xref: /openbmc/linux/drivers/edac/edac_mc.c (revision 2fa49589)
1 /*
2  * edac_mc kernel module
3  * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Thayne Harbaugh
8  * Based on work by Dan Hollis <goemon at anime dot net> and others.
9  *	http://www.anime.net/~goemon/linux-ecc/
10  *
11  * Modified by Dave Peterson and Doug Thompson
12  *
13  */
14 
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <linux/uaccess.h>
32 #include <asm/page.h>
33 #include "edac_mc.h"
34 #include "edac_module.h"
35 #include <ras/ras_event.h>
36 
37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB
38 #include <asm/edac.h>
39 #else
40 #define edac_atomic_scrub(va, size) do { } while (0)
41 #endif
42 
43 int edac_op_state = EDAC_OPSTATE_INVAL;
44 EXPORT_SYMBOL_GPL(edac_op_state);
45 
46 static int edac_report = EDAC_REPORTING_ENABLED;
47 
48 /* lock to memory controller's control array */
49 static DEFINE_MUTEX(mem_ctls_mutex);
50 static LIST_HEAD(mc_devices);
51 
52 /*
53  * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
54  *	apei/ghes and i7core_edac to be used at the same time.
55  */
56 static const char *edac_mc_owner;
57 
58 int edac_get_report_status(void)
59 {
60 	return edac_report;
61 }
62 EXPORT_SYMBOL_GPL(edac_get_report_status);
63 
64 void edac_set_report_status(int new)
65 {
66 	if (new == EDAC_REPORTING_ENABLED ||
67 	    new == EDAC_REPORTING_DISABLED ||
68 	    new == EDAC_REPORTING_FORCE)
69 		edac_report = new;
70 }
71 EXPORT_SYMBOL_GPL(edac_set_report_status);
72 
73 static int edac_report_set(const char *str, const struct kernel_param *kp)
74 {
75 	if (!str)
76 		return -EINVAL;
77 
78 	if (!strncmp(str, "on", 2))
79 		edac_report = EDAC_REPORTING_ENABLED;
80 	else if (!strncmp(str, "off", 3))
81 		edac_report = EDAC_REPORTING_DISABLED;
82 	else if (!strncmp(str, "force", 5))
83 		edac_report = EDAC_REPORTING_FORCE;
84 
85 	return 0;
86 }
87 
88 static int edac_report_get(char *buffer, const struct kernel_param *kp)
89 {
90 	int ret = 0;
91 
92 	switch (edac_report) {
93 	case EDAC_REPORTING_ENABLED:
94 		ret = sprintf(buffer, "on");
95 		break;
96 	case EDAC_REPORTING_DISABLED:
97 		ret = sprintf(buffer, "off");
98 		break;
99 	case EDAC_REPORTING_FORCE:
100 		ret = sprintf(buffer, "force");
101 		break;
102 	default:
103 		ret = -EINVAL;
104 		break;
105 	}
106 
107 	return ret;
108 }
109 
110 static const struct kernel_param_ops edac_report_ops = {
111 	.set = edac_report_set,
112 	.get = edac_report_get,
113 };
114 
115 module_param_cb(edac_report, &edac_report_ops, &edac_report, 0644);
116 
117 unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
118 			         unsigned len)
119 {
120 	struct mem_ctl_info *mci = dimm->mci;
121 	int i, n, count = 0;
122 	char *p = buf;
123 
124 	for (i = 0; i < mci->n_layers; i++) {
125 		n = snprintf(p, len, "%s %d ",
126 			      edac_layer_name[mci->layers[i].type],
127 			      dimm->location[i]);
128 		p += n;
129 		len -= n;
130 		count += n;
131 		if (!len)
132 			break;
133 	}
134 
135 	return count;
136 }
137 
138 #ifdef CONFIG_EDAC_DEBUG
139 
140 static void edac_mc_dump_channel(struct rank_info *chan)
141 {
142 	edac_dbg(4, "  channel->chan_idx = %d\n", chan->chan_idx);
143 	edac_dbg(4, "    channel = %p\n", chan);
144 	edac_dbg(4, "    channel->csrow = %p\n", chan->csrow);
145 	edac_dbg(4, "    channel->dimm = %p\n", chan->dimm);
146 }
147 
148 static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
149 {
150 	char location[80];
151 
152 	edac_dimm_info_location(dimm, location, sizeof(location));
153 
154 	edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
155 		 dimm->mci->csbased ? "rank" : "dimm",
156 		 number, location, dimm->csrow, dimm->cschannel);
157 	edac_dbg(4, "  dimm = %p\n", dimm);
158 	edac_dbg(4, "  dimm->label = '%s'\n", dimm->label);
159 	edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
