1 /* 2 * edac_mc kernel module 3 * (C) 2005, 2006 Linux Networx (http://lnxi.com) 4 * This file may be distributed under the terms of the 5 * GNU General Public License. 6 * 7 * Written by Thayne Harbaugh 8 * Based on work by Dan Hollis <goemon at anime dot net> and others. 9 * http://www.anime.net/~goemon/linux-ecc/ 10 * 11 * Modified by Dave Peterson and Doug Thompson 12 * 13 */ 14 15 #include <linux/module.h> 16 #include <linux/proc_fs.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/smp.h> 20 #include <linux/init.h> 21 #include <linux/sysctl.h> 22 #include <linux/highmem.h> 23 #include <linux/timer.h> 24 #include <linux/slab.h> 25 #include <linux/jiffies.h> 26 #include <linux/spinlock.h> 27 #include <linux/list.h> 28 #include <linux/ctype.h> 29 #include <linux/edac.h> 30 #include <linux/bitops.h> 31 #include <linux/uaccess.h> 32 #include <asm/page.h> 33 #include "edac_mc.h" 34 #include "edac_module.h" 35 #include <ras/ras_event.h> 36 37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB 38 #include <asm/edac.h> 39 #else 40 #define edac_atomic_scrub(va, size) do { } while (0) 41 #endif 42 43 int edac_op_state = EDAC_OPSTATE_INVAL; 44 EXPORT_SYMBOL_GPL(edac_op_state); 45 46 static int edac_report = EDAC_REPORTING_ENABLED; 47 48 /* lock to memory controller's control array */ 49 static DEFINE_MUTEX(mem_ctls_mutex); 50 static LIST_HEAD(mc_devices); 51 52 /* 53 * Used to lock EDAC MC to just one module, avoiding two drivers e. g. 54 * apei/ghes and i7core_edac to be used at the same time. 55 */ 56 static const char *edac_mc_owner; 57 58 static struct mem_ctl_info *error_desc_to_mci(struct edac_raw_error_desc *e) 59 { 60 return container_of(e, struct mem_ctl_info, error_desc); 61 } 62 63 int edac_get_report_status(void) 64 { 65 return edac_report; 66 } 67 EXPORT_SYMBOL_GPL(edac_get_report_status); 68 69 void edac_set_report_status(int new) 70 { 71 if (new == EDAC_REPORTING_ENABLED || 72 new == EDAC_REPORTING_DISABLED || 73 new == EDAC_REPORTING_FORCE) 74 edac_report = new; 75 } 76 EXPORT_SYMBOL_GPL(edac_set_report_status); 77 78 static int edac_report_set(const char *str, const struct kernel_param *kp) 79 { 80 if (!str) 81 return -EINVAL; 82 83 if (!strncmp(str, "on", 2)) 84 edac_report = EDAC_REPORTING_ENABLED; 85 else if (!strncmp(str, "off", 3)) 86 edac_report = EDAC_REPORTING_DISABLED; 87 else if (!strncmp(str, "force", 5)) 88 edac_report = EDAC_REPORTING_FORCE; 89 90 return 0; 91 } 92 93 static int edac_report_get(char *buffer, const struct kernel_param *kp) 94 { 95 int ret = 0; 96 97 switch (edac_report) { 98 case EDAC_REPORTING_ENABLED: 99 ret = sprintf(buffer, "on"); 100 break; 101 case EDAC_REPORTING_DISABLED: 102 ret = sprintf(buffer, "off"); 103 break; 104 case EDAC_REPORTING_FORCE: 105 ret = sprintf(buffer, "force"); 106 break; 107 default: 108 ret = -EINVAL; 109 break; 110 } 111 112 return ret; 113 } 114 115 static const struct kernel_param_ops edac_report_ops = { 116 .set = edac_report_set, 117 .get = edac_report_get, 118 }; 119 120 module_param_cb(edac_report, &edac_report_ops, &edac_report, 0644); 121 122 unsigned int edac_dimm_info_location(struct dimm_info *dimm, char *buf, 123 unsigned int len) 124 { 125 struct mem_ctl_info *mci = dimm->mci; 126 int i, n, count = 0; 127 char *p = buf; 128 129 for (i = 0; i < mci->n_layers; i++) { 130 n = snprintf(p, len, "%s %d ", 131 edac_layer_name[mci->layers[i].type], 132 dimm->location[i]); 133 p += n; 134 len -= n; 135 count += n; 136 if (!len) 137 break; 138 } 139 140 return count; 141 } 142 143 #ifdef CONFIG_EDAC_DEBUG 144 145 static void edac_mc_dump_channel(struct rank_info *chan) 146 { 147 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx); 148 edac_dbg(4, " channel = %p\n", chan); 149 edac_dbg(4, " channel->csrow = %p\n", chan->csrow); 150 edac_dbg(4, " channel->dimm = %p\n", chan->dimm); 151 } 152 153 static void edac_mc_dump_dimm(struct dimm_info *dimm) 154 { 155 char location[80]; 156 157 if (!dimm->nr_pages) 158 return; 159 160 edac_dimm_info_location(dimm, location, sizeof(location)); 161 162 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n", 163 dimm->mci->csbased ? "rank" : "dimm", 164 