xref: /openbmc/linux/drivers/edac/edac_mc.c (revision 31b90347)
1 /*
2  * edac_mc kernel module
3  * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Thayne Harbaugh
8  * Based on work by Dan Hollis <goemon at anime dot net> and others.
9  *	http://www.anime.net/~goemon/linux-ecc/
10  *
11  * Modified by Dave Peterson and Doug Thompson
12  *
13  */
14 
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <asm/uaccess.h>
32 #include <asm/page.h>
33 #include <asm/edac.h>
34 #include "edac_core.h"
35 #include "edac_module.h"
36 
37 #define CREATE_TRACE_POINTS
38 #define TRACE_INCLUDE_PATH ../../include/ras
39 #include <ras/ras_event.h>
40 
41 /* lock to memory controller's control array */
42 static DEFINE_MUTEX(mem_ctls_mutex);
43 static LIST_HEAD(mc_devices);
44 
45 /*
46  * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
47  *	apei/ghes and i7core_edac to be used at the same time.
48  */
49 static void const *edac_mc_owner;
50 
51 static struct bus_type mc_bus[EDAC_MAX_MCS];
52 
53 unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
54 			         unsigned len)
55 {
56 	struct mem_ctl_info *mci = dimm->mci;
57 	int i, n, count = 0;
58 	char *p = buf;
59 
60 	for (i = 0; i < mci->n_layers; i++) {
61 		n = snprintf(p, len, "%s %d ",
62 			      edac_layer_name[mci->layers[i].type],
63 			      dimm->location[i]);
64 		p += n;
65 		len -= n;
66 		count += n;
67 		if (!len)
68 			break;
69 	}
70 
71 	return count;
72 }
73 
74 #ifdef CONFIG_EDAC_DEBUG
75 
76 static void edac_mc_dump_channel(struct rank_info *chan)
77 {
78 	edac_dbg(4, "  channel->chan_idx = %d\n", chan->chan_idx);
79 	edac_dbg(4, "    channel = %p\n", chan);
80 	edac_dbg(4, "    channel->csrow = %p\n", chan->csrow);
81 	edac_dbg(4, "    channel->dimm = %p\n", chan->dimm);
82 }
83 
84 static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
85 {
86 	char location[80];
87 
88 	edac_dimm_info_location(dimm, location, sizeof(location));
89 
90 	edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
91 		 dimm->mci->csbased ? "rank" : "dimm",
92 		 number, location, dimm->csrow, dimm->cschannel);
93 	edac_dbg(4, "  dimm = %p\n", dimm);
94 	edac_dbg(4, "  dimm->label = '%s'\n", dimm->label);
95 	edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
96 	edac_dbg(4, "  dimm->grain = %d\n", dimm->grain);
97 	edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
98 }
99 
100 static void edac_mc_dump_csrow(struct csrow_info *csrow)
101 {
102 	edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
103 	edac_dbg(4, "  csrow = %p\n", csrow);
104 	edac_dbg(4, "  csrow->first_page = 0x%lx\n", csrow->first_page);
105 	edac_dbg(4, "  csrow->last_page = 0x%lx\n", csrow->last_page);
106 	edac_dbg(4, "  csrow->page_mask = 0x%lx\n", csrow->page_mask);
107 	edac_dbg(4, "  csrow->nr_channels = %d\n", csrow->nr_channels);
108 	edac_dbg(4, "  csrow->channels = %p\n", csrow->channels);
109 	edac_dbg(4, "  csrow->mci = %p\n", csrow->mci);
110 }
111 
112 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
113 {
114 	edac_dbg(3, "\tmci = %p\n", mci);
115 	edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
116 	edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
117 	edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
118 	edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
119 	edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
120 		 mci->nr_csrows, mci->csrows);
121 	edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
122 		 mci->tot_dimms, mci->dimms);
123 	edac_dbg(3, "\tdev = %p\n", mci->pdev);
124 	edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
125 		 mci->mod_name, mci->ctl_name);
126 	edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
127 }
128 
129 #endif				/* CONFIG_EDAC_DEBUG */
130 
131 /*
132  * keep those in sync with the enum mem_type
133  */
134 const char *edac_mem_types[] = {
135 	"Empty csrow",
136 	"Reserved csrow type",
137 	"Unknown csrow type",
138 	"Fast page mode RAM",
139 	"Extended data out RAM",
140 	"Burst Extended data out RAM",
141 	"Single data rate SDRAM",
142 	"Registered single data rate SDRAM",
143 	"Double data rate SDRAM",
144 	"Registered Double data rate SDRAM",
145 	"Rambus DRAM",
146 	"Unbuffered DDR2 RAM",
147 	"Fully buffered DDR2",
148 	"Registered DDR2 RAM",
149 	"Rambus XDR",
150 	"Unbuffered DDR3 RAM",
151 	"Registered DDR3 RAM",
152 };
153 EXPORT_SYMBOL_GPL(edac_mem_types);
154 
155 /**
156  * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
157  * @p:		pointer to a pointer with the memory offset to be used. At
158  *		return, this will be incremented to point to the next offset
159  * @size:	Size of the data structure to be reserved
160  * @n_elems:	Number of elements that should be reserved
161  *
162  * If 'size' is a constant, the compiler will optimize this whole function
163  * down to either a no-op or the addition of a constant to the value of '*p'.
164  *
165  * The 'p' pointer is absolutely needed to keep the proper advancing
166  * further in memory to the proper offsets when allocating the struct along
167  * with its embedded structs, as edac_device_alloc_ctl_info() does it
168  * above, for example.