160 	edac_dbg(4, "  dimm->grain = %d\n", dimm->grain);
161 	edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
162 }
163 
164 static void edac_mc_dump_csrow(struct csrow_info *csrow)
165 {
166 	edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
167 	edac_dbg(4, "  csrow = %p\n", csrow);
168 	edac_dbg(4, "  csrow->first_page = 0x%lx\n", csrow->first_page);
169 	edac_dbg(4, "  csrow->last_page = 0x%lx\n", csrow->last_page);
170 	edac_dbg(4, "  csrow->page_mask = 0x%lx\n", csrow->page_mask);
171 	edac_dbg(4, "  csrow->nr_channels = %d\n", csrow->nr_channels);
172 	edac_dbg(4, "  csrow->channels = %p\n", csrow->channels);
173 	edac_dbg(4, "  csrow->mci = %p\n", csrow->mci);
174 }
175 
176 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
177 {
178 	edac_dbg(3, "\tmci = %p\n", mci);
179 	edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
180 	edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
181 	edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
182 	edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
183 	edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
184 		 mci->nr_csrows, mci->csrows);
185 	edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
186 		 mci->tot_dimms, mci->dimms);
187 	edac_dbg(3, "\tdev = %p\n", mci->pdev);
188 	edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
189 		 mci->mod_name, mci->ctl_name);
190 	edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
191 }
192 
193 #endif				/* CONFIG_EDAC_DEBUG */
194 
195 const char * const edac_mem_types[] = {
196 	[MEM_EMPTY]	= "Empty",
197 	[MEM_RESERVED]	= "Reserved",
198 	[MEM_UNKNOWN]	= "Unknown",
199 	[MEM_FPM]	= "FPM",
200 	[MEM_EDO]	= "EDO",
201 	[MEM_BEDO]	= "BEDO",
202 	[MEM_SDR]	= "Unbuffered-SDR",
203 	[MEM_RDR]	= "Registered-SDR",
204 	[MEM_DDR]	= "Unbuffered-DDR",
205 	[MEM_RDDR]	= "Registered-DDR",
206 	[MEM_RMBS]	= "RMBS",
207 	[MEM_DDR2]	= "Unbuffered-DDR2",
208 	[MEM_FB_DDR2]	= "FullyBuffered-DDR2",
209 	[MEM_RDDR2]	= "Registered-DDR2",
210 	[MEM_XDR]	= "XDR",
211 	[MEM_DDR3]	= "Unbuffered-DDR3",
212 	[MEM_RDDR3]	= "Registered-DDR3",
213 	[MEM_LRDDR3]	= "Load-Reduced-DDR3-RAM",
214 	[MEM_DDR4]	= "Unbuffered-DDR4",
215 	[MEM_RDDR4]	= "Registered-DDR4",
216 	[MEM_LRDDR4]	= "Load-Reduced-DDR4-RAM",
217 	[MEM_NVDIMM]	= "Non-volatile-RAM",
218 };
219 EXPORT_SYMBOL_GPL(edac_mem_types);
220 
221 /**
222  * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
223  * @p:		pointer to a pointer with the memory offset to be used. At
224  *		return, this will be incremented to point to the next offset
225  * @size:	Size of the data structure to be reserved
226  * @n_elems:	Number of elements that should be reserved
227  *
228  * If 'size' is a constant, the compiler will optimize this whole function
229  * down to either a no-op or the addition of a constant to the value of '*p'.
230  *
231  * The 'p' pointer is absolutely needed to keep the proper advancing
232  * further in memory to the proper offsets when allocating the struct along
233  * with its embedded structs, as edac_device_alloc_ctl_info() does it
234  * above, for example.
235  *
236  * At return, the pointer 'p' will be incremented to be used on a next call
237  * to this function.
238  */
239 void *edac_align_ptr(void **p, unsigned size, int n_elems)
240 {
241 	unsigned align, r;
242 	void *ptr = *p;
243 
244 	*p += size * n_elems;
245 
246 	/*
247 	 * 'p' can possibly be an unaligned item X such that sizeof(X) is
248 	 * 'size'.  Adjust 'p' so that its alignment is at least as
249 	 * stringent as what the compiler would provide for X and return
250 	 * the aligned result.
251 	 * Here we assume that the alignment of a "long long" is the most
252 	 * stringent alignment that the compiler will ever provide by default.
253 	 * As far as I know, this is a reasonable assumption.
