1 /* 2 * edac_mc kernel module 3 * (C) 2005, 2006 Linux Networx (http://lnxi.com) 4 * This file may be distributed under the terms of the 5 * GNU General Public License. 6 * 7 * Written by Thayne Harbaugh 8 * Based on work by Dan Hollis <goemon at anime dot net> and others. 9 * http://www.anime.net/~goemon/linux-ecc/ 10 * 11 * Modified by Dave Peterson and Doug Thompson 12 * 13 */ 14 15 #include <linux/module.h> 16 #include <linux/proc_fs.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/smp.h> 20 #include <linux/init.h> 21 #include <linux/sysctl.h> 22 #include <linux/highmem.h> 23 #include <linux/timer.h> 24 #include <linux/slab.h> 25 #include <linux/jiffies.h> 26 #include <linux/spinlock.h> 27 #include <linux/list.h> 28 #include <linux/ctype.h> 29 #include <linux/edac.h> 30 #include <linux/bitops.h> 31 #include <asm/uaccess.h> 32 #include <asm/page.h> 33 #include <asm/edac.h> 34 #include "edac_core.h" 35 #include "edac_module.h" 36 37 #define CREATE_TRACE_POINTS 38 #define TRACE_INCLUDE_PATH ../../include/ras 39 #include <ras/ras_event.h> 40 41 /* lock to memory controller's control array */ 42 static DEFINE_MUTEX(mem_ctls_mutex); 43 static LIST_HEAD(mc_devices); 44 45 unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf, 46 unsigned len) 47 { 48 struct mem_ctl_info *mci = dimm->mci; 49 int i, n, count = 0; 50 char *p = buf; 51 52 for (i = 0; i < mci->n_layers; i++) { 53 n = snprintf(p, len, "%s %d ", 54 edac_layer_name[mci->layers[i].type], 55 dimm->location[i]); 56 p += n; 57 len -= n; 58 count += n; 59 if (!len) 60 break; 61 } 62 63 return count; 64 } 65 66 #ifdef CONFIG_EDAC_DEBUG 67 68 static void edac_mc_dump_channel(struct rank_info *chan) 69 { 70 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx); 71 edac_dbg(4, " channel = %p\n", chan); 72 edac_dbg(4, " channel->csrow = %p\n", chan->csrow); 73 edac_dbg(4, " channel->dimm = %p\n", chan->dimm); 74 } 75 76 static void edac_mc_dump_dimm(struct dimm_info *dimm, int number) 77 { 78 char location[80]; 79 80 edac_dimm_info_location(dimm, location, sizeof(location)); 81 82 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n", 83 dimm->mci->mem_is_per_rank ? "rank" : "dimm", 84 number, location, dimm->csrow, dimm->cschannel); 85 edac_dbg(4, " dimm = %p\n", dimm); 86 edac_dbg(4, " dimm->label = '%s'\n", dimm->label); 87 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); 88 edac_dbg(4, " dimm->grain = %d\n", dimm->grain); 89 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); 90 } 91 92 static void edac_mc_dump_csrow(struct csrow_info *csrow) 93 { 94 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx); 95 edac_dbg(4, " csrow = %p\n", csrow); 96 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page); 97 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page); 98 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask); 99 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels); 100 edac_dbg(4, " csrow->channels = %p\n", csrow->channels); 101 edac_dbg(4, " csrow->mci = %p\n", csrow->mci); 102 } 103 104 static void edac_mc_dump_mci(struct mem_ctl_info *mci) 105 { 106 edac_dbg(3, "\tmci = %p\n", mci); 107 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap); 108 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap); 109 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap); 110 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check); 111 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n", 112 mci->nr_csrows, mci->csrows); 113 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n", 114 mci->tot_dimms, mci->dimms); 115 edac_dbg(3, "\tdev = %p\n", mci->pdev); 116 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n", 117 mci->mod_name, mci->ctl_name); 118 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info); 119 } 120 121 #endif /* CONFIG_EDAC_DEBUG */ 122 123 /* 124 * keep those in sync with the enum mem_type 125 */ 126 const char *edac_mem_types[] = { 127 "Empty csrow", 128 "Reserved csrow type", 129 "Unknown csrow type", 130 "Fast page mode RAM", 131 "Extended data out RAM", 132 "Burst Extended data out RAM", 133 "Single data rate SDRAM", 134 "Registered single data rate SDRAM", 135 "Double data rate SDRAM", 136 "Registered Double data rate SDRAM", 137 "Rambus DRAM", 138 "Unbuffered DDR2 RAM", 139 "Fully buffered DDR2", 140 "Registered DDR2 RAM", 141 "Rambus XDR", 142 "Unbuffered DDR3 RAM", 143 "Registered DDR3 RAM", 144 }; 145 EXPORT_SYMBOL_GPL(edac_mem_types); 146 147 /** 148 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation 149 * @p: pointer to a pointer with the memory offset to be used. At 150 * return, this will be incremented to point to the next offset 151 * @size: Size of the data structure to be reserved 152 * @n_elems: Number of elements that should be reserved 153 * 154 * If 'size' is a constant, the compiler will optimize this whole function 155 * down to either a no-op or the addition of a constant to the value of '*p'. 