1 /* 2 * edac_mc kernel module 3 * (C) 2005, 2006 Linux Networx (http://lnxi.com) 4 * This file may be distributed under the terms of the 5 * GNU General Public License. 6 * 7 * Written by Thayne Harbaugh 8 * Based on work by Dan Hollis <goemon at anime dot net> and others. 9 * http://www.anime.net/~goemon/linux-ecc/ 10 * 11 * Modified by Dave Peterson and Doug Thompson 12 * 13 */ 14 15 #include <linux/module.h> 16 #include <linux/proc_fs.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/smp.h> 20 #include <linux/init.h> 21 #include <linux/sysctl.h> 22 #include <linux/highmem.h> 23 #include <linux/timer.h> 24 #include <linux/slab.h> 25 #include <linux/jiffies.h> 26 #include <linux/spinlock.h> 27 #include <linux/list.h> 28 #include <linux/ctype.h> 29 #include <linux/edac.h> 30 #include <linux/bitops.h> 31 #include <asm/uaccess.h> 32 #include <asm/page.h> 33 #include <asm/edac.h> 34 #include "edac_core.h" 35 #include "edac_module.h" 36 37 #define CREATE_TRACE_POINTS 38 #define TRACE_INCLUDE_PATH ../../include/ras 39 #include <ras/ras_event.h> 40 41 /* lock to memory controller's control array */ 42 static DEFINE_MUTEX(mem_ctls_mutex); 43 static LIST_HEAD(mc_devices); 44 45 /* 46 * Used to lock EDAC MC to just one module, avoiding two drivers e. g. 47 * apei/ghes and i7core_edac to be used at the same time. 48 */ 49 static void const *edac_mc_owner; 50 51 static struct bus_type mc_bus[EDAC_MAX_MCS]; 52 53 unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf, 54 unsigned len) 55 { 56 struct mem_ctl_info *mci = dimm->mci; 57 int i, n, count = 0; 58 char *p = buf; 59 60 for (i = 0; i < mci->n_layers; i++) { 61 n = snprintf(p, len, "%s %d ", 62 edac_layer_name[mci->layers[i].type], 63 dimm->location[i]); 64 p += n; 65 len -= n; 66 count += n; 67 if (!len) 68 break; 69 } 70 71 return count; 72 } 73 74 #ifdef CONFIG_EDAC_DEBUG 75 76 static void edac_mc_dump_channel(struct rank_info *chan) 77 { 78 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx); 79 edac_dbg(4, " channel = %p\n", chan); 80 edac_dbg(4, " channel->csrow = %p\n", chan->csrow); 81 edac_dbg(4, " channel->dimm = %p\n", chan->dimm); 82 } 83 84 static void edac_mc_dump_dimm(struct dimm_info *dimm, int number) 85 { 86 char location[80]; 87 88 edac_dimm_info_location(dimm, location, sizeof(location)); 89 90 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n", 91 dimm->mci->csbased ? "rank" : "dimm", 92 number, location, dimm->csrow, dimm->cschannel); 93 edac_dbg(4, " dimm = %p\n", dimm); 94 edac_dbg(4, " dimm->label = '%s'\n", dimm->label); 95 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); 96 edac_dbg(4, " dimm->grain = %d\n", dimm->grain); 97 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); 98 } 99 100 static void edac_mc_dump_csrow(struct csrow_info *csrow) 101 { 102 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx); 103 edac_dbg(4, " csrow = %p\n", csrow); 104 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page); 105 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page); 106 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask); 107 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels); 108 edac_dbg(4, " csrow->channels = %p\n", csrow->channels); 109 edac_dbg(4, " csrow->mci = %p\n", csrow->mci); 110 } 111 112 static void edac_mc_dump_mci(struct mem_ctl_info *mci) 113 { 114 edac_dbg(3, "\tmci = %p\n", mci); 115 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap); 116 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap); 117 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap); 118 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check); 119 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n", 120 mci->nr_csrows, mci->csrows); 121 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n", 122 mci->tot_dimms, mci->dimms); 123 edac_dbg(3, "\tdev = %p\n", mci->pdev); 124 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n", 125 mci->mod_name, mci->ctl_name); 126 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info); 127 } 128 129 #endif /* CONFIG_EDAC_DEBUG */ 130 131 /* 132 * keep those in sync with the enum mem_type 133 */ 134 const char *edac_mem_types[] = { 135 "Empty csrow", 136 "Reserved csrow type", 137 "Unknown csrow type", 138 "Fast page mode RAM", 139 "Extended data out RAM", 140 "Burst Extended data out RAM", 141 "Single data rate SDRAM", 142 "Registered single data rate SDRAM", 143 "Double data rate SDRAM", 144 "Registered Double data rate SDRAM", 145 "Rambus DRAM", 146 "Unbuffered DDR2 RAM", 147 "Fully buffered DDR2", 148 "Registered DDR2 RAM", 149 "Rambus XDR", 150 "Unbuffered DDR3 RAM", 151 "Registered DDR3 RAM", 152 }; 153 EXPORT_SYMBOL_GPL(edac_mem_types); 154 155 /** 156 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation 157 * @p: pointer to a pointer with the memory offset to be used. At 158 * return, this will be incremented to point to the next offset 159 * @size: Size of the data structure to be reserved 160 * @n_elems: Number of elements that should be reserved 161 * 162 * If 'size' is a constant, the compiler will optimize this whole function 163 * down to either a no-op or the addition of a constant to the value of '*p'. 164 * 165 * The 'p' pointer is absolutely needed to keep the proper advancing 166 * further in memory to the proper offsets when allocating the struct along 167 * with its embedded structs, as edac_device_alloc_ctl_info() does it 168 * above, for example. 169 * 170 * At return, the pointer 'p' will be incremented to be used on a next call 171 * to this function. 172 */ 173 void *edac_align_ptr(void **p, unsigned size, int n_elems) 174 { 175 unsigned align, r; 176 void *ptr = *p; 177 178 *p += size * n_elems; 179 180 /* 181 * 'p' can possibly be an unaligned item X such that sizeof(X) is 182 * 'size'. Adjust 'p' so that its alignment is at least as 183 * stringent as what the compiler would provide for X and return 184 * the aligned result. 185 * Here we assume that the alignment of a "long long" is the most 186 * stringent alignment that the compiler will ever provide by default. 187 * As far as I know, this is a reasonable assumption. 188 */ 189 if (size > sizeof(long)) 190 align = sizeof(long long); 191 else if (size > sizeof(int)) 192 align = sizeof(long); 193 else if (size > sizeof(short)) 194 align = sizeof(int); 195 else if (size > sizeof(char)) 196 align = sizeof(short); 197 else 198 return (char *)ptr; 199 200 r = (unsigned long)p % align; 201 202 if (r == 0) 203 return (char *)ptr; 204 205 *p += align - r; 206 207 return (void *)(((unsigned long)ptr) + align - r); 208 } 209 210 static void _edac_mc_free(struct mem_ctl_info *mci) 211 { 212 int i, chn, row; 213 struct csrow_info *csr; 214 const unsigned int tot_dimms = mci->tot_dimms; 215 const unsigned int tot_channels = mci->num_cschannel; 216 const unsigned int tot_csrows = mci->nr_csrows; 217 218 if (mci->dimms) { 219 for (i = 0; i < tot_dimms; i++) 220 kfree(mci->dimms[i]); 221 kfree(mci->dimms); 222 } 223 if (mci->csrows) { 224 for (row = 0; row < tot_csrows; row++) { 225 csr = mci->csrows[row]; 226 if (csr) { 227 if (csr->channels) { 228 for (chn = 0; chn < tot_channels; chn++) 229 kfree(csr->channels[chn]); 230 kfree(csr->channels); 231 } 232 kfree(csr); 233 } 234 } 235 kfree(mci->csrows); 236 } 237 kfree(mci); 238 } 239 240 /** 241 * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure 242 * @mc_num: Memory controller number 243 * @n_layers: Number of MC hierarchy layers 244 * layers: Describes each layer as seen by the Memory Controller 245 * @size_pvt: size of private storage needed 246 * 247 * 248 * Everything is kmalloc'ed as one big chunk - more efficient. 249 * Only can be used if all structures have the same lifetime - otherwise 250 * you have to allocate and initialize your own structures. 251 * 252 * Use edac_mc_free() to free mc structures allocated by this function. 253 * 254 * NOTE: drivers handle multi-rank memories in different ways: in some 255 * drivers, one multi-rank memory stick is mapped as one entry, while, in 256 * others, a single multi-rank memory stick would be mapped into several 257 * entries. Currently, this function will allocate multiple struct dimm_info 258 * on such scenarios, as grouping the multiple ranks require drivers change. 