254 	 */
255 	if (size > sizeof(long))
256 		align = sizeof(long long);
257 	else if (size > sizeof(int))
258 		align = sizeof(long);
259 	else if (size > sizeof(short))
260 		align = sizeof(int);
261 	else if (size > sizeof(char))
262 		align = sizeof(short);
263 	else
264 		return (char *)ptr;
265 
266 	r = (unsigned long)p % align;
267 
268 	if (r == 0)
269 		return (char *)ptr;
270 
271 	*p += align - r;
272 
273 	return (void *)(((unsigned long)ptr) + align - r);
274 }
275 
276 static void _edac_mc_free(struct mem_ctl_info *mci)
277 {
278 	int i, chn, row;
279 	struct csrow_info *csr;
280 	const unsigned int tot_dimms = mci->tot_dimms;
281 	const unsigned int tot_channels = mci->num_cschannel;
282 	const unsigned int tot_csrows = mci->nr_csrows;
283 
284 	if (mci->dimms) {
285 		for (i = 0; i < tot_dimms; i++)
286 			kfree(mci->dimms[i]);
287 		kfree(mci->dimms);
288 	}
289 	if (mci->csrows) {
290 		for (row = 0; row < tot_csrows; row++) {
291 			csr = mci->csrows[row];
292 			if (csr) {
293 				if (csr->channels) {
294 					for (chn = 0; chn < tot_channels; chn++)
295 						kfree(csr->channels[chn]);
296 					kfree(csr->channels);
297 				}
298 				kfree(csr);
299 			}
300 		}
301 		kfree(mci->csrows);
302 	}
303 	kfree(mci);
304 }
305 
306 struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
307 				   unsigned n_layers,
308 				   struct edac_mc_layer *layers,
309 				   unsigned sz_pvt)
310 {
311 	struct mem_ctl_info *mci;
312 	struct edac_mc_layer *layer;
313 	struct csrow_info *csr;
314 	struct rank_info *chan;
315 	struct dimm_info *dimm;
316 	u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
317 	unsigned pos[EDAC_MAX_LAYERS];
318 	unsigned size, tot_dimms = 1, count = 1;
319 	unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
320 	void *pvt, *p, *ptr = NULL;
321 	int i, j, row, chn, n, len, off;
322 	bool per_rank = false;
323 
324 	BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
325 	/*
326 	 * Calculate the total amount of dimms and csrows/cschannels while
327 	 * in the old API emulation mode
328 	 */
329 	for (i = 0; i < n_layers; i++) {
330 		tot_dimms *= layers[i].size;
331 		if (layers[i].is_virt_csrow)
332 			tot_csrows *= layers[i].size;
333 		else
334 			tot_channels *= layers[i].size;
335 
336 		if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
337 			per_rank = true;
338 	}
339 
340 	/* Figure out the offsets of the various items from the start of an mc
341 	 * structure.  We want the alignment of each item to be at least as
342 	 * stringent as what the compiler would provide if we could simply
343 	 * hardcode everything into a single struct.
344 	 */
345 	mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
346 	layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
347 	for (i = 0; i < n_layers; i++) {
348 		count *= layers[i].size;
349 		edac_dbg(4, "errcount layer %d size %d\n", i, count);
350 		ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
351 		ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
352 		tot_errcount += 2 * count;
353 	}
354 
355 	edac_dbg(4, "allocating %d error counters\n", tot_errcount);
356 	pvt = edac_align_ptr(&ptr, sz_pvt, 1);
357 	size = ((unsigned long)pvt) + sz_pvt;
358 
359 	edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
360 		 size,
361 		 tot_dimms,
362 		 per_rank ? "ranks" : "dimms",
363 		 tot_csrows * tot_channels);
364 
365 	mci = kzalloc(size, GFP_KERNEL);
366 	if (mci == NULL)
367 		return NULL;
368 
369 	/* Adjust pointers so they point within the memory we just allocated
370 	 * rather than an imaginary chunk of memory located at address 0.
371 	 */
372 	layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
373 	for (i = 0; i < n_layers; i++) {
374 		mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
375 		mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
376 	}
377 	pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
378 
379 	/* setup index and various internal pointers */
380 	mci->mc_idx = mc_num;
381 	mci->tot_dimms = tot_dimms;
382 	mci->pvt_info = pvt;
383 	mci->n_layers = n_layers;
384 	mci->layers = layer;
385 	memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
386 	mci->nr_csrows = tot_csrows;
387 	mci->num_cschannel = tot_channels;
388 	mci->csbased = per_rank;
389 
390 	/*
391 	 * Alocate and fill the csrow/channels structs
392 	 */
393 	mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
394 	if (!mci->csrows)
395 		goto error;
396 	for (row = 0; row < tot_csrows; row++) {
397 		csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
398 		if (!csr)
399 			goto error;
400 		mci->csrows[row] = csr;
401 		csr->csrow_idx = row;
402 		csr->mci = mci;
403 		csr->nr_channels = tot_channels;
404 		csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
405 					GFP_KERNEL);
406 		if (!csr->channels)
407 			goto error;
408 
409 		for (chn = 0; chn < tot_channels; chn++) {
410 			chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
411 			if (!chan)
412 				goto error;
413 			csr->channels[chn] = chan;
414 			chan->chan_idx = chn;
415 			chan->csrow = csr;
416 		}
417 	}
418 
419 	/*
420 	 * Allocate and fill the dimm structs
421 	 */
422 	mci->dimms  = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
423 	if (!mci->dimms)
424 		goto error;
425 
426 	memset(&pos, 0, sizeof(pos));
427 	row = 0;
428 	chn = 0;
429 	for (i = 0; i < tot_dimms; i++) {
430 		chan = mci->csrows[row]->channels[chn];
431 		off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
432 		if (off < 0 || off >= tot_dimms) {
433 			edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
434 			goto error;
435 		}
436 
437 		dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
438 		if (!dimm)
439 			goto error;
440 		mci->dimms[off] = dimm;
441 		dimm->mci = mci;
442 
443 		/*
444 		 * Copy DIMM location and initialize it.