169  *
170  * At return, the pointer 'p' will be incremented to be used on a next call
171  * to this function.
172  */
173 void *edac_align_ptr(void **p, unsigned size, int n_elems)
174 {
175 	unsigned align, r;
176 	void *ptr = *p;
177 
178 	*p += size * n_elems;
179 
180 	/*
181 	 * 'p' can possibly be an unaligned item X such that sizeof(X) is
182 	 * 'size'.  Adjust 'p' so that its alignment is at least as
183 	 * stringent as what the compiler would provide for X and return
184 	 * the aligned result.
185 	 * Here we assume that the alignment of a "long long" is the most
186 	 * stringent alignment that the compiler will ever provide by default.
187 	 * As far as I know, this is a reasonable assumption.
188 	 */
189 	if (size > sizeof(long))
190 		align = sizeof(long long);
191 	else if (size > sizeof(int))
192 		align = sizeof(long);
193 	else if (size > sizeof(short))
194 		align = sizeof(int);
195 	else if (size > sizeof(char))
196 		align = sizeof(short);
197 	else
198 		return (char *)ptr;
199 
200 	r = (unsigned long)p % align;
201 
202 	if (r == 0)
203 		return (char *)ptr;
204 
205 	*p += align - r;
206 
207 	return (void *)(((unsigned long)ptr) + align - r);
208 }
209 
210 static void _edac_mc_free(struct mem_ctl_info *mci)
211 {
212 	int i, chn, row;
213 	struct csrow_info *csr;
214 	const unsigned int tot_dimms = mci->tot_dimms;
215 	const unsigned int tot_channels = mci->num_cschannel;
216 	const unsigned int tot_csrows = mci->nr_csrows;
217 
218 	if (mci->dimms) {
219 		for (i = 0; i < tot_dimms; i++)
220 			kfree(mci->dimms[i]);
221 		kfree(mci->dimms);
222 	}
223 	if (mci->csrows) {
224 		for (row = 0; row < tot_csrows; row++) {
225 			csr = mci->csrows[row];
226 			if (csr) {
227 				if (csr->channels) {
228 					for (chn = 0; chn < tot_channels; chn++)
229 						kfree(csr->channels[chn]);
230 					kfree(csr->channels);
231 				}
232 				kfree(csr);
233 			}
234 		}
235 		kfree(mci->csrows);
236 	}
237 	kfree(mci);
238 }
239 
240 /**
241  * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure
242  * @mc_num:		Memory controller number
243  * @n_layers:		Number of MC hierarchy layers
244  * layers:		Describes each layer as seen by the Memory Controller
245  * @size_pvt:		size of private storage needed
246  *
247  *
248  * Everything is kmalloc'ed as one big chunk - more efficient.
249  * Only can be used if all structures have the same lifetime - otherwise
250  * you have to allocate and initialize your own structures.
251  *
252  * Use edac_mc_free() to free mc structures allocated by this function.
253  *
254  * NOTE: drivers handle multi-rank memories in different ways: in some
255  * drivers, one multi-rank memory stick is mapped as one entry, while, in
256  * others, a single multi-rank memory stick would be mapped into several
257  * entries. Currently, this function will allocate multiple struct dimm_info
258  * on such scenarios, as grouping the multiple ranks require drivers change.
259  *
260  * Returns:
261  *	On failure: NULL
262  *	On success: struct mem_ctl_info pointer
263  */
264 struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
265 				   unsigned n_layers,
266 				   struct edac_mc_layer *layers,
267 				   unsigned sz_pvt)
268 {
269 	struct mem_ctl_info *mci;
270 	struct edac_mc_layer *layer;
271 	struct csrow_info *csr;
272 	struct rank_info *chan;
273 	struct dimm_info *dimm;
274 	u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
275 	unsigned pos[EDAC_MAX_LAYERS];
276 	unsigned size, tot_dimms = 1, count = 1;
277 	unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
278 	void *pvt, *p, *ptr = NULL;
279 	int i, j, row, chn, n, len, off;
280 	bool per_rank = false;
281 
282 	BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
283 	/*
284 	 * Calculate the total amount of dimms and csrows/cschannels while
285 	 * in the old API emulation mode
286 	 */
287 	for (i = 0; i < n_layers; i++) {
288 		tot_dimms *= layers[i].size;
289 		if (layers[i].is_virt_csrow)
290 			tot_csrows *= layers[i].size;
291 		else
292 			tot_channels *= layers[i].size;
293 
294 		if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
295 			per_rank = true;
296 	}
297 
298 	/* Figure out the offsets of the various items from the start of an mc
299 	 * structure.  We want the alignment of each item to be at least as
300 	 * stringent as what the compiler would provide if we could simply
301 	 * hardcode everything into a single struct.
302 	 */
303 	mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
304 	layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
305 	for (i = 0; i < n_layers; i++) {
306 		count *= layers[i].size;
307 		edac_dbg(4, "errcount layer %d size %d\n", i, count);
308 		ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
309 		ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
310 		tot_errcount += 2 * count;
311 	}
312 
313 	edac_dbg(4, "allocating %d error counters\n", tot_errcount);
314 	pvt = edac_align_ptr(&ptr, sz_pvt, 1);
315 	size = ((unsigned long)pvt) + sz_pvt;
316 
317 	edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
318 		 size,
319 		 tot_dimms,
320 		 per_rank ? "ranks" : "dimms",
321 		 tot_csrows * tot_channels);
322 
323 	mci = kzalloc(size, GFP_KERNEL);
324 	if (mci == NULL)
325 		return NULL;
326 
327 	/* Adjust pointers so they point within the memory we just allocated
328 	 * rather than an imaginary chunk of memory located at address 0.