259 * 260 * Returns: 261 * On failure: NULL 262 * On success: struct mem_ctl_info pointer 263 */ 264 struct mem_ctl_info *edac_mc_alloc(unsigned mc_num, 265 unsigned n_layers, 266 struct edac_mc_layer *layers, 267 unsigned sz_pvt) 268 { 269 struct mem_ctl_info *mci; 270 struct edac_mc_layer *layer; 271 struct csrow_info *csr; 272 struct rank_info *chan; 273 struct dimm_info *dimm; 274 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS]; 275 unsigned pos[EDAC_MAX_LAYERS]; 276 unsigned size, tot_dimms = 1, count = 1; 277 unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0; 278 void *pvt, *p, *ptr = NULL; 279 int i, j, row, chn, n, len, off; 280 bool per_rank = false; 281 282 BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0); 283 /* 284 * Calculate the total amount of dimms and csrows/cschannels while 285 * in the old API emulation mode 286 */ 287 for (i = 0; i < n_layers; i++) { 288 tot_dimms *= layers[i].size; 289 if (layers[i].is_virt_csrow) 290 tot_csrows *= layers[i].size; 291 else 292 tot_channels *= layers[i].size; 293 294 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT) 295 per_rank = true; 296 } 297 298 /* Figure out the offsets of the various items from the start of an mc 299 * structure. We want the alignment of each item to be at least as 300 * stringent as what the compiler would provide if we could simply 301 * hardcode everything into a single struct. 302 */ 303 mci = edac_align_ptr(&ptr, sizeof(*mci), 1); 304 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers); 305 for (i = 0; i < n_layers; i++) { 306 count *= layers[i].size; 307 edac_dbg(4, "errcount layer %d size %d\n", i, count); 308 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count); 309 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count); 310 tot_errcount += 2 * count; 311 } 312 313 edac_dbg(4, "allocating %d error counters\n", tot_errcount); 314 pvt = edac_align_ptr(&ptr, sz_pvt, 1); 315 size = ((unsigned long)pvt) + sz_pvt; 316 317 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n", 318 size, 319 tot_dimms, 320 per_rank ? "ranks" : "dimms", 321 tot_csrows * tot_channels); 322 323 mci = kzalloc(size, GFP_KERNEL); 324 if (mci == NULL) 325 return NULL; 326 327 /* Adjust pointers so they point within the memory we just allocated 328 * rather than an imaginary chunk of memory located at address 0. 329 */ 330 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer)); 331 for (i = 0; i < n_layers; i++) { 332 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i])); 333 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i])); 334 } 335 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL; 336 337 /* setup index and various internal pointers */ 338 mci->mc_idx = mc_num; 339 mci->tot_dimms = tot_dimms; 340 mci->pvt_info = pvt; 341 mci->n_layers = n_layers; 342 mci->layers = layer; 343 memcpy(mci->layers, layers, sizeof(*layer) * n_layers); 344 mci->nr_csrows = tot_csrows; 345 mci->num_cschannel = tot_channels; 346 mci->csbased = per_rank; 347 348 /* 349 * Alocate and fill the csrow/channels structs 350 */ 351 mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL); 352 if (!mci->csrows) 353 goto error; 354 for (row = 0; row < tot_csrows; row++) { 355 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL); 356 if (!csr) 357 goto error; 358 mci->csrows[row] = csr; 359 csr->csrow_idx = row; 360 csr->mci = mci; 361 csr->nr_channels = tot_channels; 362 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels), 363 GFP_KERNEL); 364 if (!csr->channels) 365 goto error; 366 367 for (chn = 0; chn < tot_channels; chn++) { 368 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL); 369 if (!chan) 370 goto error; 371 csr->channels[chn] = chan; 372 chan->chan_idx = chn; 373 chan->csrow = csr; 374 } 375 } 376 377 /* 378 * Allocate and fill the dimm structs 379 */ 380 mci->dimms = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL); 381 if (!mci->dimms) 382 goto error; 383 384 