445 		 */
446 		len = sizeof(dimm->label);
447 		p = dimm->label;
448 		n = snprintf(p, len, "mc#%u", mc_num);
449 		p += n;
450 		len -= n;
451 		for (j = 0; j < n_layers; j++) {
452 			n = snprintf(p, len, "%s#%u",
453 				     edac_layer_name[layers[j].type],
454 				     pos[j]);
455 			p += n;
456 			len -= n;
457 			dimm->location[j] = pos[j];
458 
459 			if (len <= 0)
460 				break;
461 		}
462 
463 		/* Link it to the csrows old API data */
464 		chan->dimm = dimm;
465 		dimm->csrow = row;
466 		dimm->cschannel = chn;
467 
468 		/* Increment csrow location */
469 		if (layers[0].is_virt_csrow) {
470 			chn++;
471 			if (chn == tot_channels) {
472 				chn = 0;
473 				row++;
474 			}
475 		} else {
476 			row++;
477 			if (row == tot_csrows) {
478 				row = 0;
479 				chn++;
480 			}
481 		}
482 
483 		/* Increment dimm location */
484 		for (j = n_layers - 1; j >= 0; j--) {
485 			pos[j]++;
486 			if (pos[j] < layers[j].size)
487 				break;
488 			pos[j] = 0;
489 		}
490 	}
491 
492 	mci->op_state = OP_ALLOC;
493 
494 	return mci;
495 
496 error:
497 	_edac_mc_free(mci);
498 
499 	return NULL;
500 }
501 EXPORT_SYMBOL_GPL(edac_mc_alloc);
502 
503 void edac_mc_free(struct mem_ctl_info *mci)
504 {
505 	edac_dbg(1, "\n");
506 
507 	/* If we're not yet registered with sysfs free only what was allocated
508 	 * in edac_mc_alloc().
509 	 */
510 	if (!device_is_registered(&mci->dev)) {
511 		_edac_mc_free(mci);
512 		return;
513 	}
514 
515 	/* the mci instance is freed here, when the sysfs object is dropped */
516 	edac_unregister_sysfs(mci);
517 }
518 EXPORT_SYMBOL_GPL(edac_mc_free);
519 
520 bool edac_has_mcs(void)
521 {
522 	bool ret;
523 
524 	mutex_lock(&mem_ctls_mutex);
525 
526 	ret = list_empty(&mc_devices);
527 
528 	mutex_unlock(&mem_ctls_mutex);
529 
530 	return !ret;
531 }
532 EXPORT_SYMBOL_GPL(edac_has_mcs);
533 
534 /* Caller must hold mem_ctls_mutex */
535 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
536 {
537 	struct mem_ctl_info *mci;
538 	struct list_head *item;
539 
540 	edac_dbg(3, "\n");
541 
542 	list_for_each(item, &mc_devices) {
543 		mci = list_entry(item, struct mem_ctl_info, link);
544 
545 		if (mci->pdev == dev)
546 			return mci;
547 	}
548 
549 	return NULL;
550 }
551 
552 /**
553  * find_mci_by_dev
554  *
555  *	scan list of controllers looking for the one that manages
556  *	the 'dev' device
557  * @dev: pointer to a struct device related with the MCI
558  */
559 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
560 {
561 	struct mem_ctl_info *ret;
562 
563 	mutex_lock(&mem_ctls_mutex);
564 	ret = __find_mci_by_dev(dev);
565 	mutex_unlock(&mem_ctls_mutex);
566 
567 	return ret;
568 }
569 EXPORT_SYMBOL_GPL(find_mci_by_dev);
570 
571 /*
572  * edac_mc_workq_function
573  *	performs the operation scheduled by a workq request
574  */
575 static void edac_mc_workq_function(struct work_struct *work_req)
576 {
577 	struct delayed_work *d_work = to_delayed_work(work_req);
578 	struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
579 
580 	mutex_lock(&mem_ctls_mutex);
581 
582 	if (mci->op_state != OP_RUNNING_POLL) {
583 		mutex_unlock(&mem_ctls_mutex);
584 		return;
585 	}
586 
587 	if (edac_op_state == EDAC_OPSTATE_POLL)
588 		mci->edac_check(mci);
589 
590 	mutex_unlock(&mem_ctls_mutex);
591 
592 	/* Queue ourselves again. */
593 	edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
594 }
595 
596 /*
597  * edac_mc_reset_delay_period(unsigned long value)
598  *
599  *	user space has updated our poll period value, need to
600  *	reset our workq delays
601  */
602 void edac_mc_reset_delay_period(unsigned long value)
603 {
604 	struct mem_ctl_info *mci;
605 	struct list_head *item;
606 
607 	mutex_lock(&mem_ctls_mutex);
608 
609 	list_for_each(item, &mc_devices) {
610 		mci = list_entry(item, struct mem_ctl_info, link);
611 
612 		if (mci->op_state == OP_RUNNING_POLL)
613 			edac_mod_work(&mci->work, value);
614 	}
615 	mutex_unlock(&mem_ctls_mutex);
616 }
617 
618 
619 
620 /* Return 0 on success, 1 on failure.
621  * Before calling this function, caller must
622  * assign a unique value to mci->mc_idx.