329 	 */
330 	layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
331 	for (i = 0; i < n_layers; i++) {
332 		mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
333 		mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
334 	}
335 	pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
336 
337 	/* setup index and various internal pointers */
338 	mci->mc_idx = mc_num;
339 	mci->tot_dimms = tot_dimms;
340 	mci->pvt_info = pvt;
341 	mci->n_layers = n_layers;
342 	mci->layers = layer;
343 	memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
344 	mci->nr_csrows = tot_csrows;
345 	mci->num_cschannel = tot_channels;
346 	mci->csbased = per_rank;
347 
348 	/*
349 	 * Alocate and fill the csrow/channels structs
350 	 */
351 	mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
352 	if (!mci->csrows)
353 		goto error;
354 	for (row = 0; row < tot_csrows; row++) {
355 		csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
356 		if (!csr)
357 			goto error;
358 		mci->csrows[row] = csr;
359 		csr->csrow_idx = row;
360 		csr->mci = mci;
361 		csr->nr_channels = tot_channels;
362 		csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
363 					GFP_KERNEL);
364 		if (!csr->channels)
365 			goto error;
366 
367 		for (chn = 0; chn < tot_channels; chn++) {
368 			chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
369 			if (!chan)
370 				goto error;
371 			csr->channels[chn] = chan;
372 			chan->chan_idx = chn;
373 			chan->csrow = csr;
374 		}
375 	}
376 
377 	/*
378 	 * Allocate and fill the dimm structs
379 	 */
380 	mci->dimms  = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
381 	if (!mci->dimms)
382 		goto error;
383 
384 	memset(&pos, 0, sizeof(pos));
385 	row = 0;
386 	chn = 0;
387 	for (i = 0; i < tot_dimms; i++) {
388 		chan = mci->csrows[row]->channels[chn];
389 		off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
390 		if (off < 0 || off >= tot_dimms) {
391 			edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
392 			goto error;
393 		}
394 
395 		dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
396 		if (!dimm)
397 			goto error;
398 		mci->dimms[off] = dimm;
399 		dimm->mci = mci;
400 
401 		/*
402 		 * Copy DIMM location and initialize it.
403 		 */
404 		len = sizeof(dimm->label);
405 		p = dimm->label;
406 		n = snprintf(p, len, "mc#%u", mc_num);
407 		p += n;
408 		len -= n;
409 		for (j = 0; j < n_layers; j++) {
410 			n = snprintf(p, len, "%s#%u",
411 				     edac_layer_name[layers[j].type],
412 				     pos[j]);
413 			p += n;
414 			len -= n;
415 			dimm->location[j] = pos[j];
416 
417 			if (len <= 0)
418 				break;
419 		}
420 
421 		/* Link it to the csrows old API data */
422 		chan->dimm = dimm;
423 		dimm->csrow = row;
424 		dimm->cschannel = chn;
425 
426 		/* Increment csrow location */
427 		if (layers[0].is_virt_csrow) {
428 			chn++;
429 			if (chn == tot_channels) {
430 				chn = 0;
431 				row++;
432 			}
433 		} else {
434 			row++;
435 			if (row == tot_csrows) {
436 				row = 0;
437 				chn++;
438 			}
439 		}
440 
441 		/* Increment dimm location */
442 		for (j = n_layers - 1; j >= 0; j--) {
443 			pos[j]++;
444 			if (pos[j] < layers[j].size)
445 				break;
446 			pos[j] = 0;
447 		}
448 	}
449 
450 	mci->op_state = OP_ALLOC;
451 
452 	return mci;
453 
454 error:
455 	_edac_mc_free(mci);
456 
457 	return NULL;
458 }
459 EXPORT_SYMBOL_GPL(edac_mc_alloc);
460 
461 /**
462  * edac_mc_free
463  *	'Free' a previously allocated 'mci' structure
464  * @mci: pointer to a struct mem_ctl_info structure
465  */
466 void edac_mc_free(struct mem_ctl_info *mci)
467 {
468 	edac_dbg(1, "\n");
469 
470 	/* If we're not yet registered with sysfs free only what was allocated
471 	 * in edac_mc_alloc().