memset(&pos, 0, sizeof(pos)); 385 row = 0; 386 chn = 0; 387 for (i = 0; i < tot_dimms; i++) { 388 chan = mci->csrows[row]->channels[chn]; 389 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]); 390 if (off < 0 || off >= tot_dimms) { 391 edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n"); 392 goto error; 393 } 394 395 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL); 396 if (!dimm) 397 goto error; 398 mci->dimms[off] = dimm; 399 dimm->mci = mci; 400 401 /* 402 * Copy DIMM location and initialize it. 403 */ 404 len = sizeof(dimm->label); 405 p = dimm->label; 406 n = snprintf(p, len, "mc#%u", mc_num); 407 p += n; 408 len -= n; 409 for (j = 0; j < n_layers; j++) { 410 n = snprintf(p, len, "%s#%u", 411 edac_layer_name[layers[j].type], 412 pos[j]); 413 p += n; 414 len -= n; 415 dimm->location[j] = pos[j]; 416 417 if (len <= 0) 418 break; 419 } 420 421 /* Link it to the csrows old API data */ 422 chan->dimm = dimm; 423 dimm->csrow = row; 424 dimm->cschannel = chn; 425 426 /* Increment csrow location */ 427 if (layers[0].is_virt_csrow) { 428 chn++; 429 if (chn == tot_channels) { 430 chn = 0; 431 row++; 432 } 433 } else { 434 row++; 435 if (row == tot_csrows) { 436 row = 0; 437 chn++; 438 } 439 } 440 441 /* Increment dimm location */ 442 for (j = n_layers - 1; j >= 0; j--) { 443 pos[j]++; 444 if (pos[j] < layers[j].size) 445 break; 446 pos[j] = 0; 447 } 448 } 449 450 mci->op_state = OP_ALLOC; 451 452 return mci; 453 454 error: 455 _edac_mc_free(mci); 456 457 return NULL; 458 } 459 EXPORT_SYMBOL_GPL(edac_mc_alloc); 460 461 /** 462 * edac_mc_free 463 * 'Free' a previously allocated 'mci' structure 464 * @mci: pointer to a struct mem_ctl_info structure 465 */ 466 void edac_mc_free(struct mem_ctl_info *mci) 467 { 468 edac_dbg(1, "\n"); 469 470 /* If we're not yet registered with sysfs free only what was allocated 471 * in edac_mc_alloc(). 472 */ 473 if (!device_is_registered(&mci->dev)) { 474 _edac_mc_free(mci); 475 return; 476 } 477 478 /* the mci instance is freed here, when the sysfs object is dropped */ 479 edac_unregister_sysfs(mci); 480 } 481 EXPORT_SYMBOL_GPL(edac_mc_free); 482 483 484 /** 485 * find_mci_by_dev 486 * 487 * scan list of controllers looking for the one that manages 488 * the 'dev' device 489 * @dev: pointer to a struct device related with the MCI 490 */ 491 struct mem_ctl_info *find_mci_by_dev(struct device *dev) 492 { 493 struct mem_ctl_info *mci; 494 struct list_head *item; 495 496 edac_dbg(3, "\n"); 497 498 list_for_each(item, &mc_devices) { 499 mci = list_entry(item, struct mem_ctl_info, link); 500 501 if (mci->pdev == dev) 502 return mci; 503 } 504 505 return NULL; 506 } 507 EXPORT_SYMBOL_GPL(find_mci_by_dev); 508 509 /* 510 * handler for EDAC to check if NMI type handler has asserted interrupt 511 */ 512 static int edac_mc_assert_error_check_and_clear(void) 513 { 514 int old_state; 515 516 if (edac_op_state == EDAC_OPSTATE_POLL) 517 return 1; 518 519 old_state = edac_err_assert; 520 edac_err_assert = 0; 521 522 return old_state; 523 } 524 525 /* 526 * edac_mc_workq_function 527 * performs the operation scheduled by a workq request 528 */ 529 static void edac_mc_workq_function(struct work_struct *work_req) 530 { 531 struct delayed_work *d_work = to_delayed_work(work_req); 532 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work); 533 534 mutex_lock(&mem_ctls_mutex); 535 536 /* if this control struct has movd to offline state, we are done */ 537 if (mci->op_state == OP_OFFLINE) { 538 mutex_unlock(&mem_ctls_mutex); 539 return; 540 } 541 542 /* Only poll controllers that are running polled and have a check */ 543 if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL)) 544 mci->edac_check(mci); 545 546 mutex_unlock(&mem_ctls_mutex); 547 548 /* Reschedule */ 549 queue_delayed_work(edac_workqueue, &mci->work, 550 msecs_to_jiffies(edac_mc_get_poll_msec())); 551 } 552 553 /* 554 * edac_mc_workq_setup 555 * initialize a workq item for this mci 556 * passing in the new delay period in msec 557 * 558 * locking model: 559 * 560 * called with the mem_ctls_mutex held 561 */ 