623  *
624  *	locking model:
625  *
626  *		called with the mem_ctls_mutex lock held
627  */
628 static int add_mc_to_global_list(struct mem_ctl_info *mci)
629 {
630 	struct list_head *item, *insert_before;
631 	struct mem_ctl_info *p;
632 
633 	insert_before = &mc_devices;
634 
635 	p = __find_mci_by_dev(mci->pdev);
636 	if (unlikely(p != NULL))
637 		goto fail0;
638 
639 	list_for_each(item, &mc_devices) {
640 		p = list_entry(item, struct mem_ctl_info, link);
641 
642 		if (p->mc_idx >= mci->mc_idx) {
643 			if (unlikely(p->mc_idx == mci->mc_idx))
644 				goto fail1;
645 
646 			insert_before = item;
647 			break;
648 		}
649 	}
650 
651 	list_add_tail_rcu(&mci->link, insert_before);
652 	return 0;
653 
654 fail0:
655 	edac_printk(KERN_WARNING, EDAC_MC,
656 		"%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
657 		edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
658 	return 1;
659 
660 fail1:
661 	edac_printk(KERN_WARNING, EDAC_MC,
662 		"bug in low-level driver: attempt to assign\n"
663 		"    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
664 	return 1;
665 }
666 
667 static int del_mc_from_global_list(struct mem_ctl_info *mci)
668 {
669 	list_del_rcu(&mci->link);
670 
671 	/* these are for safe removal of devices from global list while
672 	 * NMI handlers may be traversing list
673 	 */
674 	synchronize_rcu();
675 	INIT_LIST_HEAD(&mci->link);
676 
677 	return list_empty(&mc_devices);
678 }
679 
680 struct mem_ctl_info *edac_mc_find(int idx)
681 {
682 	struct mem_ctl_info *mci = NULL;
683 	struct list_head *item;
684 
685 	mutex_lock(&mem_ctls_mutex);
686 
687 	list_for_each(item, &mc_devices) {
688 		mci = list_entry(item, struct mem_ctl_info, link);
689 
690 		if (mci->mc_idx >= idx) {
691 			if (mci->mc_idx == idx) {
692 				goto unlock;
693 			}
694 			break;
695 		}
696 	}
697 
698 unlock:
699 	mutex_unlock(&mem_ctls_mutex);
700 	return mci;
701 }
702 EXPORT_SYMBOL(edac_mc_find);
703 
704 const char *edac_get_owner(void)
705 {
706 	return edac_mc_owner;
707 }
708 EXPORT_SYMBOL_GPL(edac_get_owner);
709 
710 /* FIXME - should a warning be printed if no error detection? correction? */
711 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
712 			       const struct attribute_group **groups)
713 {
714 	int ret = -EINVAL;
715 	edac_dbg(0, "\n");
716 
717 #ifdef CONFIG_EDAC_DEBUG
718 	if (edac_debug_level >= 3)
719 		edac_mc_dump_mci(mci);
720 
721 	if (edac_debug_level >= 4) {
722 		int i;
723 
724 		for (i = 0; i < mci->nr_csrows; i++) {
725 			struct csrow_info *csrow = mci->csrows[i];
726 			u32 nr_pages = 0;
727 			int j;
728 
729 			for (j = 0; j < csrow->nr_channels; j++)
730 				nr_pages += csrow->channels[j]->dimm->nr_pages;
731 			if (!nr_pages)
732 				continue;
733 			edac_mc_dump_csrow(csrow);
734 			for (j = 0; j < csrow->nr_channels; j++)
735 				if (csrow->channels[j]->dimm->nr_pages)
736 					edac_mc_dump_channel(csrow->channels[j]);
737 		}
738 		for (i = 0; i < mci->tot_dimms; i++)
739 			if (mci->dimms[i]->nr_pages)
740 				edac_mc_dump_dimm(mci->dimms[i], i);
741 	}
742 #endif
743 	mutex_lock(&mem_ctls_mutex);
744 
745 	if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
746 		ret = -EPERM;
747 		goto fail0;
748 	}
749 
750 	if (add_mc_to_global_list(mci))
751 		goto fail0;
752 
753 	/* set load time so that error rate can be tracked */
754 	mci->start_time = jiffies;
755 
756 	mci->bus = edac_get_sysfs_subsys();
757 
758 	if (edac_create_sysfs_mci_device(mci, groups)) {
759 		edac_mc_printk(mci, KERN_WARNING,
760 			"failed to create sysfs device\n");
761 		goto fail1;
762 	}
763 
764 	if (mci->edac_check) {
765 		mci->op_state = OP_RUNNING_POLL;
766 
767 		INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
768 		edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
769 
770 	} else {
771 		mci->op_state = OP_RUNNING_INTERRUPT;
772 	}
773 
774 	/* Report action taken */
775 	edac_mc_printk(mci, KERN_INFO,
776 		"Giving out device to module %s controller %s: DEV %s (%s)\n",
777 		mci->mod_name, mci->ctl_name, mci->dev_name,
778 		edac_op_state_to_string(mci->op_state));
779 
780 	edac_mc_owner = mci->mod_name;
781 
782 	mutex_unlock(&mem_ctls_mutex);
783 	return 0;
784 
785 fail1:
786 	del_mc_from_global_list(mci);
787 
788 fail0:
789 	mutex_unlock(&mem_ctls_mutex);
790 	return ret;
791 }
792 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
793 
794 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
795 {
796 	struct mem_ctl_info *mci;
797 
798 	edac_dbg(0, "\n");
799 
800 	mutex_lock(&mem_ctls_mutex);
801 
802 	/* find the requested mci struct in the global list */
803 	mci = __find_mci_by_dev(dev);
804 	if (mci == NULL) {
805 		mutex_unlock(&mem_ctls_mutex);
806 		return NULL;
807 	}
808 
809 	/* mark MCI offline: */
810 	mci->op_state = OP_OFFLINE;
811 
812 	if (del_mc_from_global_list(mci))
813 		edac_mc_owner = NULL;
814 
815 	mutex_unlock(&mem_ctls_mutex);
816 
817 	if (mci->edac_check)
818 		edac_stop_work(&mci->work);
819 