dimm->idx, location, dimm->csrow, dimm->cschannel); 165 edac_dbg(4, " dimm = %p\n", dimm); 166 edac_dbg(4, " dimm->label = '%s'\n", dimm->label); 167 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); 168 edac_dbg(4, " dimm->grain = %d\n", dimm->grain); 169 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); 170 } 171 172 static void edac_mc_dump_csrow(struct csrow_info *csrow) 173 { 174 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx); 175 edac_dbg(4, " csrow = %p\n", csrow); 176 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page); 177 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page); 178 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask); 179 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels); 180 edac_dbg(4, " csrow->channels = %p\n", csrow->channels); 181 edac_dbg(4, " csrow->mci = %p\n", csrow->mci); 182 } 183 184 static void edac_mc_dump_mci(struct mem_ctl_info *mci) 185 { 186 edac_dbg(3, "\tmci = %p\n", mci); 187 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap); 188 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap); 189 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap); 190 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check); 191 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n", 192 mci->nr_csrows, mci->csrows); 193 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n", 194 mci->tot_dimms, mci->dimms); 195 edac_dbg(3, "\tdev = %p\n", mci->pdev); 196 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n", 197 mci->mod_name, mci->ctl_name); 198 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info); 199 } 200 201 #endif /* CONFIG_EDAC_DEBUG */ 202 203 const char * const edac_mem_types[] = { 204 [MEM_EMPTY] = "Empty", 205 [MEM_RESERVED] = "Reserved", 206 [MEM_UNKNOWN] = "Unknown", 207 [MEM_FPM] = "FPM", 208 [MEM_EDO] = "EDO", 209 [MEM_BEDO] = "BEDO", 210 [MEM_SDR] = "Unbuffered-SDR", 211 [MEM_RDR] = "Registered-SDR", 212 [MEM_DDR] = "Unbuffered-DDR", 213 [MEM_RDDR] = "Registered-DDR", 214 [MEM_RMBS] = "RMBS", 215 [MEM_DDR2] = "Unbuffered-DDR2", 216 [MEM_FB_DDR2] = "FullyBuffered-DDR2", 217 [MEM_RDDR2] = "Registered-DDR2", 218 [MEM_XDR] = "XDR", 219 [MEM_DDR3] = "Unbuffered-DDR3", 220 [MEM_RDDR3] = "Registered-DDR3", 221 [MEM_LRDDR3] = "Load-Reduced-DDR3-RAM", 222 [MEM_DDR4] = "Unbuffered-DDR4", 223 [MEM_RDDR4] = "Registered-DDR4", 224 [MEM_LRDDR4] = "Load-Reduced-DDR4-RAM", 225 [MEM_NVDIMM] = "Non-volatile-RAM", 226 }; 227 EXPORT_SYMBOL_GPL(edac_mem_types); 228 229 /** 230 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation 231 * @p: pointer to a pointer with the memory offset to be used. At 232 * return, this will be incremented to point to the next offset 233 * @size: Size of the data structure to be reserved 234 * @n_elems: Number of elements that should be reserved 235 * 236 * If 'size' is a constant, the compiler will optimize this whole function 237 * down to either a no-op or the addition of a constant to the value of '*p'. 238 * 239 * The 'p' pointer is absolutely needed to keep the proper advancing 240 * further in memory to the proper offsets when allocating the struct along 241 * with its embedded structs, as edac_device_alloc_ctl_info() does it 242 * above, for example. 243 * 244 * At return, the pointer 'p' will be incremented to be used on a next call 245 * to this function. 246 */ 247 void *edac_align_ptr(void **p, unsigned int size, int n_elems) 248 { 249 unsigned int align, r; 250 void *ptr = *p; 251 252 *p += size * n_elems; 253 254 /* 255 * 'p' can possibly be an unaligned item X such that sizeof(X) is 256 * 'size'. Adjust 'p' so that its alignment is at least as 257 * stringent as what the compiler would provide for X and return 258 * the aligned result. 259 * Here we assume that the alignment of a "long long" is the most 260 * stringent alignment that the compiler will ever provide by default. 261 * As far as I know, this is a reasonable assumption. 