562 static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec) 563 { 564 edac_dbg(0, "\n"); 565 566 /* if this instance is not in the POLL state, then simply return */ 567 if (mci->op_state != OP_RUNNING_POLL) 568 return; 569 570 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function); 571 mod_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec)); 572 } 573 574 /* 575 * edac_mc_workq_teardown 576 * stop the workq processing on this mci 577 * 578 * locking model: 579 * 580 * called WITHOUT lock held 581 */ 582 static void edac_mc_workq_teardown(struct mem_ctl_info *mci) 583 { 584 int status; 585 586 if (mci->op_state != OP_RUNNING_POLL) 587 return; 588 589 status = cancel_delayed_work(&mci->work); 590 if (status == 0) { 591 edac_dbg(0, "not canceled, flush the queue\n"); 592 593 /* workq instance might be running, wait for it */ 594 flush_workqueue(edac_workqueue); 595 } 596 } 597 598 /* 599 * edac_mc_reset_delay_period(unsigned long value) 600 * 601 * user space has updated our poll period value, need to 602 * reset our workq delays 603 */ 604 void edac_mc_reset_delay_period(int value) 605 { 606 struct mem_ctl_info *mci; 607 struct list_head *item; 608 609 mutex_lock(&mem_ctls_mutex); 610 611 list_for_each(item, &mc_devices) { 612 mci = list_entry(item, struct mem_ctl_info, link); 613 614 edac_mc_workq_setup(mci, (unsigned long) value); 615 } 616 617 mutex_unlock(&mem_ctls_mutex); 618 } 619 620 621 622 /* Return 0 on success, 1 on failure. 623 * Before calling this function, caller must 624 * assign a unique value to mci->mc_idx. 625 * 626 * locking model: 627 * 628 * called with the mem_ctls_mutex lock held 629 */ 630 static int add_mc_to_global_list(struct mem_ctl_info *mci) 631 { 632 struct list_head *item, *insert_before; 633 struct mem_ctl_info *p; 634 635 insert_before = &mc_devices; 636 637 p = find_mci_by_dev(mci->pdev); 638 if (unlikely(p != NULL)) 639 goto fail0; 640 641 list_for_each(item, &mc_devices) { 642 p = list_entry(item, struct mem_ctl_info, link); 643 644 if (p->mc_idx >= mci->mc_idx) { 645 if (unlikely(p->mc_idx == mci->mc_idx)) 646 goto fail1; 647 648 insert_before = item; 649 break; 650 } 651 } 652 653 list_add_tail_rcu(&mci->link, insert_before); 654 atomic_inc(&edac_handlers); 655 return 0; 656 657 fail0: 658 edac_printk(KERN_WARNING, EDAC_MC, 659 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev), 660 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx); 661 return 1; 662 663 fail1: 664 edac_printk(KERN_WARNING, EDAC_MC, 665 "bug in low-level driver: attempt to assign\n" 666 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__); 667 return 1; 668 } 669 670 static int del_mc_from_global_list(struct mem_ctl_info *mci) 671 { 672 int handlers = atomic_dec_return(&edac_handlers); 673 list_del_rcu(&mci->link); 674 675 /* these are for safe removal of devices from global list while 676 * NMI handlers may be traversing list 677 */ 678 synchronize_rcu(); 679 INIT_LIST_HEAD(&mci->link); 680 681 return handlers; 682 } 683 684 /** 685 * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'. 686 * 687 * If found, return a pointer to the structure. 688 * Else return NULL. 689 * 690 * Caller must hold mem_ctls_mutex. 691 */ 692 struct mem_ctl_info *edac_mc_find(int idx) 693 { 694 struct list_head *item; 695 struct mem_ctl_info *mci; 696 697 list_for_each(item, &mc_devices) { 698 mci = list_entry(item, struct mem_ctl_info, link); 699 700 if (mci->mc_idx >= idx) { 701 if (mci->mc_idx == idx) 702 return mci; 703 704 break; 705 } 706 } 707 708 return NULL; 709 } 710 EXPORT_SYMBOL(edac_mc_find); 711 712 /** 713 * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and 714 * create sysfs entries associated with mci structure 715 * @mci: pointer to the mci structure to be added to the list 716 * 717 * Return: 718 * 0 Success 719 * !0 Failure 720 */ 721 722 /* FIXME - should a warning be printed if no error detection? correction? */ 723 int edac_mc_add_mc(struct mem_ctl_info *mci) 724 { 725 int ret = -EINVAL; 726 edac_dbg(0, "\n"); 727 728 if (mci->mc_idx >= EDAC_MAX_MCS) { 