156 * 157 * The 'p' pointer is absolutely needed to keep the proper advancing 158 * further in memory to the proper offsets when allocating the struct along 159 * with its embedded structs, as edac_device_alloc_ctl_info() does it 160 * above, for example. 161 * 162 * At return, the pointer 'p' will be incremented to be used on a next call 163 * to this function. 164 */ 165 void *edac_align_ptr(void **p, unsigned size, int n_elems) 166 { 167 unsigned align, r; 168 void *ptr = *p; 169 170 *p += size * n_elems; 171 172 /* 173 * 'p' can possibly be an unaligned item X such that sizeof(X) is 174 * 'size'. Adjust 'p' so that its alignment is at least as 175 * stringent as what the compiler would provide for X and return 176 * the aligned result. 177 * Here we assume that the alignment of a "long long" is the most 178 * stringent alignment that the compiler will ever provide by default. 179 * As far as I know, this is a reasonable assumption. 180 */ 181 if (size > sizeof(long)) 182 align = sizeof(long long); 183 else if (size > sizeof(int)) 184 align = sizeof(long); 185 else if (size > sizeof(short)) 186 align = sizeof(int); 187 else if (size > sizeof(char)) 188 align = sizeof(short); 189 else 190 return (char *)ptr; 191 192 r = (unsigned long)p % align; 193 194 if (r == 0) 195 return (char *)ptr; 196 197 *p += align - r; 198 199 return (void *)(((unsigned long)ptr) + align - r); 200 } 201 202 static void _edac_mc_free(struct mem_ctl_info *mci) 203 { 204 int i, chn, row; 205 struct csrow_info *csr; 206 const unsigned int tot_dimms = mci->tot_dimms; 207 const unsigned int tot_channels = mci->num_cschannel; 208 const unsigned int tot_csrows = mci->nr_csrows; 209 210 if (mci->dimms) { 211 for (i = 0; i < tot_dimms; i++) 212 kfree(mci->dimms[i]); 213 kfree(mci->dimms); 214 } 215 if (mci->csrows) { 216 for (row = 0; row < tot_csrows; row++) { 217 csr = mci->csrows[row]; 218 if (csr) { 219 if (csr->channels) { 220 for (chn = 0; chn < tot_channels; chn++) 221 kfree(csr->channels[chn]); 222 kfree(csr->channels); 223 } 224 kfree(csr); 225 } 226 } 227 kfree(mci->csrows); 228 } 229 kfree(mci); 230 } 231 232 /** 233 * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure 234 * @mc_num: Memory controller number 235 * @n_layers: Number of MC hierarchy layers 236 * layers: Describes each layer as seen by the Memory Controller 237 * @size_pvt: size of private storage needed 238 * 239 * 240 * Everything is kmalloc'ed as one big chunk - more efficient. 241 * Only can be used if all structures have the same lifetime - otherwise 242 * you have to allocate and initialize your own structures. 243 * 244 * Use edac_mc_free() to free mc structures allocated by this function. 245 * 246 * NOTE: drivers handle multi-rank memories in different ways: in some 247 * drivers, one multi-rank memory stick is mapped as one entry, while, in 248 * others, a single multi-rank memory stick would be mapped into several 249 * entries. Currently, this function will allocate multiple struct dimm_info 250 * on such scenarios, as grouping the multiple ranks require drivers change. 251 * 252 * Returns: 253 * On failure: NULL 254 * On success: struct mem_ctl_info pointer 255 */ 256 struct mem_ctl_info *edac_mc_alloc(unsigned mc_num, 257 unsigned n_layers, 258 struct edac_mc_layer *layers, 259 unsigned sz_pvt) 260 { 261 struct mem_ctl_info *mci; 262 struct edac_mc_layer *layer; 263 struct csrow_info *csr; 264 struct rank_info *chan; 265 struct dimm_info *dimm; 266 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS]; 267 unsigned pos[EDAC_MAX_LAYERS]; 268 unsigned size, tot_dimms = 1, count = 1; 269 unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0; 270 void *pvt, *p, *ptr = NULL; 271 int i, j, row, chn, n, len, off; 272 bool per_rank = false; 273 274 BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0); 275 /* 276 * Calculate the total amount of dimms and csrows/cschannels while 277 * in the old API emulation mode 278 */ 279 for (i = 0; i < n_layers; i++) { 280 tot_dimms *= layers[i].size; 281 if (layers[i].is_virt_csrow) 282 tot_csrows *= layers[i].size; 283 else 284 tot_channels *= layers[i].size; 285 286 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT) 287 per_rank = true; 288 } 289 290 /* Figure out the offsets of the various items from the start of an mc 291 * structure. We want the alignment of each item to be at least as 292 * stringent as what the compiler would provide if we could simply 293 * hardcode everything into a single struct. 