262 */ 263 if (size > sizeof(long)) 264 align = sizeof(long long); 265 else if (size > sizeof(int)) 266 align = sizeof(long); 267 else if (size > sizeof(short)) 268 align = sizeof(int); 269 else if (size > sizeof(char)) 270 align = sizeof(short); 271 else 272 return (char *)ptr; 273 274 r = (unsigned long)p % align; 275 276 if (r == 0) 277 return (char *)ptr; 278 279 *p += align - r; 280 281 return (void *)(((unsigned long)ptr) + align - r); 282 } 283 284 static void _edac_mc_free(struct mem_ctl_info *mci) 285 { 286 put_device(&mci->dev); 287 } 288 289 static void mci_release(struct device *dev) 290 { 291 struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev); 292 struct csrow_info *csr; 293 int i, chn, row; 294 295 if (mci->dimms) { 296 for (i = 0; i < mci->tot_dimms; i++) 297 kfree(mci->dimms[i]); 298 kfree(mci->dimms); 299 } 300 301 if (mci->csrows) { 302 for (row = 0; row < mci->nr_csrows; row++) { 303 csr = mci->csrows[row]; 304 if (!csr) 305 continue; 306 307 if (csr->channels) { 308 for (chn = 0; chn < mci->num_cschannel; chn++) 309 kfree(csr->channels[chn]); 310 kfree(csr->channels); 311 } 312 kfree(csr); 313 } 314 kfree(mci->csrows); 315 } 316 kfree(mci); 317 } 318 319 static int edac_mc_alloc_csrows(struct mem_ctl_info *mci) 320 { 321 unsigned int tot_channels = mci->num_cschannel; 322 unsigned int tot_csrows = mci->nr_csrows; 323 unsigned int row, chn; 324 325 /* 326 * Alocate and fill the csrow/channels structs 327 */ 328 mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL); 329 if (!mci->csrows) 330 return -ENOMEM; 331 332 for (row = 0; row < tot_csrows; row++) { 333 struct csrow_info *csr; 334 335 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL); 336 if (!csr) 337 return -ENOMEM; 338 339 mci->csrows[row] = csr; 340 csr->csrow_idx = row; 341 csr->mci = mci; 342 csr->nr_channels = tot_channels; 343 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels), 344 GFP_KERNEL); 345 if (!csr->channels) 346 return -ENOMEM; 347 348 for (chn = 0; chn < tot_channels; chn++) { 349 struct rank_info *chan; 350 351 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL); 352 if (!chan) 353 return -ENOMEM; 354 355 csr->channels[chn] = chan; 356 chan->chan_idx = chn; 357 chan->csrow = csr; 358 } 359 } 360 361 return 0; 362 } 363 364 static int edac_mc_alloc_dimms(struct mem_ctl_info *mci) 365 { 366 unsigned int pos[EDAC_MAX_LAYERS]; 367 unsigned int row, chn, idx; 368 int layer; 369 void *p; 370 371 /* 372 * Allocate and fill the dimm structs 373 */ 374 mci->dimms = kcalloc(mci->tot_dimms, sizeof(*mci->dimms), GFP_KERNEL); 375 if (!mci->dimms) 376 return -ENOMEM; 377 378 memset(&pos, 0, sizeof(pos)); 379 row = 0; 380 chn = 0; 381 for (idx = 0; idx < mci->tot_dimms; idx++) { 382 struct dimm_info *dimm; 383 struct rank_info *chan; 384 int n, len; 385 386 chan = mci->csrows[row]->channels[chn]; 387 388 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL); 389 if (!dimm) 390 return -ENOMEM; 391 mci->dimms[idx] = dimm; 392 dimm->mci = mci; 393 dimm->idx = idx; 394 395 /* 396 * Copy DIMM location and initialize it. 397 */ 398 len = sizeof(dimm->label); 399 p = dimm->label; 400 n = snprintf(p, len, "mc#%u", mci->mc_idx); 401 p += n; 402 len -= n; 403 for (layer = 0; layer < mci->n_layers; layer++) { 404 n = snprintf(p, len, "%s#%u", 405 edac_layer_name[mci->layers[layer].type], 406 pos[layer]); 407 p += n; 408 len -= n; 409 dimm->location[layer] = pos[layer]; 410 411 if (len <= 0) 412 break; 413 } 414 415 /* Link it to the csrows old API data */ 416 chan->dimm = dimm; 417 dimm->csrow = row; 418 dimm->cschannel = chn; 419 420 /* Increment csrow location */ 421 if (mci->layers[0].is_virt_csrow) { 422 chn++; 423 if (chn == mci->num_cschannel) { 424 chn = 0; 425 row++; 426 } 427 } else { 428 row++; 429 if (row == mci->nr_csrows) { 430 row = 0; 431 chn++; 432 } 433 } 434 435 /* Increment dimm location */ 436 for (layer = mci->n_layers - 1; layer >= 0; layer--) { 437 pos[layer]++; 438 if (pos[layer] < mci->layers[layer].size) 439 break; 440 pos[layer] = 0; 441 } 442 } 443 444 return 0; 445 } 446 447 struct mem_ctl_info *edac_mc_alloc(unsigned int mc_num, 448 unsigned int n_layers, 449 struct edac_mc_layer *layers, 450 unsigned int sz_pvt) 451 { 452 struct mem_ctl_info *mci; 453 struct edac_mc_layer *layer; 454 unsigned int idx, size, tot_dimms = 1; 455 unsigned int tot_csrows = 