040 			edac_mc_printk(mci, KERN_WARNING,
1041 				       "%d UE %s%son %s (%s %s - %s)\n",
1042 				       error_count, msg, msg_aux, label,
1043 				       location, detail, other_detail);
1044 		else
1045 			edac_mc_printk(mci, KERN_WARNING,
1046 				       "%d UE %s%son %s (%s %s)\n",
1047 				       error_count, msg, msg_aux, label,
1048 				       location, detail);
1049 	}
1050 
1051 	if (edac_mc_get_panic_on_ue()) {
1052 		if (other_detail && *other_detail)
1053 			panic("UE %s%son %s (%s%s - %s)\n",
1054 			      msg, msg_aux, label, location, detail, other_detail);
1055 		else
1056 			panic("UE %s%son %s (%s%s)\n",
1057 			      msg, msg_aux, label, location, detail);
1058 	}
1059 
1060 	edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
1061 }
1062 
1063 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
1064 			      struct mem_ctl_info *mci,
1065 			      struct edac_raw_error_desc *e)
1066 {
1067 	char detail[80];
1068 	int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
1069 
1070 	/* Memory type dependent details about the error */
1071 	if (type == HW_EVENT_ERR_CORRECTED) {
1072 		snprintf(detail, sizeof(detail),
1073 			"page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1074 			e->page_frame_number, e->offset_in_page,
1075 			e->grain, e->syndrome);
1076 		edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1077 			      detail, e->other_detail, e->enable_per_layer_report,
1078 			      e->page_frame_number, e->offset_in_page, e->grain);
1079 	} else {
1080 		snprintf(detail, sizeof(detail),
1081 			"page:0x%lx offset:0x%lx grain:%ld",
1082 			e->page_frame_number, e->offset_in_page, e->grain);
1083 
1084 		edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1085 			      detail, e->other_detail, e->enable_per_layer_report);
1086 	}
1087 
1088 
1089 }
1090 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1091 
1092 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1093 			  struct mem_ctl_info *mci,
1094 			  const u16 error_count,
1095 			  const unsigned long page_frame_number,
1096 			  const unsigned long offset_in_page,
1097 			  const unsigned long syndrome,
1098 			  const int top_layer,
1099 			  const int mid_layer,
1100 			  const int low_layer,
1101 			  const char *msg,
1102 			  const char *other_detail)
1103 {
1104 	char *p;
1105 	int row = -1, chan = -1;
1106 	int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1107 	int i, n_labels = 0;
1108 	u8 grain_bits;
1109 	struct edac_raw_error_desc *e = &mci->error_desc;
1110 
1111 	edac_dbg(3, "MC%d\n", mci->mc_idx);
1112 
1113 	/* Fills the error report buffer */
1114 	memset(e, 0, sizeof (*e));
1115 	e->error_count = error_count;
1116 	e->top_layer = top_layer;
1117 	e->mid_layer = mid_layer;
1118 	e->low_layer = low_layer;
1119 	e->page_frame_number = page_frame_number;
1120 	e->offset_in_page = offset_in_page;
1121 	e->syndrome = syndrome;
1122 	e->msg = msg;
1123 	e->other_detail = other_detail;
1124 
1125 	/*
1126 	 * Check if the event report is consistent and if the memory
1127 	 * location is known. If it is known, enable_per_layer_report will be
1128 	 * true, the DIMM(s) label info will be filled and the per-layer
1129 	 * error counters will be incremented.
1130 	 */
1131 	for (i = 0; i < mci->n_layers; i++) {
1132 		if (pos[i] >= (int)mci->layers[i].size) {
1133 
1134 			edac_mc_printk(mci, KERN_ERR,
1135 				       "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1136 				       edac_layer_name[mci->layers[i].type],
1137 				       pos[i], mci->layers[i].size);
1138 			/*
1139 			 * Instead of just returning it, let's use what's
1140 			 * known about the error. The increment routines and
1141 			 * the DIMM filter logic will do the right thing by
1142 			 * pointing the likely damaged DIMMs.
1143 			 */
1144 			pos[i] = -1;
1145 		}
1146 		if (pos[i] >= 0)
1147 			e->enable_per_layer_report = true;
1148 	}
1149 
1150 	/*
1151 	 * Get the dimm label/grain that applies to the match criteria.