472 	 */
473 	if (!device_is_registered(&mci->dev)) {
474 		_edac_mc_free(mci);
475 		return;
476 	}
477 
478 	/* the mci instance is freed here, when the sysfs object is dropped */
479 	edac_unregister_sysfs(mci);
480 }
481 EXPORT_SYMBOL_GPL(edac_mc_free);
482 
483 
484 /**
485  * find_mci_by_dev
486  *
487  *	scan list of controllers looking for the one that manages
488  *	the 'dev' device
489  * @dev: pointer to a struct device related with the MCI
490  */
491 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
492 {
493 	struct mem_ctl_info *mci;
494 	struct list_head *item;
495 
496 	edac_dbg(3, "\n");
497 
498 	list_for_each(item, &mc_devices) {
499 		mci = list_entry(item, struct mem_ctl_info, link);
500 
501 		if (mci->pdev == dev)
502 			return mci;
503 	}
504 
505 	return NULL;
506 }
507 EXPORT_SYMBOL_GPL(find_mci_by_dev);
508 
509 /*
510  * handler for EDAC to check if NMI type handler has asserted interrupt
511  */
512 static int edac_mc_assert_error_check_and_clear(void)
513 {
514 	int old_state;
515 
516 	if (edac_op_state == EDAC_OPSTATE_POLL)
517 		return 1;
518 
519 	old_state = edac_err_assert;
520 	edac_err_assert = 0;
521 
522 	return old_state;
523 }
524 
525 /*
526  * edac_mc_workq_function
527  *	performs the operation scheduled by a workq request
528  */
529 static void edac_mc_workq_function(struct work_struct *work_req)
530 {
531 	struct delayed_work *d_work = to_delayed_work(work_req);
532 	struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
533 
534 	mutex_lock(&mem_ctls_mutex);
535 
536 	/* if this control struct has movd to offline state, we are done */
537 	if (mci->op_state == OP_OFFLINE) {
538 		mutex_unlock(&mem_ctls_mutex);
539 		return;
540 	}
541 
542 	/* Only poll controllers that are running polled and have a check */
543 	if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL))
544 		mci->edac_check(mci);
545 
546 	mutex_unlock(&mem_ctls_mutex);
547 
548 	/* Reschedule */
549 	queue_delayed_work(edac_workqueue, &mci->work,
550 			msecs_to_jiffies(edac_mc_get_poll_msec()));
551 }
552 
553 /*
554  * edac_mc_workq_setup
555  *	initialize a workq item for this mci
556  *	passing in the new delay period in msec
557  *
558  *	locking model:
559  *
560  *		called with the mem_ctls_mutex held
561  */
562 static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec)
563 {
564 	edac_dbg(0, "\n");
565 
566 	/* if this instance is not in the POLL state, then simply return */
567 	if (mci->op_state != OP_RUNNING_POLL)
568 		return;
569 
570 	INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
571 	mod_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec));
572 }
573 
574 /*
575  * edac_mc_workq_teardown
576  *	stop the workq processing on this mci
577  *
578  *	locking model:
579  *
580  *		called WITHOUT lock held
581  */
582 static void edac_mc_workq_teardown(struct mem_ctl_info *mci)
583 {
584 	int status;
585 
586 	if (mci->op_state != OP_RUNNING_POLL)
587 		return;
588 
589 	status = cancel_delayed_work(&mci->work);
590 	if (status == 0) {
591 		edac_dbg(0, "not canceled, flush the queue\n");
592 
593 		/* workq instance might be running, wait for it */
594 		flush_workqueue(edac_workqueue);
595 	}
596 }
597 
598 /*
599  * edac_mc_reset_delay_period(unsigned long value)
600  *
601  *	user space has updated our poll period value, need to
602  *	reset our workq delays
603  */
604 void edac_mc_reset_delay_period(int value)
605 {
606 	struct mem_ctl_info *mci;
607 	struct list_head *item;
608 
609 	mutex_lock(&mem_ctls_mutex);
610 
611 	list_for_each(item, &mc_devices) {
612 		mci = list_entry(item, struct mem_ctl_info, link);
613 
614 		edac_mc_workq_setup(mci, (unsigned long) value);
615 	}
616 
617 	mutex_unlock(&mem_ctls_mutex);
618 }
619 
620 
621 
622 /* Return 0 on success, 1 on failure.
623  * Before calling this function, caller must
624  * assign a unique value to mci->mc_idx.
625  *
626  *	locking model:
627  *
628  *		called with the mem_ctls_mutex lock held
629  */
630 static int add_mc_to_global_list(struct mem_ctl_info *mci)
631 {
632 	struct list_head *item, *insert_before;
633 	struct mem_ctl_info *p;
634 
635 	insert_before = &mc_devices;
636 
637 	p = find_mci_by_dev(mci->pdev);
638 	if (unlikely(p != NULL))
639 		goto fail0;
640 
641 	list_for_each(item, &mc_devices) {
642 		p = list_entry(item, struct mem_ctl_info, link);
643 
644 		if (p->mc_idx >= mci->mc_idx) {
645 			if (unlikely(p->mc_idx == mci->mc_idx))
646 				goto fail1;
647 
648 			insert_before = item;
649 			break;
650 		}
651 	}
652 
653 	list_add_tail_rcu(&mci->link, insert_before);
654 	atomic_inc(&edac_handlers);
655 	return 0;
656 
657 fail0:
658 	edac_printk(KERN_WARNING, EDAC_MC,
659 		"%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
660 		edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
661 	return 1;
662 
663 fail1:
664 	edac_printk(KERN_WARNING, EDAC_MC,
665 		"bug in low-level driver: attempt to assign\n"
666 		"    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
667 	return 1;
668 }
669 
670 static int del_mc_from_global_list(struct mem_ctl_info *mci)
671 {
672 	int handlers = atomic_dec_return(&edac_handlers);
673 	list_del_rcu(&mci->link);
674 
675 	/* these are for safe removal of devices from global list while
676 	 * NMI handlers may be traversing list
677 	 */
678 	synchronize_rcu();
679 	INIT_LIST_HEAD(&mci->link);
680 
681 	return handlers;
682 }
683 
684 /**
685  * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
686  *
687  * If found, return a pointer to the structure.
688  * Else return NULL.
689  *
690  * Caller must hold mem_ctls_mutex.