1, tot_channels = 1; 456 void *pvt, *ptr = NULL; 457 bool per_rank = false; 458 459 if (WARN_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0)) 460 return NULL; 461 462 /* 463 * Calculate the total amount of dimms and csrows/cschannels while 464 * in the old API emulation mode 465 */ 466 for (idx = 0; idx < n_layers; idx++) { 467 tot_dimms *= layers[idx].size; 468 469 if (layers[idx].is_virt_csrow) 470 tot_csrows *= layers[idx].size; 471 else 472 tot_channels *= layers[idx].size; 473 474 if (layers[idx].type == EDAC_MC_LAYER_CHIP_SELECT) 475 per_rank = true; 476 } 477 478 /* Figure out the offsets of the various items from the start of an mc 479 * structure. We want the alignment of each item to be at least as 480 * stringent as what the compiler would provide if we could simply 481 * hardcode everything into a single struct. 482 */ 483 mci = edac_align_ptr(&ptr, sizeof(*mci), 1); 484 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers); 485 pvt = edac_align_ptr(&ptr, sz_pvt, 1); 486 size = ((unsigned long)pvt) + sz_pvt; 487 488 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n", 489 size, 490 tot_dimms, 491 per_rank ? "ranks" : "dimms", 492 tot_csrows * tot_channels); 493 494 mci = kzalloc(size, GFP_KERNEL); 495 if (mci == NULL) 496 return NULL; 497 498 mci->dev.release = mci_release; 499 device_initialize(&mci->dev); 500 501 /* Adjust pointers so they point within the memory we just allocated 502 * rather than an imaginary chunk of memory located at address 0. 503 */ 504 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer)); 505 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL; 506 507 /* setup index and various internal pointers */ 508 mci->mc_idx = mc_num; 509 mci->tot_dimms = tot_dimms; 510 mci->pvt_info = pvt; 511 mci->n_layers = n_layers; 512 mci->layers = layer; 513 memcpy(mci->layers, layers, sizeof(*layer) * n_layers); 514 mci->nr_csrows = tot_csrows; 515 mci->num_cschannel = tot_channels; 516 mci->csbased = per_rank; 517 518 if (edac_mc_alloc_csrows(mci)) 519 goto error; 520 521 if (edac_mc_alloc_dimms(mci)) 522 goto error; 523 524 mci->op_state = OP_ALLOC; 525 526 return mci; 527 528 error: 529 _edac_mc_free(mci); 530 531 return NULL; 532 } 533 EXPORT_SYMBOL_GPL(edac_mc_alloc); 534 535 void edac_mc_free(struct mem_ctl_info *mci) 536 { 537 edac_dbg(1, "\n"); 538 539 _edac_mc_free(mci); 540 } 541 EXPORT_SYMBOL_GPL(edac_mc_free); 542 543 bool edac_has_mcs(void) 544 { 545 bool ret; 546 547 mutex_lock(&mem_ctls_mutex); 548 549 ret = list_empty(&mc_devices); 550 551 mutex_unlock(&mem_ctls_mutex); 552 553 return !ret; 554 } 555 EXPORT_SYMBOL_GPL(edac_has_mcs); 556 557 /* Caller must hold mem_ctls_mutex */ 558 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev) 559 { 560 struct mem_ctl_info *mci; 561 struct list_head *item; 562 563 edac_dbg(3, "\n"); 564 565 list_for_each(item, &mc_devices) { 566 mci = list_entry(item, struct mem_ctl_info, link); 567 568 if (mci->pdev == dev) 569 return mci; 570 } 571 572 return NULL; 573 } 574 575 /** 576 * find_mci_by_dev 577 * 578 * scan list of controllers looking for the one that manages 579 * the 'dev' device 580 * @dev: pointer to a struct device related with the MCI 581 */ 582 struct mem_ctl_info *find_mci_by_dev(struct device *dev) 583 { 584 struct mem_ctl_info *ret; 585 586 mutex_lock(&mem_ctls_mutex); 587 ret = __find_mci_by_dev(dev); 588 mutex_unlock(&mem_ctls_mutex); 589 590 return ret; 591 } 592 EXPORT_SYMBOL_GPL(find_mci_by_dev); 593 594 /* 595 * edac_mc_workq_function 596 * performs the operation scheduled by a workq request 597 */ 598 static void edac_mc_workq_function(struct work_struct *work_req) 599 { 600 struct delayed_work *d_work = to_delayed_work(work_req); 601 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work); 602 603 mutex_lock(&mem_ctls_mutex); 604 605 if (mci->op_state != OP_RUNNING_POLL) { 606 mutex_unlock(&mem_ctls_mutex); 607 return; 608 } 609 610 if (edac_op_state == EDAC_OPSTATE_POLL) 611 mci->edac_check(mci); 612 613 mutex_unlock(&mem_ctls_mutex); 614 615 /* Queue ourselves again. */ 616 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec())); 617 } 618 619 /* 620 * edac_mc_reset_delay_period(unsigned long value) 621 * 622 * user space has updated our poll period value, need to 623 * reset our workq delays 624 */ 625 void edac_mc_reset_delay_period(unsigned long value) 626 { 627 struct mem_ctl_info *mci; 628 struct list_head *item; 629 630 mutex_lock(&mem_ctls_mutex); 631 632 list_for_each(item, &mc_devices) { 633 mci = list_entry(item, struct mem_ctl_info, link); 634 635 if (mci->op_state == OP_RUNNING_POLL) 636 edac_mod_work(&mci->work, value); 637 } 638 mutex_unlock(&mem_ctls_mutex); 639 } 640 641 642 643 /* Return 0 on success, 1 on failure. 