294 */ 295 mci = edac_align_ptr(&ptr, sizeof(*mci), 1); 296 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers); 297 for (i = 0; i < n_layers; i++) { 298 count *= layers[i].size; 299 edac_dbg(4, "errcount layer %d size %d\n", i, count); 300 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count); 301 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count); 302 tot_errcount += 2 * count; 303 } 304 305 edac_dbg(4, "allocating %d error counters\n", tot_errcount); 306 pvt = edac_align_ptr(&ptr, sz_pvt, 1); 307 size = ((unsigned long)pvt) + sz_pvt; 308 309 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n", 310 size, 311 tot_dimms, 312 per_rank ? "ranks" : "dimms", 313 tot_csrows * tot_channels); 314 315 mci = kzalloc(size, GFP_KERNEL); 316 if (mci == NULL) 317 return NULL; 318 319 /* Adjust pointers so they point within the memory we just allocated 320 * rather than an imaginary chunk of memory located at address 0. 321 */ 322 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer)); 323 for (i = 0; i < n_layers; i++) { 324 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i])); 325 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i])); 326 } 327 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL; 328 329 /* setup index and various internal pointers */ 330 mci->mc_idx = mc_num; 331 mci->tot_dimms = tot_dimms; 332 mci->pvt_info = pvt; 333 mci->n_layers = n_layers; 334 mci->layers = layer; 335 memcpy(mci->layers, layers, sizeof(*layer) * n_layers); 336 mci->nr_csrows = tot_csrows; 337 mci->num_cschannel = tot_channels; 338 mci->mem_is_per_rank = per_rank; 339 340 /* 341 * Alocate and fill the csrow/channels structs 342 */ 343 mci->csrows = kcalloc(sizeof(*mci->csrows), tot_csrows, GFP_KERNEL); 344 if (!mci->csrows) 345 goto error; 346 for (row = 0; row < tot_csrows; row++) { 347 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL); 348 if (!csr) 349 goto error; 350 mci->csrows[row] = csr; 351 csr->csrow_idx = row; 352 csr->mci = mci; 353 csr->nr_channels = tot_channels; 354 csr->channels = kcalloc(sizeof(*csr->channels), tot_channels, 355 GFP_KERNEL); 356 if (!csr->channels) 357 goto error; 358 359 for (chn = 0; chn < tot_channels; chn++) { 360 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL); 361 if (!chan) 362 goto error; 363 csr->channels[chn] = chan; 364 chan->chan_idx = chn; 365 chan->csrow = csr; 366 } 367 } 368 369 /* 370 * Allocate and fill the dimm structs 371 */ 372 mci->dimms = kcalloc(sizeof(*mci->dimms), tot_dimms, GFP_KERNEL); 373 if (!mci->dimms) 374 goto error; 375 376 memset(&pos, 0, sizeof(pos)); 377 row = 0; 378 chn = 0; 379 for (i = 0; i < tot_dimms; i++) { 380 chan = mci->csrows[row]->channels[chn]; 381 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]); 382 if (off < 0 || off >= tot_dimms) { 383 edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n"); 384 goto error; 385 } 386 387 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL); 388 if (!dimm) 389 goto error; 390 mci->dimms[off] = dimm; 391 dimm->mci = mci; 392 393 /* 394 * Copy DIMM location and initialize it. 395 */ 396 len = sizeof(dimm->label); 397 p = dimm->label; 398 n = snprintf(p, len, "mc#%u", mc_num); 399 p += n; 400 len -= n; 401 for (j = 0; j < n_layers; j++) { 402 n = snprintf(p, len, "%s#%u", 403 edac_layer_name[layers[j].type], 404 pos[j]); 405 p += n; 406 len -= n; 407 dimm->location[j] = pos[j]; 408 409 if (len <= 0) 410 break; 411 } 412 413 /* Link it to the csrows old API data */ 414 chan->dimm = dimm; 415 dimm->csrow = row; 416 dimm->cschannel = chn; 417 418 /* Increment csrow location */ 419 row++; 420 if (row == tot_csrows) { 421 row = 0; 422 chn++; 423 } 424 425 /* Increment dimm location */ 426 for (j = n_layers - 1; j >= 0; j--) { 427 pos[j]++; 428 if (pos[j] < layers[j].size) 429 break; 430 pos[j] = 0; 431 } 432 } 433 434 mci->op_state = OP_ALLOC; 435 436 /* at this point, the root kobj is valid, and