691  */
692 struct mem_ctl_info *edac_mc_find(int idx)
693 {
694 	struct list_head *item;
695 	struct mem_ctl_info *mci;
696 
697 	list_for_each(item, &mc_devices) {
698 		mci = list_entry(item, struct mem_ctl_info, link);
699 
700 		if (mci->mc_idx >= idx) {
701 			if (mci->mc_idx == idx)
702 				return mci;
703 
704 			break;
705 		}
706 	}
707 
708 	return NULL;
709 }
710 EXPORT_SYMBOL(edac_mc_find);
711 
712 /**
713  * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
714  *                 create sysfs entries associated with mci structure
715  * @mci: pointer to the mci structure to be added to the list
716  *
717  * Return:
718  *	0	Success
719  *	!0	Failure
720  */
721 
722 /* FIXME - should a warning be printed if no error detection? correction? */
723 int edac_mc_add_mc(struct mem_ctl_info *mci)
724 {
725 	int ret = -EINVAL;
726 	edac_dbg(0, "\n");
727 
728 	if (mci->mc_idx >= EDAC_MAX_MCS) {
729 		pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx);
730 		return -ENODEV;
731 	}
732 
733 #ifdef CONFIG_EDAC_DEBUG
734 	if (edac_debug_level >= 3)
735 		edac_mc_dump_mci(mci);
736 
737 	if (edac_debug_level >= 4) {
738 		int i;
739 
740 		for (i = 0; i < mci->nr_csrows; i++) {
741 			struct csrow_info *csrow = mci->csrows[i];
742 			u32 nr_pages = 0;
743 			int j;
744 
745 			for (j = 0; j < csrow->nr_channels; j++)
746 				nr_pages += csrow->channels[j]->dimm->nr_pages;
747 			if (!nr_pages)
748 				continue;
749 			edac_mc_dump_csrow(csrow);
750 			for (j = 0; j < csrow->nr_channels; j++)
751 				if (csrow->channels[j]->dimm->nr_pages)
752 					edac_mc_dump_channel(csrow->channels[j]);
753 		}
754 		for (i = 0; i < mci->tot_dimms; i++)
755 			if (mci->dimms[i]->nr_pages)
756 				edac_mc_dump_dimm(mci->dimms[i], i);
757 	}
758 #endif
759 	mutex_lock(&mem_ctls_mutex);
760 
761 	if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
762 		ret = -EPERM;
763 		goto fail0;
764 	}
765 
766 	if (add_mc_to_global_list(mci))
767 		goto fail0;
768 
769 	/* set load time so that error rate can be tracked */
770 	mci->start_time = jiffies;
771 
772 	mci->bus = &mc_bus[mci->mc_idx];
773 
774 	if (edac_create_sysfs_mci_device(mci)) {
775 		edac_mc_printk(mci, KERN_WARNING,
776 			"failed to create sysfs device\n");
777 		goto fail1;
778 	}
779 
780 	/* If there IS a check routine, then we are running POLLED */
781 	if (mci->edac_check != NULL) {
782 		/* This instance is NOW RUNNING */
783 		mci->op_state = OP_RUNNING_POLL;
784 
785 		edac_mc_workq_setup(mci, edac_mc_get_poll_msec());
786 	} else {
787 		mci->op_state = OP_RUNNING_INTERRUPT;
788 	}
789 
790 	/* Report action taken */
791 	edac_mc_printk(mci, KERN_INFO,
792 		"Giving out device to module %s controller %s: DEV %s (%s)\n",
793 		mci->mod_name, mci->ctl_name, mci->dev_name,
794 		edac_op_state_to_string(mci->op_state));
795 
796 	edac_mc_owner = mci->mod_name;
797 
798 	mutex_unlock(&mem_ctls_mutex);
799 	return 0;
800 
801 fail1:
802 	del_mc_from_global_list(mci);
803 
804 fail0:
805 	mutex_unlock(&mem_ctls_mutex);
806 	return ret;
807 }
808 EXPORT_SYMBOL_GPL(edac_mc_add_mc);
809 
810 /**
811  * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
812  *                 remove mci structure from global list
813  * @pdev: Pointer to 'struct device' representing mci structure to remove.
814  *
815  * Return pointer to removed mci structure, or NULL if device not found.