644 * Before calling this function, caller must 645 * assign a unique value to mci->mc_idx. 646 * 647 * locking model: 648 * 649 * called with the mem_ctls_mutex lock held 650 */ 651 static int add_mc_to_global_list(struct mem_ctl_info *mci) 652 { 653 struct list_head *item, *insert_before; 654 struct mem_ctl_info *p; 655 656 insert_before = &mc_devices; 657 658 p = __find_mci_by_dev(mci->pdev); 659 if (unlikely(p != NULL)) 660 goto fail0; 661 662 list_for_each(item, &mc_devices) { 663 p = list_entry(item, struct mem_ctl_info, link); 664 665 if (p->mc_idx >= mci->mc_idx) { 666 if (unlikely(p->mc_idx == mci->mc_idx)) 667 goto fail1; 668 669 insert_before = item; 670 break; 671 } 672 } 673 674 list_add_tail_rcu(&mci->link, insert_before); 675 return 0; 676 677 fail0: 678 edac_printk(KERN_WARNING, EDAC_MC, 679 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev), 680 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx); 681 return 1; 682 683 fail1: 684 edac_printk(KERN_WARNING, EDAC_MC, 685 "bug in low-level driver: attempt to assign\n" 686 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__); 687 return 1; 688 } 689 690 static int del_mc_from_global_list(struct mem_ctl_info *mci) 691 { 692 list_del_rcu(&mci->link); 693 694 /* these are for safe removal of devices from global list while 695 * NMI handlers may be traversing list 696 */ 697 synchronize_rcu(); 698 INIT_LIST_HEAD(&mci->link); 699 700 return list_empty(&mc_devices); 701 } 702 703 struct mem_ctl_info *edac_mc_find(int idx) 704 { 705 struct mem_ctl_info *mci; 706 struct list_head *item; 707 708 mutex_lock(&mem_ctls_mutex); 709 710 list_for_each(item, &mc_devices) { 711 mci = list_entry(item, struct mem_ctl_info, link); 712 if (mci->mc_idx == idx) 713 goto unlock; 714 } 715 716 mci = NULL; 717 unlock: 718 mutex_unlock(&mem_ctls_mutex); 719 return mci; 720 } 721 EXPORT_SYMBOL(edac_mc_find); 722 723 const char *edac_get_owner(void) 724 { 725 return edac_mc_owner; 726 } 727 EXPORT_SYMBOL_GPL(edac_get_owner); 728 729 /* FIXME - should a warning be printed if no error detection? correction? */ 730 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci, 731 const struct attribute_group **groups) 732 { 733 int ret = -EINVAL; 734 edac_dbg(0, "\n"); 735 736 #ifdef CONFIG_EDAC_DEBUG 737 if (edac_debug_level >= 3) 738 edac_mc_dump_mci(mci); 739 740 if (edac_debug_level >= 4) { 741 struct dimm_info *dimm; 742 int i; 743 744 for (i = 0; i < mci->nr_csrows; i++) { 745 struct csrow_info *csrow = mci->csrows[i]; 746 u32 nr_pages = 0; 747 int j; 748 749 for (j = 0; j < csrow->nr_channels; j++) 750 nr_pages += csrow->channels[j]->dimm->nr_pages; 751 if (!nr_pages) 752 continue; 753 edac_mc_dump_csrow(csrow); 754 for (j = 0; j < csrow->nr_channels; j++) 755 if (csrow->channels[j]->dimm->nr_pages) 756 edac_mc_dump_channel(csrow->channels[j]); 757 } 758 759 mci_for_each_dimm(mci, dimm) 760 edac_mc_dump_dimm(dimm); 761 } 762 #endif 763 mutex_lock(&mem_ctls_mutex); 764 765 if (edac_mc_owner && edac_mc_owner != mci->mod_name) { 766 ret = -EPERM; 767 goto fail0; 768 } 769 770 if (add_mc_to_global_list(mci)) 771 goto fail0; 772 773 /* set load time so that error rate can be tracked */ 774 mci->start_time = jiffies; 775 776 mci->bus = edac_get_sysfs_subsys(); 777 778 if (edac_create_sysfs_mci_device(mci, groups)) { 779 edac_mc_printk(mci, KERN_WARNING, 780 "failed to create sysfs device\n"); 781 goto fail1; 782 } 783 784 if (mci->edac_check) { 785 mci->op_state = OP_RUNNING_POLL; 786 787 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function); 