in order to 437 * 'free' the object, then the function: 438 * edac_mc_unregister_sysfs_main_kobj() must be called 439 * which will perform kobj unregistration and the actual free 440 * will occur during the kobject callback operation 441 */ 442 443 return mci; 444 445 error: 446 _edac_mc_free(mci); 447 448 return NULL; 449 } 450 EXPORT_SYMBOL_GPL(edac_mc_alloc); 451 452 /** 453 * edac_mc_free 454 * 'Free' a previously allocated 'mci' structure 455 * @mci: pointer to a struct mem_ctl_info structure 456 */ 457 void edac_mc_free(struct mem_ctl_info *mci) 458 { 459 edac_dbg(1, "\n"); 460 461 /* If we're not yet registered with sysfs free only what was allocated 462 * in edac_mc_alloc(). 463 */ 464 if (!device_is_registered(&mci->dev)) { 465 _edac_mc_free(mci); 466 return; 467 } 468 469 /* the mci instance is freed here, when the sysfs object is dropped */ 470 edac_unregister_sysfs(mci); 471 } 472 EXPORT_SYMBOL_GPL(edac_mc_free); 473 474 475 /** 476 * find_mci_by_dev 477 * 478 * scan list of controllers looking for the one that manages 479 * the 'dev' device 480 * @dev: pointer to a struct device related with the MCI 481 */ 482 struct mem_ctl_info *find_mci_by_dev(struct device *dev) 483 { 484 struct mem_ctl_info *mci; 485 struct list_head *item; 486 487 edac_dbg(3, "\n"); 488 489 list_for_each(item, &mc_devices) { 490 mci = list_entry(item, struct mem_ctl_info, link); 491 492 if (mci->pdev == dev) 493 return mci; 494 } 495 496 return NULL; 497 } 498 EXPORT_SYMBOL_GPL(find_mci_by_dev); 499 500 /* 501 * handler for EDAC to check if NMI type handler has asserted interrupt 502 */ 503 static int edac_mc_assert_error_check_and_clear(void) 504 { 505 int old_state; 506 507 if (edac_op_state == EDAC_OPSTATE_POLL) 508 return 1; 509 510 old_state = edac_err_assert; 511 edac_err_assert = 0; 512 513 return old_state; 514 } 515 516 /* 517 * edac_mc_workq_function 518 * performs the operation scheduled by a workq request 519 */ 520 static void edac_mc_workq_function(struct work_struct *work_req) 521 { 522 struct delayed_work *d_work = to_delayed_work(work_req); 523 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work); 524 525 mutex_lock(&mem_ctls_mutex); 526 527 /* if this control struct has movd to offline state, we are done */ 528 if (mci->op_state == OP_OFFLINE) { 529 mutex_unlock(&mem_ctls_mutex); 530 return; 531 } 532 533 /* Only poll controllers that are running polled and have a check */ 534 if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL)) 535 mci->edac_check(mci); 536 537 mutex_unlock(&mem_ctls_mutex); 538 539 /* Reschedule */ 540 queue_delayed_work(edac_workqueue, &mci->work, 541 msecs_to_jiffies(edac_mc_get_poll_msec())); 542 } 543 544 /* 545 * edac_mc_workq_setup 546 * initialize a workq item for this mci 547 * passing in the new delay period in msec 548 * 549 * locking model: 550 * 551 * called with the mem_ctls_mutex held 552 */ 553 static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec) 554 { 555 edac_dbg(0, "\n"); 556 557 /* if this instance is not in the POLL state, then simply return */ 558 if (mci->op_state != OP_RUNNING_POLL) 559 return; 560 561 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function); 562 queue_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec)); 563 } 564 565 /* 566 * edac_mc_workq_teardown 567 * stop the workq processing on this mci 568 * 569 * locking model: 570 * 571 * called WITHOUT lock held 572 */ 573 static void edac_mc_workq_teardown(struct mem_ctl_info *mci) 574 { 575 int status; 576 577 if (mci->op_state != OP_RUNNING_POLL) 578 return; 579 580 status = cancel_delayed_work(&mci->work); 581 if (status == 0) { 582 edac_dbg(0, "not canceled, flush the queue\n"); 583 584 /* workq instance might be running, wait for it */ 585 flush_workqueue(edac_workqueue); 586 } 587 } 588 589 /* 590 * edac_mc_reset_delay_period(unsigned long value) 591 * 592 * user space has updated our poll period value, need to 593 * reset our workq delays 594 */ 595 void edac_mc_reset_delay_period(int value) 596 { 597 struct mem_ctl_info *mci; 598 struct list_head *item; 599 600 mutex_lock(&mem_ctls_mutex); 601 602 /* scan the list and turn off all workq timers, doing so under lock 603 */ 604 list_for_each(item, &mc_devices) { 605 mci = list_entry(item, struct mem_ctl_info, link); 606 607 if (mci->op_state == OP_RUNNING_POLL) 608 cancel_delayed_work(&mci->work); 609 } 610 611 mutex_unlock(&mem_ctls_mutex); 612 613 614 /* re-walk the list, and reset the poll delay */ 615 mutex_lock(&mem_ctls_mutex); 616 617 list_for_each(item, &mc_devices) { 618 mci = list_entry(item, struct mem_ctl_info, link); 619 620 edac_mc_workq_setup(mci, (unsigned long) value); 621 } 622 623 mutex_unlock(&mem_ctls_mutex); 624 } 625 626 627 628 /* Return 0 on success, 1 on failure. 