816  */
817 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
818 {
819 	struct mem_ctl_info *mci;
820 
821 	edac_dbg(0, "\n");
822 
823 	mutex_lock(&mem_ctls_mutex);
824 
825 	/* find the requested mci struct in the global list */
826 	mci = find_mci_by_dev(dev);
827 	if (mci == NULL) {
828 		mutex_unlock(&mem_ctls_mutex);
829 		return NULL;
830 	}
831 
832 	if (!del_mc_from_global_list(mci))
833 		edac_mc_owner = NULL;
834 	mutex_unlock(&mem_ctls_mutex);
835 
836 	/* flush workq processes */
837 	edac_mc_workq_teardown(mci);
838 
839 	/* marking MCI offline */
840 	mci->op_state = OP_OFFLINE;
841 
842 	/* remove from sysfs */
843 	edac_remove_sysfs_mci_device(mci);
844 
845 	edac_printk(KERN_INFO, EDAC_MC,
846 		"Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
847 		mci->mod_name, mci->ctl_name, edac_dev_name(mci));
848 
849 	return mci;
850 }
851 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
852 
853 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
854 				u32 size)
855 {
856 	struct page *pg;
857 	void *virt_addr;
858 	unsigned long flags = 0;
859 
860 	edac_dbg(3, "\n");
861 
862 	/* ECC error page was not in our memory. Ignore it. */
863 	if (!pfn_valid(page))
864 		return;
865 
866 	/* Find the actual page structure then map it and fix */
867 	pg = pfn_to_page(page);
868 
869 	if (PageHighMem(pg))
870 		local_irq_save(flags);
871 
872 	virt_addr = kmap_atomic(pg);
873 
874 	/* Perform architecture specific atomic scrub operation */
875 	atomic_scrub(virt_addr + offset, size);
876 
877 	/* Unmap and complete */
878 	kunmap_atomic(virt_addr);
879 
880 	if (PageHighMem(pg))
881 		local_irq_restore(flags);
882 }
883 
884 /* FIXME - should return -1 */
885 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
886 {
887 	struct csrow_info **csrows = mci->csrows;
888 	int row, i, j, n;
889 
890 	edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
891 	row = -1;
892 
893 	for (i = 0; i < mci->nr_csrows; i++) {
894 		struct csrow_info *csrow = csrows[i];
895 		n = 0;
896 		for (j = 0; j < csrow->nr_channels; j++) {
897 			struct dimm_info *dimm = csrow->channels[j]->dimm;
898 			n += dimm->nr_pages;
899 		}
900 		if (n == 0)
901 			continue;
902 
903 		edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
904 			 mci->mc_idx,
905 			 csrow->first_page, page, csrow->last_page,
906 			 csrow->page_mask);
907 
908 		if ((page >= csrow->first_page) &&
909 		    (page <= csrow->last_page) &&
910 		    ((page & csrow->page_mask) ==
911 		     (csrow->first_page & csrow->page_mask))) {
912 			row = i;
913 			break;
914 		}
915 	}
916 
917 	if (row == -1)
918 		edac_mc_printk(mci, KERN_ERR,
919 			"could not look up page error address %lx\n",
920 			(unsigned long)page);
921 
922 	return row;
923 }
924 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
925 
926 const char *edac_layer_name[] = {
927 	[EDAC_MC_LAYER_BRANCH] = "branch",
928 	[EDAC_MC_LAYER_CHANNEL] = "channel",
929 	[EDAC_MC_LAYER_SLOT] = "slot",
930 	[EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
931 	[EDAC_MC_LAYER_ALL_MEM] = "memory",
932 };
933 EXPORT_SYMBOL_GPL(edac_layer_name);
934 
935 static void edac_inc_ce_error(struct mem_ctl_info *mci,
936 			      bool enable_per_layer_report,
937 			      const int pos[EDAC_MAX_LAYERS],
938 			      const u16 count)
939 {
940 	int i, index = 0;
941 
942 	mci->ce_mc += count;
943 
944 	if (!enable_per_layer_report) {
945 		mci->ce_noinfo_count += count;
946 		return;
947 	}
948 
949 	for (i = 0; i < mci->n_layers; i++) {
950 		if (pos[i] < 0)
951 			break;
952 		index += pos[i];
953 		mci->ce_per_layer[i][index] += count;
954 
955 		if (i < mci->n_layers - 1)
956 			index *= mci->layers[i + 1].size;
957 	}
958 }
959 
960 static void edac_inc_ue_error(struct mem_ctl_info *mci,
961 				    bool enable_per_layer_report,
962 				    const int pos[EDAC_MAX_LAYERS],
963 				    const u16 count)
964 {
965 	int i, index = 0;
966 
967 	mci->ue_mc += count;
968 
969 	if (!enable_per_layer_report) {
970 		mci->ce_noinfo_count += count;
971 		return;
972 	}
973 
974 	for (i = 0; i < mci->n_layers; i++) {
975 		if (pos[i] < 0)
976 			break;
977 		index += pos[i];
978 		mci->ue_per_layer[i][index] += count;
979 
980 		if (i < mci->n_layers - 1)
981 			index *= mci->layers[i + 1].size;
982 	}
983 }
984 
985 static void edac_ce_error(struct mem_ctl_info *mci,
986 			  const u16 error_count,
987 			  const int pos[EDAC_MAX_LAYERS],
988 			  const char *msg,
989 			  const char *location,
990 			  const char *label,
991 			  const char *detail,
992 			  const char *other_detail,
993 			  const bool enable_per_layer_report,
994 			  const unsigned long page_frame_number,
995 			  const unsigned long offset_in_page,
996 			  long grain)
997 {
998 	unsigned long remapped_page;
999 	char *msg_aux = "";
1000 
1001 	if (*msg)
1002 		msg_aux = " ";
1003 
1004 	if (edac_mc_get_log_ce()) {
1005 		if (other_detail && *other_detail)
1006 			edac_mc_printk(mci, KERN_WARNING,
1007 				       "%d CE %s%son %s (%s %s - %s)\n",
1008 				       error_count, msg, msg_aux, label,
1009 				       location, detail, other_detail);
1010 		else
1011 			edac_mc_printk(mci, KERN_WARNING,
1012 				       "%d CE %s%son %s (%s %s)\n",
1013 				       error_count, msg, msg_aux, label,
1014 				       location, detail);
1015 	}
1016 	edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
1017 
1018 	if (mci->scrub_mode & SCRUB_SW_SRC) {
1019 		/*
1020 			* Some memory controllers (called MCs below) can remap
1021 			* memory so that it is still available at a different
1022 			* address when PCI devices map into memory.
1023 			* MC's that can't do this, lose the memory where PCI
1024 			* devices are mapped. This mapping is MC-dependent
1025 			* and so we call back into the MC driver for it to
1026 			* map the MC page to a physical (CPU) page which can
1027 			* then be mapped to a virtual page - which can then
1028 			* be scrubbed.