729 pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx); 730 return -ENODEV; 731 } 732 733 #ifdef CONFIG_EDAC_DEBUG 734 if (edac_debug_level >= 3) 735 edac_mc_dump_mci(mci); 736 737 if (edac_debug_level >= 4) { 738 int i; 739 740 for (i = 0; i < mci->nr_csrows; i++) { 741 struct csrow_info *csrow = mci->csrows[i]; 742 u32 nr_pages = 0; 743 int j; 744 745 for (j = 0; j < csrow->nr_channels; j++) 746 nr_pages += csrow->channels[j]->dimm->nr_pages; 747 if (!nr_pages) 748 continue; 749 edac_mc_dump_csrow(csrow); 750 for (j = 0; j < csrow->nr_channels; j++) 751 if (csrow->channels[j]->dimm->nr_pages) 752 edac_mc_dump_channel(csrow->channels[j]); 753 } 754 for (i = 0; i < mci->tot_dimms; i++) 755 if (mci->dimms[i]->nr_pages) 756 edac_mc_dump_dimm(mci->dimms[i], i); 757 } 758 #endif 759 mutex_lock(&mem_ctls_mutex); 760 761 if (edac_mc_owner && edac_mc_owner != mci->mod_name) { 762 ret = -EPERM; 763 goto fail0; 764 } 765 766 if (add_mc_to_global_list(mci)) 767 goto fail0; 768 769 /* set load time so that error rate can be tracked */ 770 mci->start_time = jiffies; 771 772 mci->bus = &mc_bus[mci->mc_idx]; 773 774 if (edac_create_sysfs_mci_device(mci)) { 775 edac_mc_printk(mci, KERN_WARNING, 776 "failed to create sysfs device\n"); 777 goto fail1; 778 } 779 780 /* If there IS a check routine, then we are running POLLED */ 781 if (mci->edac_check != NULL) { 782 /* This instance is NOW RUNNING */ 783 mci->op_state = OP_RUNNING_POLL; 784 785 edac_mc_workq_setup(mci, edac_mc_get_poll_msec()); 786 } else { 787 mci->op_state = OP_RUNNING_INTERRUPT; 788 } 789 790 /* Report action taken */ 791 edac_mc_printk(mci, KERN_INFO, 792 "Giving out device to module %s controller %s: DEV %s (%s)\n", 793 mci->mod_name, mci->ctl_name, mci->dev_name, 794 edac_op_state_to_string(mci->op_state)); 795 796 edac_mc_owner = mci->mod_name; 797 798 mutex_unlock(&mem_ctls_mutex); 799 return 0; 800 801 fail1: 802 del_mc_from_global_list(mci); 803 804 fail0: 805 mutex_unlock(&mem_ctls_mutex); 806 return ret; 807 } 808 EXPORT_SYMBOL_GPL(edac_mc_add_mc); 809 810 /** 811 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and 812 * remove mci structure from global list 813 * @pdev: Pointer to 'struct device' representing mci structure to remove. 814 * 815 * Return pointer to removed mci structure, or NULL if device not found. 816 */ 817 struct mem_ctl_info *edac_mc_del_mc(struct device *dev) 818 { 819 struct mem_ctl_info *mci; 820 821 edac_dbg(0, "\n"); 822 823 mutex_lock(&mem_ctls_mutex); 824 825 /* find the requested mci struct in the global list */ 826 mci = find_mci_by_dev(dev); 827 if (mci == NULL) { 828 mutex_unlock(&mem_ctls_mutex); 829 return NULL; 830 } 831 832 if (!del_mc_from_global_list(mci)) 833 edac_mc_owner = NULL; 834 mutex_unlock(&mem_ctls_mutex); 835 836 /* flush workq processes */ 837 edac_mc_workq_teardown(mci); 838 839 /* marking MCI offline */ 840 mci->op_state = OP_OFFLINE; 841 842 /* remove from sysfs */ 843 edac_remove_sysfs_mci_device(mci); 844 845 edac_printk(KERN_INFO, EDAC_MC, 846 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx, 847 mci->mod_name, mci->ctl_name, edac_dev_name(mci)); 848 849 return mci; 850 } 851 EXPORT_SYMBOL_GPL(edac_mc_del_mc); 852 853 static void edac_mc_scrub_block(unsigned long page, unsigned long offset, 854 u32 size) 855 { 856 struct page *pg; 857 void *virt_addr; 858 unsigned long flags = 0; 859 860 edac_dbg(3, "\n"); 861 862 /* ECC error page was not in our memory. Ignore it. */ 863 if (!pfn_valid(page)) 864 return; 865 866 /* Find the actual page structure then map it and fix */ 867 pg = pfn_to_page(page); 868 869 if (PageHighMem(pg)) 870 local_irq_save(flags); 871 872 virt_addr = kmap_atomic(pg); 873 874 /* Perform architecture specific atomic scrub operation */ 875 atomic_scrub(virt_addr + offset, size); 876 877 /* Unmap and complete */ 878 kunmap_atomic(virt_addr); 879 880 if (PageHighMem(pg)) 881 local_irq_restore(flags); 882 } 883 884 /* FIXME - should return -1 */ 885 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page) 886 { 887 struct csrow_info **csrows = mci->csrows; 888 int row, i, j, n; 889 890 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page); 891 row = -1; 892 893 for (i = 0; i < mci->nr_csrows; i++) { 894 struct csrow_info *csrow = csrows[i]; 895 n = 0; 896 for (j = 0; j < csrow->nr_channels; j++) { 897 struct dimm_info *dimm = csrow->channels[j]->dimm; 898 n += dimm->nr_pages; 899 } 900 if (n == 0) 901 continue; 902 903 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n", 904 mci->mc_idx, 905 csrow->first_page, page, csrow->last_page, 906 csrow->page_mask); 907 908 if ((page >= csrow->first_page) && 909 (page <= csrow->last_page) && 910 ((page & csrow->page_mask) == 911 (csrow->first_page & csrow->page_mask))) { 912 row = i; 913 break; 914 } 915 } 916 917 if (row == -1) 918 edac_mc_printk(mci, KERN_ERR, 919 "could not look up page error address %lx\n", 920 (unsigned long)page); 921 922 return row; 923 } 924 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page); 925 926 const char *edac_layer_name[] = { 927 [EDAC_MC_LAYER_BRANCH] = "branch", 928 [EDAC_MC_LAYER_CHANNEL] = "channel", 929 [EDAC_MC_LAYER_SLOT] = "slot", 930 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow", 931 [EDAC_MC_LAYER_ALL_MEM] = "memory", 932 }; 933 EXPORT_SYMBOL_GPL(edac_layer_name); 934 935 static void edac_inc_ce_error(struct mem_ctl_info *mci, 936 bool enable_per_layer_report, 937 const int pos[EDAC_MAX_LAYERS], 938 const u16 count) 939 { 940 int i, index = 0; 941 942 mci->ce_mc += count; 943 944 if (!enable_per_layer_report) { 945 mci->ce_noinfo_count += count; 946 return; 947 } 948 949 for (i = 0; i < mci->n_layers; i++) { 950 if (pos[i] < 0) 951 break; 952 index += pos[i]; 953 mci->ce_per_layer[i][index] += count; 954 955 if (i < mci->n_layers - 1) 956 index *= mci->layers[i + 1].size; 957 } 958 } 959 960 static void edac_inc_ue_error(struct mem_ctl_info *mci, 961 bool enable_per_layer_report, 962 const int pos[EDAC_MAX_LAYERS], 963 const u16 count) 964 { 965 int i, index = 0; 966 967 mci->ue_mc += count; 968 969 if (!enable_per_layer_report) { 970 mci->ce_noinfo_count += count; 971 return; 972 } 973 974 for (i = 0; i < mci->n_layers; i++) { 975 if (pos[i] < 0) 976 break; 977 index += pos[i]; 978 mci->ue_per_layer[i][index] += count; 979 980 if (i < mci->n_layers - 1) 981 index *= mci->layers[i + 1].size; 982 } 983 } 984 985 static void edac_ce_error(struct mem_ctl_info *mci, 986 const u16 error_count, 987 const int pos[EDAC_MAX_LAYERS], 988 const char *msg, 989 const char *location, 990 const char *label, 991 const char *detail, 992 const char *other_detail, 993 const bool enable_per_layer_report, 994 const unsigned long page_frame_number, 995 const unsigned long offset_in_page, 996 long grain) 997 { 998 unsigned long remapped_page; 999 char *msg_aux = ""; 1000 1001 if (*msg) 1002 msg_aux = " "; 1003 1004 if (edac_mc_get_log_ce()) { 1005 if (other_detail && *other_detail) 1006 edac_mc_printk(mci, KERN_WARNING, 1007 "%d CE %s%son %s (%s %s - %s)\n", 1008 error_count, msg, msg_aux, label, 1009 location, detail, other_detail); 1010 else 1011 edac_mc_printk(mci, KERN_WARNING, 1012 "%d CE %s%son %s (%s %s)\n", 1013 error_count, msg, msg_aux, label, 1014 location, detail); 1015 } 1016 edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count); 1017 1018 if (mci->scrub_mode & SCRUB_SW_SRC) { 1019 /* 1020 * Some memory controllers (called MCs below) can remap 1021 * memory so that it is still available at a different 1022 * address when PCI devices map into memory. 1023 * MC's that can't do this, lose the memory where PCI 1024 * devices are mapped. This mapping is MC-dependent 1025 * and so we call back into the MC driver for it to 1026 * map the MC page to a physical (CPU) page which can 1027 * then be mapped to a virtual page - which can then 1028 * be scrubbed. 1029 */ 1030 remapped_page = mci->ctl_page_to_phys ? 