629 * Before calling this function, caller must 630 * assign a unique value to mci->mc_idx. 631 * 632 * locking model: 633 * 634 * called with the mem_ctls_mutex lock held 635 */ 636 static int add_mc_to_global_list(struct mem_ctl_info *mci) 637 { 638 struct list_head *item, *insert_before; 639 struct mem_ctl_info *p; 640 641 insert_before = &mc_devices; 642 643 p = find_mci_by_dev(mci->pdev); 644 if (unlikely(p != NULL)) 645 goto fail0; 646 647 list_for_each(item, &mc_devices) { 648 p = list_entry(item, struct mem_ctl_info, link); 649 650 if (p->mc_idx >= mci->mc_idx) { 651 if (unlikely(p->mc_idx == mci->mc_idx)) 652 goto fail1; 653 654 insert_before = item; 655 break; 656 } 657 } 658 659 list_add_tail_rcu(&mci->link, insert_before); 660 atomic_inc(&edac_handlers); 661 return 0; 662 663 fail0: 664 edac_printk(KERN_WARNING, EDAC_MC, 665 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev), 666 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx); 667 return 1; 668 669 fail1: 670 edac_printk(KERN_WARNING, EDAC_MC, 671 "bug in low-level driver: attempt to assign\n" 672 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__); 673 return 1; 674 } 675 676 static void del_mc_from_global_list(struct mem_ctl_info *mci) 677 { 678 atomic_dec(&edac_handlers); 679 list_del_rcu(&mci->link); 680 681 /* these are for safe removal of devices from global list while 682 * NMI handlers may be traversing list 683 */ 684 synchronize_rcu(); 685 INIT_LIST_HEAD(&mci->link); 686 } 687 688 /** 689 * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'. 690 * 691 * If found, return a pointer to the structure. 692 * Else return NULL. 693 * 694 * Caller must hold mem_ctls_mutex. 695 */ 696 struct mem_ctl_info *edac_mc_find(int idx) 697 { 698 struct list_head *item; 699 struct mem_ctl_info *mci; 700 701 list_for_each(item, &mc_devices) { 702 mci = list_entry(item, struct mem_ctl_info, link); 703 704 if (mci->mc_idx >= idx) { 705 if (mci->mc_idx == idx) 706 return mci; 707 708 break; 709 } 710 } 711 712 return NULL; 713 } 714 EXPORT_SYMBOL(edac_mc_find); 715 716 /** 717 * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and 718 * create sysfs entries associated with mci structure 719 * @mci: pointer to the mci structure to be added to the list 720 * 721 * Return: 722 * 0 Success 723 * !0 Failure 724 */ 725 726 /* FIXME - should a warning be printed if no error detection? correction? */ 727 int edac_mc_add_mc(struct mem_ctl_info *mci) 728 { 729 edac_dbg(0, "\n"); 730 731 #ifdef CONFIG_EDAC_DEBUG 732 if (edac_debug_level >= 3) 733 edac_mc_dump_mci(mci); 734 735 if (edac_debug_level >= 4) { 736 int i; 737 738 for (i = 0; i < mci->nr_csrows; i++) { 739 struct csrow_info *csrow = mci->csrows[i]; 740 u32 nr_pages = 0; 741 int j; 742 743 for (j = 0; j < csrow->nr_channels; j++) 744 nr_pages += csrow->channels[j]->dimm->nr_pages; 745 if (!nr_pages) 746 continue; 747 edac_mc_dump_csrow(csrow); 748 for (j = 0; j < csrow->nr_channels; j++) 749 if (csrow->channels[j]->dimm->nr_pages) 750 edac_mc_dump_channel(csrow->channels[j]); 751 } 752 for (i = 0; i < mci->tot_dimms; i++) 753 if (mci->dimms[i]->nr_pages) 754 edac_mc_dump_dimm(mci->dimms[i], i); 755 } 756 #endif 757 mutex_lock(&mem_ctls_mutex); 758 759 if (add_mc_to_global_list(mci)) 760 goto fail0; 761 762 /* set load time so that error rate can be tracked */ 763 mci->start_time = jiffies; 764 765 if (edac_create_sysfs_mci_device(mci)) { 766 edac_mc_printk(mci, KERN_WARNING, 767 "failed to create sysfs device\n"); 768 goto fail1; 769 } 770 771 /* If there IS a check routine, then we are running POLLED */ 772 if (mci->edac_check != NULL) { 773 /* This instance is NOW RUNNING */ 774 mci->op_state = OP_RUNNING_POLL; 775 776 edac_mc_workq_setup(mci, edac_mc_get_poll_msec()); 777 } else { 778 mci->op_state = OP_RUNNING_INTERRUPT; 779 } 780 781 /* Report action taken */ 782 edac_mc_printk(mci, KERN_INFO, "Giving out device to '%s' '%s':" 783 " DEV %s\n", mci->mod_name, mci->ctl_name, edac_dev_name(mci)); 784 785 mutex_unlock(&mem_ctls_mutex); 786 return 0; 787 788 fail1: 789 del_mc_from_global_list(mci); 790 791 fail0: 792 mutex_unlock(&mem_ctls_mutex); 793 return 1; 794 } 795 EXPORT_SYMBOL_GPL(edac_mc_add_mc); 796 797 /** 798 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and 799 * remove mci structure from global list 800 * @pdev: Pointer to 'struct device' representing mci structure to remove. 