820 	/* remove from sysfs */
821 	edac_remove_sysfs_mci_device(mci);
822 
823 	edac_printk(KERN_INFO, EDAC_MC,
824 		"Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
825 		mci->mod_name, mci->ctl_name, edac_dev_name(mci));
826 
827 	return mci;
828 }
829 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
830 
831 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
832 				u32 size)
833 {
834 	struct page *pg;
835 	void *virt_addr;
836 	unsigned long flags = 0;
837 
838 	edac_dbg(3, "\n");
839 
840 	/* ECC error page was not in our memory. Ignore it. */
841 	if (!pfn_valid(page))
842 		return;
843 
844 	/* Find the actual page structure then map it and fix */
845 	pg = pfn_to_page(page);
846 
847 	if (PageHighMem(pg))
848 		local_irq_save(flags);
849 
850 	virt_addr = kmap_atomic(pg);
851 
852 	/* Perform architecture specific atomic scrub operation */
853 	edac_atomic_scrub(virt_addr + offset, size);
854 
855 	/* Unmap and complete */
856 	kunmap_atomic(virt_addr);
857 
858 	if (PageHighMem(pg))
859 		local_irq_restore(flags);
860 }
861 
862 /* FIXME - should return -1 */
863 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
864 {
865 	struct csrow_info **csrows = mci->csrows;
866 	int row, i, j, n;
867 
868 	edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
869 	row = -1;
870 
871 	for (i = 0; i < mci->nr_csrows; i++) {
872 		struct csrow_info *csrow = csrows[i];
873 		n = 0;
874 		for (j = 0; j < csrow->nr_channels; j++) {
875 			struct dimm_info *dimm = csrow->channels[j]->dimm;
876 			n += dimm->nr_pages;
877 		}
878 		if (n == 0)
879 			continue;
880 
881 		edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
882 			 mci->mc_idx,
883 			 csrow->first_page, page, csrow->last_page,
884 			 csrow->page_mask);
885 
886 		if ((page >= csrow->first_page) &&
887 		    (page <= csrow->last_page) &&
888 		    ((page & csrow->page_mask) ==
889 		     (csrow->first_page & csrow->page_mask))) {
890 			row = i;
891 			break;
892 		}
893 	}
894 
895 	if (row == -1)
896 		edac_mc_printk(mci, KERN_ERR,
897 			"could not look up page error address %lx\n",
898 			(unsigned long)page);
899 
900 	return row;
901 }
902 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
903 
904 const char *edac_layer_name[] = {
905 	[EDAC_MC_LAYER_BRANCH] = "branch",
906 	[EDAC_MC_LAYER_CHANNEL] = "channel",
907 	[EDAC_MC_LAYER_SLOT] = "slot",
908 	[EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
909 	[EDAC_MC_LAYER_ALL_MEM] = "memory",
910 };
911 EXPORT_SYMBOL_GPL(edac_layer_name);
912 
913 static void edac_inc_ce_error(struct mem_ctl_info *mci,
914 			      bool enable_per_layer_report,
915 			      const int pos[EDAC_MAX_LAYERS],
916 			      const u16 count)
917 {
918 	int i, index = 0;
919 
920 	mci->ce_mc += count;
921 
922 	if (!enable_per_layer_report) {
923 		mci->ce_noinfo_count += count;
924 		return;
925 	}
926 
927 	for (i = 0; i < mci->n_layers; i++) {
928 		if (pos[i] < 0)
929 			break;
930 		index += pos[i];
931 		mci->ce_per_layer[i][index] += count;
932 
933 		if (i < mci->n_layers - 1)
934 			index *= mci->layers[i + 1].size;
935 	}
936 }
937 
938 static void edac_inc_ue_error(struct mem_ctl_info *mci,
939 				    bool enable_per_layer_report,
940 				    const int pos[EDAC_MAX_LAYERS],
941 				    const u16 count)
942 {
943 	int i, index = 0;
944 
945 	mci->ue_mc += count;
946 
947 	if (!enable_per_layer_report) {
948 		mci->ue_noinfo_count += count;
949 		return;
950 	}
951 
952 	for (i = 0; i < mci->n_layers; i++) {
953 		if (pos[i] < 0)
954 			break;
955 		index += pos[i];
956 		mci->ue_per_layer[i][index] += count;
957 
958 		if (i < mci->n_layers - 1)
959 			index *= mci->layers[i + 1].size;
960 	}
961 }
962 
963 static void edac_ce_error(struct mem_ctl_info *mci,
964 			  const u16 error_count,
965 			  const int pos[EDAC_MAX_LAYERS],
966 			  const char *msg,
967 			  const char *location,
968 			  const char *label,
969 			  const char *detail,
970 			  const char *other_detail,
971 			  const bool enable_per_layer_report,
972 			  const unsigned long page_frame_number,
973 			  const unsigned long offset_in_page,
974 			  long grain)
975 {
976 	unsigned long remapped_page;
977 	char *msg_aux = "";
978 
979 	if (*msg)
980 		msg_aux = " ";
981 
982 	if (edac_mc_get_log_ce()) {
983 		if (other_detail && *other_detail)
984 			edac_mc_printk(mci, KERN_WARNING,
985 				       "%d CE %s%son %s (%s %s - %s)\n",
986 				       error_count, msg, msg_aux, label,
987 				       location, detail, other_detail);
988 		else
989 			edac_mc_printk(mci, KERN_WARNING,
990 				       "%d CE %s%son %s (%s %s)\n",
991 				       error_count, msg, msg_aux, label,
992 				       location, detail);
993 	}
994 	edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
995 
996 	if (mci->scrub_mode == SCRUB_SW_SRC) {
997 		/*
998 			* Some memory controllers (called MCs below) can remap
999 			* memory so that it is still available at a different
1000 			* address when PCI devices map into memory.