1152 	 * As the error algorithm may not be able to point to just one memory
1153 	 * stick, the logic here will get all possible labels that could
1154 	 * pottentially be affected by the error.
1155 	 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1156 	 * to have only the MC channel and the MC dimm (also called "branch")
1157 	 * but the channel is not known, as the memory is arranged in pairs,
1158 	 * where each memory belongs to a separate channel within the same
1159 	 * branch.
1160 	 */
1161 	p = e->label;
1162 	*p = '\0';
1163 
1164 	for (i = 0; i < mci->tot_dimms; i++) {
1165 		struct dimm_info *dimm = mci->dimms[i];
1166 
1167 		if (top_layer >= 0 && top_layer != dimm->location[0])
1168 			continue;
1169 		if (mid_layer >= 0 && mid_layer != dimm->location[1])
1170 			continue;
1171 		if (low_layer >= 0 && low_layer != dimm->location[2])
1172 			continue;
1173 
1174 		/* get the max grain, over the error match range */
1175 		if (dimm->grain > e->grain)
1176 			e->grain = dimm->grain;
1177 
1178 		/*
1179 		 * If the error is memory-controller wide, there's no need to
1180 		 * seek for the affected DIMMs because the whole
1181 		 * channel/memory controller/...  may be affected.
1182 		 * Also, don't show errors for empty DIMM slots.
1183 		 */
1184 		if (e->enable_per_layer_report && dimm->nr_pages) {
1185 			if (n_labels >= EDAC_MAX_LABELS) {
1186 				e->enable_per_layer_report = false;
1187 				break;
1188 			}
1189 			n_labels++;
1190 			if (p != e->label) {
1191 				strcpy(p, OTHER_LABEL);
1192 				p += strlen(OTHER_LABEL);
1193 			}
1194 			strcpy(p, dimm->label);
1195 			p += strlen(p);
1196 			*p = '\0';
1197 
1198 			/*
1199 			 * get csrow/channel of the DIMM, in order to allow
1200 			 * incrementing the compat API counters
1201 			 */
1202 			edac_dbg(4, "%s csrows map: (%d,%d)\n",
1203 				 mci->csbased ? "rank" : "dimm",
1204 				 dimm->csrow, dimm->cschannel);
1205 			if (row == -1)
1206 				row = dimm->csrow;
1207 			else if (row >= 0 && row != dimm->csrow)
1208 				row = -2;
1209 
1210 			if (chan == -1)
1211 				chan = dimm->cschannel;
1212 			else if (chan >= 0 && chan != dimm->cschannel)
1213 				chan = -2;
1214 		}
1215 	}
1216 
1217 	if (!e->enable_per_layer_report) {
1218 		strcpy(e->label, "any memory");
1219 	} else {
1220 		edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
1221 		if (p == e->label)
1222 			strcpy(e->label, "unknown memory");
1223 		if (type == HW_EVENT_ERR_CORRECTED) {
1224 			if (row >= 0) {
1225 				mci->csrows[row]->ce_count += error_count;
1226 				if (chan >= 0)
1227 					mci->csrows[row]->channels[chan]->ce_count += error_count;
1228 			}
1229 		} else
1230 			if (row >= 0)
1231 				mci->csrows[row]->ue_count += error_count;
1232 	}
1233 
1234 	/* Fill the RAM location data */
1235 	p = e->location;
1236 
1237 	for (i = 0; i < mci->n_layers; i++) {
1238 		if (pos[i] < 0)
1239 			continue;
1240 
1241 		p += sprintf(p, "%s:%d ",
1242 			     edac_layer_name[mci->layers[i].type],
1243 			     pos[i]);
1244 	}
1245 	if (p > e->location)
1246 		*(p - 1) = '\0';
1247 
1248 	/* Report the error via the trace interface */
1249 	grain_bits = fls_long(e->grain) + 1;
1250 
1251 	if (IS_ENABLED(CONFIG_RAS))
1252 		trace_mc_event(type, e->msg, e->label, e->error_count,
1253 			       mci->mc_idx, e->top_layer, e->mid_layer,
1254 			       e->low_layer,
1255 			       (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
1256 			       grain_bits, e->syndrome, e->other_detail);
1257 
1258 	edac_raw_mc_handle_error(type, mci, e);
1259 }
1260 EXPORT_SYMBOL_GPL(edac_mc_handle_error);
1261