788 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec())); 789 790 } else { 791 mci->op_state = OP_RUNNING_INTERRUPT; 792 } 793 794 /* Report action taken */ 795 edac_mc_printk(mci, KERN_INFO, 796 "Giving out device to module %s controller %s: DEV %s (%s)\n", 797 mci->mod_name, mci->ctl_name, mci->dev_name, 798 edac_op_state_to_string(mci->op_state)); 799 800 edac_mc_owner = mci->mod_name; 801 802 mutex_unlock(&mem_ctls_mutex); 803 return 0; 804 805 fail1: 806 del_mc_from_global_list(mci); 807 808 fail0: 809 mutex_unlock(&mem_ctls_mutex); 810 return ret; 811 } 812 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups); 813 814 struct mem_ctl_info *edac_mc_del_mc(struct device *dev) 815 { 816 struct mem_ctl_info *mci; 817 818 edac_dbg(0, "\n"); 819 820 mutex_lock(&mem_ctls_mutex); 821 822 /* find the requested mci struct in the global list */ 823 mci = __find_mci_by_dev(dev); 824 if (mci == NULL) { 825 mutex_unlock(&mem_ctls_mutex); 826 return NULL; 827 } 828 829 /* mark MCI offline: */ 830 mci->op_state = OP_OFFLINE; 831 832 if (del_mc_from_global_list(mci)) 833 edac_mc_owner = NULL; 834 835 mutex_unlock(&mem_ctls_mutex); 836 837 if (mci->edac_check) 838 edac_stop_work(&mci->work); 839 840 /* remove from sysfs */ 841 edac_remove_sysfs_mci_device(mci); 842 843 edac_printk(KERN_INFO, EDAC_MC, 844 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx, 845 mci->mod_name, mci->ctl_name, edac_dev_name(mci)); 846 847 return mci; 848 } 849 EXPORT_SYMBOL_GPL(edac_mc_del_mc); 850 851 static void edac_mc_scrub_block(unsigned long page, unsigned long offset, 852 u32 size) 853 { 854 struct page *pg; 855 void *virt_addr; 856 unsigned long flags = 0; 857 858 edac_dbg(3, "\n"); 859 860 /* ECC error page was not in our memory. Ignore it. */ 861 if (!pfn_valid(page)) 862 return; 863 864 /* Find the actual page structure then map it and fix */ 865 pg = pfn_to_page(page); 866 867 if (PageHighMem(pg)) 868 local_irq_save(flags); 869 870 virt_addr = kmap_atomic(pg); 871 872 /* Perform architecture specific atomic scrub operation */ 873 edac_atomic_scrub(virt_addr + offset, size); 874 875 /* Unmap and complete */ 876 kunmap_atomic(virt_addr); 877 878 if (PageHighMem(pg)) 879 local_irq_restore(flags); 880 } 881 882 /* FIXME - should return -1 */ 883 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page) 884 { 885 struct csrow_info **csrows = mci->csrows; 886 int row, i, j, n; 887 888 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page); 889 row = -1; 890 891 for (i = 0; i < mci->nr_csrows; i++) { 892 struct csrow_info *csrow = csrows[i]; 893 n = 0; 894 for (j = 0; j < csrow->nr_channels; j++) { 895 struct dimm_info *dimm = csrow->channels[j]->dimm; 896 n += dimm->nr_pages; 897 } 898 if (n == 0) 899 continue; 900 901 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n", 902 mci->mc_idx, 903 csrow->first_page, page, csrow->last_page, 904 csrow->page_mask); 905 906 if ((page >= csrow->first_page) && 907 (page <= csrow->last_page) && 908 ((page & csrow->page_mask) == 909 (csrow->first_page & csrow->page_mask))) { 910 row = i; 911 break; 912 } 913 } 914 915 if (row == -1) 916 edac_mc_printk(mci, KERN_ERR, 917 "could not look up page error address %lx\n", 918 (unsigned long)page); 919 920 return row; 921 } 922 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page); 923 924 const char *edac_layer_name[] = { 925 [EDAC_MC_LAYER_BRANCH] = "branch", 926 [EDAC_MC_LAYER_CHANNEL] = "channel", 927 [EDAC_MC_LAYER_SLOT] = "slot", 928 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow", 929 [EDAC_MC_LAYER_ALL_MEM] = "memory", 930 }; 931 EXPORT_SYMBOL_GPL(edac_layer_name); 932 933 static void edac_inc_ce_error(struct edac_raw_error_desc *e) 934 { 935 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer }; 936 struct mem_ctl_info *mci = error_desc_to_mci(e); 937 struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]); 938 939 mci->ce_mc += e->error_count; 940 941 if (dimm) 942 dimm->ce_count += e->error_count; 943 else 944 mci->ce_noinfo_count += e->error_count; 945 } 946 947 static void edac_inc_ue_error(struct edac_raw_error_desc *e) 948 { 949 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer }; 950 struct mem_ctl_info *mci = error_desc_to_mci(e); 951 struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]); 952 953 mci->ue_mc += e->error_count; 954 955 if (dimm) 956 dimm->ue_count += e->error_count; 957 else 958 mci->ue_noinfo_count += e->error_count; 959 } 960 961 static void edac_ce_error(struct edac_raw_error_desc *e) 962 { 963 struct mem_ctl_info *mci = error_desc_to_mci(e); 964 unsigned long remapped_page; 965 966 if (edac_mc_get_log_ce()) { 967 edac_mc_printk(mci, KERN_WARNING, 968 "%d CE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx%s%s)\n", 969 e->error_count, e->msg, 970 *e->msg ? " " : "", 971 e->label, e->location, e->page_frame_number, e->offset_in_page, 972 e->grain, e->syndrome, 973 *e->other_detail ? " - " : "", 974 e->other_detail); 975 } 976 977 edac_inc_ce_error(e); 978 979 if (mci->scrub_mode == SCRUB_SW_SRC) { 980 /* 981 * Some memory controllers (called MCs below) can remap 982 * memory so that it is still available at a different 983 * address when PCI devices map into memory. 984 * MC's that can't do this, lose the memory where PCI 985 * devices are mapped. This mapping is MC-dependent 986 * and so we call back into the MC driver for it to 987 * map the MC page to a physical (CPU) page which can 988 * then be mapped to a virtual page - which can then 989 * be scrubbed. 990 */ 991 remapped_page = mci->ctl_page_to_phys ? 992 mci->ctl_page_to_phys(mci, e->page_frame_number) : 993 e->page_frame_number; 994 995 edac_mc_scrub_block(remapped_page, e->offset_in_page, e->grain); 996 } 997 } 998 999 static void edac_ue_error(struct edac_raw_error_desc *e) 1000 { 1001 struct mem_ctl_info *mci = error_desc_to_mci(e); 1002 1003 if (edac_mc_get_log_ue()) { 1004 edac_mc_printk(mci, KERN_WARNING, 1005 "%d UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n", 1006 e->error_count, e->msg, 1007 *e->msg ? " " : "", 1008 e->label, e->location, e->page_frame_number, e->offset_in_page, 1009 e->grain, 1010 *e->other_detail ? " - " : "", 1011 e->other_detail); 1012 } 1013 1014 if (edac_mc_get_panic_on_ue()) { 1015 panic("UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n", 1016 e->msg, 1017 *e->msg ? " " : "", 1018 e->label, e->location, e->page_frame_number, e->offset_in_page, 1019 e->grain, 1020 *e->other_detail ? " - " : "", 1021 e->other_detail); 1022 } 1023 1024 edac_inc_ue_error(e); 1025 } 1026 1027 static void edac_inc_csrow(struct edac_raw_error_desc *e, int row, int chan) 1028 { 1029 struct mem_ctl_info *mci = error_desc_to_mci(e); 1030 enum hw_event_mc_err_type type = e->type; 1031 u16 count = e->error_count; 1032 1033 if (row < 0) 1034 return; 1035 1036 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan); 1037 1038 if (type == HW_EVENT_ERR_CORRECTED) { 1039 mci->csrows[row]->ce_count += count; 1040 if (chan >= 0) 1041 mci->csrows[row]->channels[chan]->ce_count += count; 1042 } else { 1043 mci->csrows[row]->ue_count += count; 1044 } 1045 } 1046 1047 void edac_raw_mc_handle_error(struct edac_raw_error_desc *e) 1048 { 1049 struct mem_ctl_info *mci = error_desc_to_mci(e); 1050 u8 grain_bits; 1051 1052 /* Sanity-check driver-supplied grain value. */ 1053 if (WARN_ON_ONCE(!e->grain)) 1054 e->grain = 1; 1055 1056 grain_bits = fls_long(e->grain - 1); 1057 1058 /* Report the error via the trace interface */ 1059 if (IS_ENABLED(CONFIG_RAS)) 1060 trace_mc_event(e->type, e->msg, e->label, e->error_count, 1061 mci->mc_idx, e->top_layer, e->mid_layer, 1062 e->low_layer, 1063 (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page, 1064 grain_bits, e->syndrome, e->other_detail); 1065 1066 if (e->type == HW_EVENT_ERR_CORRECTED) 1067 edac_ce_error(e); 1068 else 1069 edac_ue_error(e); 1070 } 1071 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error); 1072 1073 void edac_mc_handle_error(const enum hw_event_mc_err_type type, 1074 struct mem_ctl_info *mci, 1075 const u16 error_count, 1076 const unsigned long page_frame_number, 1077 const unsigned long offset_in_page, 1078 const unsigned long syndrome, 1079 const int top_layer, 1080 const int mid_layer, 1081 const int low_layer, 1082 const char *msg, 1083 const char *other_detail) 1084 { 1085 struct dimm_info *dimm; 1086 char *p; 1087 int row = -1, chan = -1; 1088 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer }; 1089 int i, n_labels = 0; 1090 struct edac_raw_error_desc *e = &mci->error_desc; 1091 bool any_memory = true; 1092 1093 edac_dbg(3, "MC%d\n", mci->mc_idx); 1094 1095 /* Fills the error report buffer */ 1096 memset(e, 0, sizeof (*e)); 1097 e->error_count = error_count; 1098 e->type = type; 1099 e->top_layer = top_layer; 1100 e->mid_layer = mid_layer; 1101 e->low_layer = low_layer; 1102 e->page_frame_number = page_frame_number; 1103 e->offset_in_page = offset_in_page; 1104 e->syndrome = syndrome; 1105 /* need valid strings here for both: */ 1106 e->msg = msg ?: ""; 1107 e->other_detail = other_detail ?: ""; 1108 1109 /* 1110 * Check if the event report is consistent and if the memory location is 1111 * known. If it is, the DIMM(s) label info will be filled and the DIMM's 1112 * error counters will be incremented. 1113 */ 1114 for (i = 0; i < mci->n_layers; i++) { 1115 if (pos[i] >= (int)mci->layers[i].size) { 1116 1117 edac_mc_printk(mci, KERN_ERR, 1118 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n", 1119 edac_layer_name[mci->layers[i].type], 1120 pos[i], mci->layers[i].size); 1121 /* 1122 * Instead of just returning it, let's use what's 1123 * known about the error. The increment routines and 1124 * the DIMM filter logic will do the right thing by 1125 * pointing the likely damaged DIMMs. 1126 */ 1127 pos[i] = -1; 1128 } 1129 if (pos[i] >= 0) 1130 any_memory = false; 1131 } 1132 1133 /* 1134 * Get the dimm label/grain that applies to the match criteria. 1135 * As the error algorithm may not be able to point to just one memory 1136 * stick, the logic here will get all possible labels that could 1137 * pottentially be affected by the error. 1138 * On FB-DIMM memory controllers, for uncorrected errors, it is common 1139 * to have only the MC channel and the MC dimm (also called "branch") 1140 * but the channel is not known, as the memory is arranged in pairs, 1141 * where each memory belongs to a separate channel within the same 1142 * branch. 1143 */ 1144 p = e->label; 1145 *p = '\0'; 1146 1147 mci_for_each_dimm(mci, dimm) { 1148 if (top_layer >= 0 && top_layer != dimm->location[0]) 1149 continue; 1150 if (mid_layer >= 0 && mid_layer != dimm->location[1]) 1151 continue; 1152 if (low_layer >= 0 && low_layer != dimm->location[2]) 1153 continue; 1154 1155 /* get the max grain, over the error match range */ 1156 if (dimm->grain > e->grain) 1157 e->grain = dimm->grain; 1158 1159 /* 1160 * If the error is memory-controller wide, there's no need to 1161 * seek for the affected DIMMs because the whole channel/memory 1162 * controller/... may be affected. Also, don't show errors for 1163 * empty DIMM slots. 1164 */ 1165 if (!dimm->nr_pages) 1166 continue; 1167 1168 n_labels++; 1169 if (n_labels > EDAC_MAX_LABELS) { 1170 p = e->label; 1171 *p = '\0'; 1172 } else { 1173 if (p != e->label) { 1174 strcpy(p, OTHER_LABEL); 1175 p += strlen(OTHER_LABEL); 1176 } 1177 strcpy(p, dimm->label); 1178 p += strlen(p); 1179 } 1180 1181 /* 1182 * get csrow/channel of the DIMM, in order to allow 1183 * incrementing the compat API counters 1184 */ 1185 edac_dbg(4, "%s csrows map: (%d,%d)\n", 1186 mci->csbased ? "rank" : "dimm", 1187 dimm->csrow, dimm->cschannel); 1188 if (row == -1) 1189 row = dimm->csrow; 1190 else if (row >= 0 && row != dimm->csrow) 1191 row = -2; 1192 1193 if (chan == -1) 1194 chan = dimm->cschannel; 1195 else if (chan >= 0 && chan != dimm->cschannel) 1196 chan = -2; 1197 } 1198 1199 if (any_memory) 1200 strcpy(e->label, "any memory"); 1201 else if (!*e->label) 1202 strcpy(e->label, "unknown memory"); 1203 1204 edac_inc_csrow(e, row, chan); 1205 1206 /* Fill the RAM location data */ 1207 p = e->location; 1208 1209 for (i = 0; i < mci->n_layers; i++) { 1210 if (pos[i] < 0) 1211 continue; 1212 1213 p += sprintf(p, "%s:%d ", 1214 edac_layer_name[mci->layers[i].type], 1215 pos[i]); 1216 } 1217 if (p > e->location) 1218 *(p - 1) = '\0'; 1219 1220 edac_raw_mc_handle_error(e); 1221 } 1222 EXPORT_SYMBOL_GPL(edac_mc_handle_error); 1223