1001 			* MC's that can't do this, lose the memory where PCI
1002 			* devices are mapped. This mapping is MC-dependent
1003 			* and so we call back into the MC driver for it to
1004 			* map the MC page to a physical (CPU) page which can
1005 			* then be mapped to a virtual page - which can then
1006 			* be scrubbed.
1007 			*/
1008 		remapped_page = mci->ctl_page_to_phys ?
1009 			mci->ctl_page_to_phys(mci, page_frame_number) :
1010 			page_frame_number;
1011 
1012 		edac_mc_scrub_block(remapped_page,
1013 					offset_in_page, grain);
1014 	}
1015 }
1016 
1017 static void edac_ue_error(struct mem_ctl_info *mci,
1018 			  const u16 error_count,
1019 			  const int pos[EDAC_MAX_LAYERS],
1020 			  const char *msg,
1021 			  const char *location,
1022 			  const char *label,
1023 			  const char *detail,
1024 			  const char *other_detail,
1025 			  const bool enable_per_layer_report)
1026 {
1027 	char *msg_aux = "";
1028 
1029 	if (*msg)
1030 		msg_aux = " ";
1031 
1032 	if (edac_mc_get_log_ue()) {
1033 		if (other_detail && *other_detail)
1034 			edac_mc_printk(mci, KERN_WARNING,
1035 				       "%d UE %s%son %s (%s %s - %s)\n",
1036 				       error_count, msg, msg_aux, label,
1037 				       location, detail, other_detail);
1038 		else
1039 			edac_mc_printk(mci, KERN_WARNING,
1040 				       "%d UE %s%son %s (%s %s)\n",
1041 				       error_count, msg, msg_aux, label,
1042 				       location, detail);
1043 	}
1044 
1045 	if (edac_mc_get_panic_on_ue()) {
1046 		if (other_detail && *other_detail)
1047 			panic("UE %s%son %s (%s%s - %s)\n",
1048 			      msg, msg_aux, label, location, detail, other_detail);
1049 		else
1050 			panic("UE %s%son %s (%s%s)\n",
1051 			      msg, msg_aux, label, location, detail);
1052 	}
1053 
1054 	edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
1055 }
1056 
1057 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
1058 			      struct mem_ctl_info *mci,
1059 			      struct edac_raw_error_desc *e)
1060 {
1061 	char detail[80];
1062 	int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
1063 
1064 	/* Memory type dependent details about the error */
1065 	if (type == HW_EVENT_ERR_CORRECTED) {
1066 		snprintf(detail, sizeof(detail),
1067 			"page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1068 			e->page_frame_number, e->offset_in_page,
1069 			e->grain, e->syndrome);
1070 		edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1071 			      detail, e->other_detail, e->enable_per_layer_report,
1072 			      e->page_frame_number, e->offset_in_page, e->grain);
1073 	} else {
1074 		snprintf(detail, sizeof(detail),
1075 			"page:0x%lx offset:0x%lx grain:%ld",
1076 			e->page_frame_number, e->offset_in_page, e->grain);
1077 
1078 		edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1079 			      detail, e->other_detail, e->enable_per_layer_report);
1080 	}
1081 
1082 
1083 }
1084 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1085 
1086 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1087 			  struct mem_ctl_info *mci,
1088 			  const u16 error_count,
1089 			  const unsigned long page_frame_number,
1090 			  const unsigned long offset_in_page,
1091 			  const unsigned long syndrome,
1092 			  const int top_layer,
1093 			  const int mid_layer,
1094 			  const int low_layer,
1095 			  const char *msg,
1096 			  const char *other_detail)
1097 {
1098 	char *p;
1099 	int row = -1, chan = -1;
1100 	int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1101 	int i, n_labels = 0;
1102 	u8 grain_bits;
1103 	struct edac_raw_error_desc *e = &mci->error_desc;
1104 
1105 	edac_dbg(3, "MC%d\n", mci->mc_idx);
1106 
1107 	/* Fills the error report buffer */
1108 	memset(e, 0, sizeof (*e));
1109 	e->error_count = error_count;
1110 	e->top_layer = top_layer;
1111 	e->mid_layer = mid_layer;
1112 	e->low_layer = low_layer;
1113 	e->page_frame_number = page_frame_number;
1114 	e->offset_in_page = offset_in_page;
1115 	e->syndrome = syndrome;
1116 	e->msg = msg;
1117 	e->other_detail = other_detail;
1118 
1119 	/*
1120 	 * Check if the event report is consistent and if the memory
1121 	 * location is known. If it is known, enable_per_layer_report will be
1122 	 * true, the DIMM(s) label info will be filled and the per-layer
1123 	 * error counters will be incremented.