801 * 802 * Return pointer to removed mci structure, or NULL if device not found. 803 */ 804 struct mem_ctl_info *edac_mc_del_mc(struct device *dev) 805 { 806 struct mem_ctl_info *mci; 807 808 edac_dbg(0, "\n"); 809 810 mutex_lock(&mem_ctls_mutex); 811 812 /* find the requested mci struct in the global list */ 813 mci = find_mci_by_dev(dev); 814 if (mci == NULL) { 815 mutex_unlock(&mem_ctls_mutex); 816 return NULL; 817 } 818 819 del_mc_from_global_list(mci); 820 mutex_unlock(&mem_ctls_mutex); 821 822 /* flush workq processes */ 823 edac_mc_workq_teardown(mci); 824 825 /* marking MCI offline */ 826 mci->op_state = OP_OFFLINE; 827 828 /* remove from sysfs */ 829 edac_remove_sysfs_mci_device(mci); 830 831 edac_printk(KERN_INFO, EDAC_MC, 832 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx, 833 mci->mod_name, mci->ctl_name, edac_dev_name(mci)); 834 835 return mci; 836 } 837 EXPORT_SYMBOL_GPL(edac_mc_del_mc); 838 839 static void edac_mc_scrub_block(unsigned long page, unsigned long offset, 840 u32 size) 841 { 842 struct page *pg; 843 void *virt_addr; 844 unsigned long flags = 0; 845 846 edac_dbg(3, "\n"); 847 848 /* ECC error page was not in our memory. Ignore it. */ 849 if (!pfn_valid(page)) 850 return; 851 852 /* Find the actual page structure then map it and fix */ 853 pg = pfn_to_page(page); 854 855 if (PageHighMem(pg)) 856 local_irq_save(flags); 857 858 virt_addr = kmap_atomic(pg); 859 860 /* Perform architecture specific atomic scrub operation */ 861 atomic_scrub(virt_addr + offset, size); 862 863 /* Unmap and complete */ 864 kunmap_atomic(virt_addr); 865 866 if (PageHighMem(pg)) 867 local_irq_restore(flags); 868 } 869 870 /* FIXME - should return -1 */ 871 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page) 872 { 873 struct csrow_info **csrows = mci->csrows; 874 int row, i, j, n; 875 876 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page); 877 row = -1; 878 879 for (i = 0; i < mci->nr_csrows; i++) { 880 struct csrow_info *csrow = csrows[i]; 881 n = 0; 882 for (j = 0; j < csrow->nr_channels; j++) { 883 struct dimm_info *dimm = csrow->channels[j]->dimm; 884 n += dimm->nr_pages; 885 } 886 if (n == 0) 887 continue; 888 889 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n", 890 mci->mc_idx, 891 csrow->first_page, page, csrow->last_page, 892 csrow->page_mask); 893 894 if ((page >= csrow->first_page) && 895 (page <= csrow->last_page) && 896 ((page & csrow->page_mask) == 897 (csrow->first_page & csrow->page_mask))) { 898 row = i; 899 break; 900 } 901 } 902 903 if (row == -1) 904 edac_mc_printk(mci, KERN_ERR, 905 "could not look up page error address %lx\n", 906 (unsigned long)page); 907 908 return row; 909 } 910 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page); 911 912 const char *edac_layer_name[] = { 913 [EDAC_MC_LAYER_BRANCH] = "branch", 914 [EDAC_MC_LAYER_CHANNEL] = "channel", 915 [EDAC_MC_LAYER_SLOT] = "slot", 916 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow", 917 }; 918 EXPORT_SYMBOL_GPL(edac_layer_name); 919 920 static void edac_inc_ce_error(struct mem_ctl_info *mci, 921 bool enable_per_layer_report, 922 const int pos[EDAC_MAX_LAYERS], 923 const u16 count) 924 { 925 int i, index = 0; 926 927 mci->ce_mc += count; 928 929 if (!enable_per_layer_report) { 930 mci->ce_noinfo_count += count; 931 return; 932 } 933 934 for (i = 0; i < mci->n_layers; i++) { 935 if (pos[i] < 0) 936 break; 937 index += pos[i]; 938 mci->ce_per_layer[i][index] += count; 939 940 if (i < mci->n_layers - 1) 941 index *= mci->layers[i + 1].size; 942 } 943 } 944 945 static void edac_inc_ue_error(struct mem_ctl_info *mci, 946 bool enable_per_layer_report, 947 const int pos[EDAC_MAX_LAYERS], 948 const u16 count) 949 { 950 int i, index = 0; 951 952 mci->ue_mc += count; 953 954 if (!enable_per_layer_report) { 955 mci->ce_noinfo_count += count; 956 return; 957 } 958 959 for (i = 0; i < mci->n_layers; i++) { 960 if (pos[i] < 0) 961 break; 962 index += pos[i]; 963 mci->ue_per_layer[i][index] += count; 964 965 if (i < mci->n_layers - 1) 966 index *= mci->layers[i + 1].size; 967 } 968 } 969 970 static void edac_ce_error(struct mem_ctl_info *mci, 971 const u16 error_count, 972 const int pos[EDAC_MAX_LAYERS], 