1029 			*/
1030 		remapped_page = mci->ctl_page_to_phys ?
1031 			mci->ctl_page_to_phys(mci, page_frame_number) :
1032 			page_frame_number;
1033 
1034 		edac_mc_scrub_block(remapped_page,
1035 					offset_in_page, grain);
1036 	}
1037 }
1038 
1039 static void edac_ue_error(struct mem_ctl_info *mci,
1040 			  const u16 error_count,
1041 			  const int pos[EDAC_MAX_LAYERS],
1042 			  const char *msg,
1043 			  const char *location,
1044 			  const char *label,
1045 			  const char *detail,
1046 			  const char *other_detail,
1047 			  const bool enable_per_layer_report)
1048 {
1049 	char *msg_aux = "";
1050 
1051 	if (*msg)
1052 		msg_aux = " ";
1053 
1054 	if (edac_mc_get_log_ue()) {
1055 		if (other_detail && *other_detail)
1056 			edac_mc_printk(mci, KERN_WARNING,
1057 				       "%d UE %s%son %s (%s %s - %s)\n",
1058 				       error_count, msg, msg_aux, label,
1059 				       location, detail, other_detail);
1060 		else
1061 			edac_mc_printk(mci, KERN_WARNING,
1062 				       "%d UE %s%son %s (%s %s)\n",
1063 				       error_count, msg, msg_aux, label,
1064 				       location, detail);
1065 	}
1066 
1067 	if (edac_mc_get_panic_on_ue()) {
1068 		if (other_detail && *other_detail)
1069 			panic("UE %s%son %s (%s%s - %s)\n",
1070 			      msg, msg_aux, label, location, detail, other_detail);
1071 		else
1072 			panic("UE %s%son %s (%s%s)\n",
1073 			      msg, msg_aux, label, location, detail);
1074 	}
1075 
1076 	edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
1077 }
1078 
1079 /**
1080  * edac_raw_mc_handle_error - reports a memory event to userspace without doing
1081  *			      anything to discover the error location
1082  *
1083  * @type:		severity of the error (CE/UE/Fatal)
1084  * @mci:		a struct mem_ctl_info pointer
1085  * @e:			error description
1086  *
1087  * This raw function is used internally by edac_mc_handle_error(). It should
1088  * only be called directly when the hardware error come directly from BIOS,
1089  * like in the case of APEI GHES driver.
1090  */
1091 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
1092 			      struct mem_ctl_info *mci,
1093 			      struct edac_raw_error_desc *e)
1094 {
1095 	char detail[80];
1096 	int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
1097 
1098 	/* Memory type dependent details about the error */
1099 	if (type == HW_EVENT_ERR_CORRECTED) {
1100 		snprintf(detail, sizeof(detail),
1101 			"page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1102 			e->page_frame_number, e->offset_in_page,
1103 			e->grain, e->syndrome);
1104 		edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1105 			      detail, e->other_detail, e->enable_per_layer_report,
1106 			      e->page_frame_number, e->offset_in_page, e->grain);
1107 	} else {
1108 		snprintf(detail, sizeof(detail),
1109 			"page:0x%lx offset:0x%lx grain:%ld",
1110 			e->page_frame_number, e->offset_in_page, e->grain);
1111 
1112 		edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1113 			      detail, e->other_detail, e->enable_per_layer_report);
1114 	}
1115 
1116 
1117 }
1118 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1119 
1120 /**
1121  * edac_mc_handle_error - reports a memory event to userspace
1122  *
1123  * @type:		severity of the error (CE/UE/Fatal)
1124  * @mci:		a struct mem_ctl_info pointer
1125  * @error_count:	Number of errors of the same type
1126  * @page_frame_number:	mem page where the error occurred
1127  * @offset_in_page:	offset of the error inside the page
1128  * @syndrome:		ECC syndrome
1129  * @top_layer:		Memory layer[0] position
1130  * @mid_layer:		Memory layer[1] position
1131  * @low_layer:		Memory layer[2] position
1132  * @msg:		Message meaningful to the end users that
1133  *			explains the event
1134  * @other_detail:	Technical details about the event that
1135  *			may help hardware manufacturers and
1136  *			EDAC developers to analyse the event
1137  */
1138 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1139 			  struct mem_ctl_info *mci,
1140 			  const u16 error_count,
1141 			  const unsigned long page_frame_number,
1142 			  const unsigned long offset_in_page,
1143 			  const unsigned long syndrome,
1144 			  const int top_layer,
1145 			  const int mid_layer,
1146 			  const int low_layer,
1147 			  const char *msg,
1148 			  const char *other_detail)
1149 {
1150 	char *p;
1151 	int row = -1, chan = -1;
1152 	int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1153 	int i, n_labels = 0;
1154 	u8 grain_bits;
1155 	struct edac_raw_error_desc *e = &mci->error_desc;
1156 
1157 	edac_dbg(3, "MC%d\n", mci->mc_idx);
1158 
1159 	/* Fills the error report buffer */
1160 	memset(e, 0, sizeof (*e));
1161 	e->error_count = error_count;
1162 	e->top_layer = top_layer;
1163 	e->mid_layer = mid_layer;
1164 	e->low_layer = low_layer;
1165 	e->page_frame_number = page_frame_number;
1166 	e->offset_in_page = offset_in_page;
1167 	e->syndrome = syndrome;
1168 	e->msg = msg;
1169 	e->other_detail = other_detail;
1170 
1171 	/*
1172 	 * Check if the event report is consistent and if the memory
1173 	 * location is known. If it is known, enable_per_layer_report will be
1174 	 * true, the DIMM(s) label info will be filled and the per-layer
1175 	 * error counters will be incremented.