1124 	 */
1125 	for (i = 0; i < mci->n_layers; i++) {
1126 		if (pos[i] >= (int)mci->layers[i].size) {
1127 
1128 			edac_mc_printk(mci, KERN_ERR,
1129 				       "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1130 				       edac_layer_name[mci->layers[i].type],
1131 				       pos[i], mci->layers[i].size);
1132 			/*
1133 			 * Instead of just returning it, let's use what's
1134 			 * known about the error. The increment routines and
1135 			 * the DIMM filter logic will do the right thing by
1136 			 * pointing the likely damaged DIMMs.
1137 			 */
1138 			pos[i] = -1;
1139 		}
1140 		if (pos[i] >= 0)
1141 			e->enable_per_layer_report = true;
1142 	}
1143 
1144 	/*
1145 	 * Get the dimm label/grain that applies to the match criteria.
1146 	 * As the error algorithm may not be able to point to just one memory
1147 	 * stick, the logic here will get all possible labels that could
1148 	 * pottentially be affected by the error.
1149 	 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1150 	 * to have only the MC channel and the MC dimm (also called "branch")
1151 	 * but the channel is not known, as the memory is arranged in pairs,
1152 	 * where each memory belongs to a separate channel within the same
1153 	 * branch.
1154 	 */
1155 	p = e->label;
1156 	*p = '\0';
1157 
1158 	for (i = 0; i < mci->tot_dimms; i++) {
1159 		struct dimm_info *dimm = mci->dimms[i];
1160 
1161 		if (top_layer >= 0 && top_layer != dimm->location[0])
1162 			continue;
1163 		if (mid_layer >= 0 && mid_layer != dimm->location[1])
1164 			continue;
1165 		if (low_layer >= 0 && low_layer != dimm->location[2])
1166 			continue;
1167 
1168 		/* get the max grain, over the error match range */
1169 		if (dimm->grain > e->grain)
1170 			e->grain = dimm->grain;
1171 
1172 		/*
1173 		 * If the error is memory-controller wide, there's no need to
1174 		 * seek for the affected DIMMs because the whole
1175 		 * channel/memory controller/...  may be affected.
1176 		 * Also, don't show errors for empty DIMM slots.
1177 		 */
1178 		if (e->enable_per_layer_report && dimm->nr_pages) {
1179 			if (n_labels >= EDAC_MAX_LABELS) {
1180 				e->enable_per_layer_report = false;
1181 				break;
1182 			}
1183 			n_labels++;
1184 			if (p != e->label) {
1185 				strcpy(p, OTHER_LABEL);
1186 				p += strlen(OTHER_LABEL);
1187 			}
1188 			strcpy(p, dimm->label);
1189 			p += strlen(p);
1190 			*p = '\0';
1191 
1192 			/*
1193 			 * get csrow/channel of the DIMM, in order to allow
1194 			 * incrementing the compat API counters
1195 			 */
1196 			edac_dbg(4, "%s csrows map: (%d,%d)\n",
1197 				 mci->csbased ? "rank" : "dimm",
1198 				 dimm->csrow, dimm->cschannel);
1199 			if (row == -1)
1200 				row = dimm->csrow;
1201 			else if (row >= 0 && row != dimm->csrow)
1202 				row = -2;
1203 
1204 			if (chan == -1)
1205 				chan = dimm->cschannel;
1206 			else if (chan >= 0 && chan != dimm->cschannel)
1207 				chan = -2;
1208 		}
1209 	}
1210 
1211 	if (!e->enable_per_layer_report) {
1212 		strcpy(e->label, "any memory");
1213 	} else {
1214 		edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
1215 		if (p == e->label)
1216 			strcpy(e->label, "unknown memory");
1217 		if (type == HW_EVENT_ERR_CORRECTED) {
1218 			if (row >= 0) {
1219 				mci->csrows[row]->ce_count += error_count;
1220 				if (chan >= 0)
1221 					mci->csrows[row]->channels[chan]->ce_count += error_count;
1222 			}
1223 		} else
1224 			if (row >= 0)
1225 				mci->csrows[row]->ue_count += error_count;
1226 	}
1227 
1228 	/* Fill the RAM location data */
1229 	p = e->location;
1230 
1231 	for (i = 0; i < mci->n_layers; i++) {
1232 		if (pos[i] < 0)
1233 			continue;
1234 
1235 		p += sprintf(p, "%s:%d ",
1236 			     edac_layer_name[mci->layers[i].type],
1237 			     pos[i]);
1238 	}
1239 	if (p > e->location)
1240 		*(p - 1) = '\0';
1241 
1242 	/* Report the error via the trace interface */
1243 	grain_bits = fls_long(e->grain) + 1;
1244 
1245 	if (IS_ENABLED(CONFIG_RAS))
1246 		trace_mc_event(type, e->msg, e->label, e->error_count,
1247 			       mci->mc_idx, e->top_layer, e->mid_layer,
1248 			       e->low_layer,
1249 			       (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
1250 			       grain_bits, e->syndrome, e->other_detail);
1251 
1252 	edac_raw_mc_handle_error(type, mci, e);
1253 }
1254 EXPORT_SYMBOL_GPL(edac_mc_handle_error);
1255