973 const char *msg, 974 const char *location, 975 const char *label, 976 const char *detail, 977 const char *other_detail, 978 const bool enable_per_layer_report, 979 const unsigned long page_frame_number, 980 const unsigned long offset_in_page, 981 long grain) 982 { 983 unsigned long remapped_page; 984 985 if (edac_mc_get_log_ce()) { 986 if (other_detail && *other_detail) 987 edac_mc_printk(mci, KERN_WARNING, 988 "%d CE %s on %s (%s %s - %s)\n", 989 error_count, 990 msg, label, location, 991 detail, other_detail); 992 else 993 edac_mc_printk(mci, KERN_WARNING, 994 "%d CE %s on %s (%s %s)\n", 995 error_count, 996 msg, label, location, 997 detail); 998 } 999 edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count); 1000 1001 if (mci->scrub_mode & SCRUB_SW_SRC) { 1002 /* 1003 * Some memory controllers (called MCs below) can remap 1004 * memory so that it is still available at a different 1005 * address when PCI devices map into memory. 1006 * MC's that can't do this, lose the memory where PCI 1007 * devices are mapped. This mapping is MC-dependent 1008 * and so we call back into the MC driver for it to 1009 * map the MC page to a physical (CPU) page which can 1010 * then be mapped to a virtual page - which can then 1011 * be scrubbed. 1012 */ 1013 remapped_page = mci->ctl_page_to_phys ? 1014 mci->ctl_page_to_phys(mci, page_frame_number) : 1015 page_frame_number; 1016 1017 edac_mc_scrub_block(remapped_page, 1018 offset_in_page, grain); 1019 } 1020 } 1021 1022 static void edac_ue_error(struct mem_ctl_info *mci, 1023 const u16 error_count, 1024 const int pos[EDAC_MAX_LAYERS], 1025 const char *msg, 1026 const char *location, 1027 const char *label, 1028 const char *detail, 1029 const char *other_detail, 1030 const bool enable_per_layer_report) 1031 { 1032 if (edac_mc_get_log_ue()) { 1033 if (other_detail && *other_detail) 1034 edac_mc_printk(mci, KERN_WARNING, 1035 "%d UE %s on %s (%s %s - %s)\n", 1036 error_count, 1037 msg, label, location, detail, 1038 other_detail); 1039 else 1040 edac_mc_printk(mci, KERN_WARNING, 1041 "%d UE %s on %s (%s %s)\n", 1042 error_count, 1043 msg, label, location, detail); 1044 } 1045 1046 if (edac_mc_get_panic_on_ue()) { 1047 if (other_detail && *other_detail) 1048 panic("UE %s on %s (%s%s - %s)\n", 1049 msg, label, location, detail, other_detail); 1050 else 1051 panic("UE %s on %s (%s%s)\n", 1052 msg, label, location, detail); 1053 } 1054 1055 edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count); 1056 } 1057 1058 #define OTHER_LABEL " or " 1059 1060 /** 1061 * edac_mc_handle_error - reports a memory event to userspace 1062 * 1063 * @type: severity of the error (CE/UE/Fatal) 1064 * @mci: a struct mem_ctl_info pointer 1065 * @error_count: Number of errors of the same type 1066 * @page_frame_number: mem page where the error occurred 1067 * @offset_in_page: offset of the error inside the page 1068 * @syndrome: ECC syndrome 1069 * @top_layer: Memory layer[0] position 1070 * @mid_layer: Memory layer[1] position 1071 * @low_layer: Memory layer[2] position 1072 * @msg: Message meaningful to the end users that 1073 * explains the event 1074 * @other_detail: Technical details about the event that 1075 * may help hardware manufacturers and 1076 * EDAC developers to analyse the event 1077 */ 1078 void edac_mc_handle_error(const enum hw_event_mc_err_type type, 1079 struct mem_ctl_info *mci, 1080 const u16 error_count, 1081 const unsigned long page_frame_number, 1082 const unsigned long offset_in_page, 1083 const unsigned long syndrome, 1084 const int top_layer, 1085 const int mid_layer, 1086 const int low_layer, 1087 const char *msg, 1088 const char *other_detail) 1089 { 1090 /* FIXME: too much for stack: move it to some pre-alocated area */ 1091 char detail[80], location[80]; 1092 char label[(EDAC_MC_LABEL_LEN + 1 + sizeof(OTHER_LABEL)) * mci->tot_dimms]; 1093 char *p; 1094 int row = -1, chan = -1; 1095 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer }; 1096 int i; 1097 long grain; 1098 bool enable_per_layer_report = false; 1099 u8 grain_bits; 1100 1101 edac_dbg(3, "MC%d\n", mci->mc_idx); 1102 1103 /* 1104 * Check if the event report is consistent and if the memory 1105 * location is known. If it is known, enable_per_layer_report will be 1106 * true, the DIMM(s) label info will be filled and the per-layer 1107 * error counters will be incremented. 