1176 	 */
1177 	for (i = 0; i < mci->n_layers; i++) {
1178 		if (pos[i] >= (int)mci->layers[i].size) {
1179 
1180 			edac_mc_printk(mci, KERN_ERR,
1181 				       "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1182 				       edac_layer_name[mci->layers[i].type],
1183 				       pos[i], mci->layers[i].size);
1184 			/*
1185 			 * Instead of just returning it, let's use what's
1186 			 * known about the error. The increment routines and
1187 			 * the DIMM filter logic will do the right thing by
1188 			 * pointing the likely damaged DIMMs.
1189 			 */
1190 			pos[i] = -1;
1191 		}
1192 		if (pos[i] >= 0)
1193 			e->enable_per_layer_report = true;
1194 	}
1195 
1196 	/*
1197 	 * Get the dimm label/grain that applies to the match criteria.
1198 	 * As the error algorithm may not be able to point to just one memory
1199 	 * stick, the logic here will get all possible labels that could
1200 	 * pottentially be affected by the error.
1201 	 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1202 	 * to have only the MC channel and the MC dimm (also called "branch")
1203 	 * but the channel is not known, as the memory is arranged in pairs,
1204 	 * where each memory belongs to a separate channel within the same
1205 	 * branch.
1206 	 */
1207 	p = e->label;
1208 	*p = '\0';
1209 
1210 	for (i = 0; i < mci->tot_dimms; i++) {
1211 		struct dimm_info *dimm = mci->dimms[i];
1212 
1213 		if (top_layer >= 0 && top_layer != dimm->location[0])
1214 			continue;
1215 		if (mid_layer >= 0 && mid_layer != dimm->location[1])
1216 			continue;
1217 		if (low_layer >= 0 && low_layer != dimm->location[2])
1218 			continue;
1219 
1220 		/* get the max grain, over the error match range */
1221 		if (dimm->grain > e->grain)
1222 			e->grain = dimm->grain;
1223 
1224 		/*
1225 		 * If the error is memory-controller wide, there's no need to
1226 		 * seek for the affected DIMMs because the whole
1227 		 * channel/memory controller/...  may be affected.
1228 		 * Also, don't show errors for empty DIMM slots.
1229 		 */
1230 		if (e->enable_per_layer_report && dimm->nr_pages) {
1231 			if (n_labels >= EDAC_MAX_LABELS) {
1232 				e->enable_per_layer_report = false;
1233 				break;
1234 			}
1235 			n_labels++;
1236 			if (p != e->label) {
1237 				strcpy(p, OTHER_LABEL);
1238 				p += strlen(OTHER_LABEL);
1239 			}
1240 			strcpy(p, dimm->label);
1241 			p += strlen(p);
1242 			*p = '\0';
1243 
1244 			/*
1245 			 * get csrow/channel of the DIMM, in order to allow
1246 			 * incrementing the compat API counters
1247 			 */
1248 			edac_dbg(4, "%s csrows map: (%d,%d)\n",
1249 				 mci->csbased ? "rank" : "dimm",
1250 				 dimm->csrow, dimm->cschannel);
1251 			if (row == -1)
1252 				row = dimm->csrow;
1253 			else if (row >= 0 && row != dimm->csrow)
1254 				row = -2;
1255 
1256 			if (chan == -1)
1257 				chan = dimm->cschannel;
1258 			else if (chan >= 0 && chan != dimm->cschannel)
1259 				chan = -2;
1260 		}
1261 	}
1262 
1263 	if (!e->enable_per_layer_report) {
1264 		strcpy(e->label, "any memory");
1265 	} else {
1266 		edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
1267 		if (p == e->label)
1268 			strcpy(e->label, "unknown memory");
1269 		if (type == HW_EVENT_ERR_CORRECTED) {
1270 			if (row >= 0) {
1271 				mci->csrows[row]->ce_count += error_count;
1272 				if (chan >= 0)
1273 					mci->csrows[row]->channels[chan]->ce_count += error_count;
1274 			}
1275 		} else
1276 			if (row >= 0)
1277 				mci->csrows[row]->ue_count += error_count;
1278 	}
1279 
1280 	/* Fill the RAM location data */
1281 	p = e->location;
1282 
1283 	for (i = 0; i < mci->n_layers; i++) {
1284 		if (pos[i] < 0)
1285 			continue;
1286 
1287 		p += sprintf(p, "%s:%d ",
1288 			     edac_layer_name[mci->layers[i].type],
1289 			     pos[i]);
1290 	}
1291 	if (p > e->location)
1292 		*(p - 1) = '\0';
1293 
1294 	/* Report the error via the trace interface */
1295 	grain_bits = fls_long(e->grain) + 1;
1296 	trace_mc_event(type, e->msg, e->label, e->error_count,
1297 		       mci->mc_idx, e->top_layer, e->mid_layer, e->low_layer,
1298 		       PAGES_TO_MiB(e->page_frame_number) | e->offset_in_page,
1299 		       grain_bits, e->syndrome, e->other_detail);
1300 
1301 	edac_raw_mc_handle_error(type, mci, e);
1302 }
1303 EXPORT_SYMBOL_GPL(edac_mc_handle_error);
1304