1108 */ 1109 for (i = 0; i < mci->n_layers; i++) { 1110 if (pos[i] >= (int)mci->layers[i].size) { 1111 if (type == HW_EVENT_ERR_CORRECTED) 1112 p = "CE"; 1113 else 1114 p = "UE"; 1115 1116 edac_mc_printk(mci, KERN_ERR, 1117 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n", 1118 edac_layer_name[mci->layers[i].type], 1119 pos[i], mci->layers[i].size); 1120 /* 1121 * Instead of just returning it, let's use what's 1122 * known about the error. The increment routines and 1123 * the DIMM filter logic will do the right thing by 1124 * pointing the likely damaged DIMMs. 1125 */ 1126 pos[i] = -1; 1127 } 1128 if (pos[i] >= 0) 1129 enable_per_layer_report = true; 1130 } 1131 1132 /* 1133 * Get the dimm label/grain that applies to the match criteria. 1134 * As the error algorithm may not be able to point to just one memory 1135 * stick, the logic here will get all possible labels that could 1136 * pottentially be affected by the error. 1137 * On FB-DIMM memory controllers, for uncorrected errors, it is common 1138 * to have only the MC channel and the MC dimm (also called "branch") 1139 * but the channel is not known, as the memory is arranged in pairs, 1140 * where each memory belongs to a separate channel within the same 1141 * branch. 1142 */ 1143 grain = 0; 1144 p = label; 1145 *p = '\0'; 1146 for (i = 0; i < mci->tot_dimms; i++) { 1147 struct dimm_info *dimm = mci->dimms[i]; 1148 1149 if (top_layer >= 0 && top_layer != dimm->location[0]) 1150 continue; 1151 if (mid_layer >= 0 && mid_layer != dimm->location[1]) 1152 continue; 1153 if (low_layer >= 0 && low_layer != dimm->location[2]) 1154 continue; 1155 1156 /* get the max grain, over the error match range */ 1157 if (dimm->grain > grain) 1158 grain = dimm->grain; 1159 1160 /* 1161 * If the error is memory-controller wide, there's no need to 1162 * seek for the affected DIMMs because the whole 1163 * channel/memory controller/... may be affected. 1164 * Also, don't show errors for empty DIMM slots. 1165 */ 1166 if (enable_per_layer_report && dimm->nr_pages) { 1167 if (p != label) { 1168 strcpy(p, OTHER_LABEL); 1169 p += strlen(OTHER_LABEL); 1170 } 1171 strcpy(p, dimm->label); 1172 p += strlen(p); 1173 *p = '\0'; 1174 1175 /* 1176 * get csrow/channel of the DIMM, in order to allow 1177 * incrementing the compat API counters 1178 */ 1179 edac_dbg(4, "%s csrows map: (%d,%d)\n", 1180 mci->mem_is_per_rank ? "rank" : "dimm", 1181 dimm->csrow, dimm->cschannel); 1182 if (row == -1) 1183 row = dimm->csrow; 1184 else if (row >= 0 && row != dimm->csrow) 1185 row = -2; 1186 1187 if (chan == -1) 1188 chan = dimm->cschannel; 1189 else if (chan >= 0 && chan != dimm->cschannel) 1190 chan = -2; 1191 } 1192 } 1193 1194 if (!enable_per_layer_report) { 1195 strcpy(label, "any memory"); 1196 } else { 1197 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan); 1198 if (p == label) 1199 strcpy(label, "unknown memory"); 1200 if (type == HW_EVENT_ERR_CORRECTED) { 1201 if (row >= 0) { 1202 mci->csrows[row]->ce_count += error_count; 1203 if (chan >= 0) 1204 mci->csrows[row]->channels[chan]->ce_count += error_count; 1205 } 1206 } else 1207 if (row >= 0) 1208 mci->csrows[row]->ue_count += error_count; 1209 } 1210 1211 /* Fill the RAM location data */ 1212 p = location; 1213 for (i = 0; i < mci->n_layers; i++) { 1214 if (pos[i] < 0) 1215 continue; 1216 1217 p += sprintf(p, "%s:%d ", 1218 edac_layer_name[mci->layers[i].type], 1219 pos[i]); 1220 } 1221 if (p > location) 1222 *(p - 1) = '\0'; 1223 1224 /* Report the error via the trace interface */ 1225 1226 grain_bits = fls_long(grain) + 1; 1227 trace_mc_event(type, msg, label, error_count, 1228 mci->mc_idx, top_layer, mid_layer, low_layer, 1229 PAGES_TO_MiB(page_frame_number) | offset_in_page, 1230 grain_bits, syndrome, other_detail); 1231 1232 /* Memory type dependent details about the error */ 1233 if (type == HW_EVENT_ERR_CORRECTED) { 1234 snprintf(detail, sizeof(detail), 1235 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx", 1236 page_frame_number, offset_in_page, 1237 grain, syndrome); 1238 edac_ce_error(mci, error_count, pos, msg, location, label, 1239 detail, other_detail, enable_per_layer_report, 1240 page_frame_number, offset_in_page, grain); 1241 } else { 1242 snprintf(detail, sizeof(detail), 1243 "page:0x%lx offset:0x%lx grain:%ld", 1244 page_frame_number, offset_in_page, grain); 1245 1246 edac_ue_error(mci, error_count, pos, msg, location, label, 1247 detail, other_detail, enable_per_layer_report); 1248 } 1249 } 1250 EXPORT_SYMBOL_GPL(edac_mc_handle_error); 1251