1031 mci->ctl_page_to_phys(mci, page_frame_number) : 1032 page_frame_number; 1033 1034 edac_mc_scrub_block(remapped_page, 1035 offset_in_page, grain); 1036 } 1037 } 1038 1039 static void edac_ue_error(struct mem_ctl_info *mci, 1040 const u16 error_count, 1041 const int pos[EDAC_MAX_LAYERS], 1042 const char *msg, 1043 const char *location, 1044 const char *label, 1045 const char *detail, 1046 const char *other_detail, 1047 const bool enable_per_layer_report) 1048 { 1049 char *msg_aux = ""; 1050 1051 if (*msg) 1052 msg_aux = " "; 1053 1054 if (edac_mc_get_log_ue()) { 1055 if (other_detail && *other_detail) 1056 edac_mc_printk(mci, KERN_WARNING, 1057 "%d UE %s%son %s (%s %s - %s)\n", 1058 error_count, msg, msg_aux, label, 1059 location, detail, other_detail); 1060 else 1061 edac_mc_printk(mci, KERN_WARNING, 1062 "%d UE %s%son %s (%s %s)\n", 1063 error_count, msg, msg_aux, label, 1064 location, detail); 1065 } 1066 1067 if (edac_mc_get_panic_on_ue()) { 1068 if (other_detail && *other_detail) 1069 panic("UE %s%son %s (%s%s - %s)\n", 1070 msg, msg_aux, label, location, detail, other_detail); 1071 else 1072 panic("UE %s%son %s (%s%s)\n", 1073 msg, msg_aux, label, location, detail); 1074 } 1075 1076 edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count); 1077 } 1078 1079 /** 1080 * edac_raw_mc_handle_error - reports a memory event to userspace without doing 1081 * anything to discover the error location 1082 * 1083 * @type: severity of the error (CE/UE/Fatal) 1084 * @mci: a struct mem_ctl_info pointer 1085 * @e: error description 1086 * 1087 * This raw function is used internally by edac_mc_handle_error(). It should 1088 * only be called directly when the hardware error come directly from BIOS, 1089 * like in the case of APEI GHES driver. 1090 */ 1091 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type, 1092 struct mem_ctl_info *mci, 1093 struct edac_raw_error_desc *e) 1094 { 1095 char detail[80]; 1096 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer }; 1097 1098 /* Memory type dependent details about the error */ 1099 if (type == HW_EVENT_ERR_CORRECTED) { 1100 snprintf(detail, sizeof(detail), 1101 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx", 1102 e->page_frame_number, e->offset_in_page, 1103 e->grain, e->syndrome); 1104 edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label, 1105 detail, e->other_detail, e->enable_per_layer_report, 1106 e->page_frame_number, e->offset_in_page, e->grain); 1107 } else { 1108 snprintf(detail, sizeof(detail), 1109 "page:0x%lx offset:0x%lx grain:%ld", 1110 e->page_frame_number, e->offset_in_page, e->grain); 1111 1112 edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label, 1113 detail, e->other_detail, e->enable_per_layer_report); 1114 } 1115 1116 1117 } 1118 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error); 1119 1120 /** 1121 * edac_mc_handle_error - reports a memory event to userspace 1122 * 1123 * @type: severity of the error (CE/UE/Fatal) 1124 * @mci: a struct mem_ctl_info pointer 1125 * @error_count: Number of errors of the same type 1126 * @page_frame_number: mem page where the error occurred 1127 * @offset_in_page: offset of the error inside the page 1128 * @syndrome: ECC syndrome 1129 * @top_layer: Memory layer[0] position 1130 * @mid_layer: Memory layer[1] position 1131 * @low_layer: Memory layer[2] position 1132 * @msg: Message meaningful to the end users that 1133 * explains the event 1134 * @other_detail: Technical details about the event that 1135 * may help hardware manufacturers and 1136 * EDAC developers to analyse the event 1137 */ 1138 void edac_mc_handle_error(const enum hw_event_mc_err_type type, 1139 struct mem_ctl_info *mci, 1140 const u16 error_count, 1141 const unsigned long page_frame_number, 1142 const unsigned long offset_in_page, 1143 const unsigned long syndrome, 1144 const int top_layer, 1145 const int mid_layer, 1146 const int low_layer, 1147 const char *msg, 1148 const char *other_detail) 1149 { 1150 char *p; 1151 int row = -1, chan = -1; 1152 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer }; 1153 int i, n_labels = 0; 1154 u8 grain_bits; 1155 struct edac_raw_error_desc *e = &mci->error_desc; 1156 1157 edac_dbg(3, "MC%d\n", mci->mc_idx); 1158 1159 /* Fills the error report buffer */ 1160 memset(e, 0, sizeof (*e)); 1161 e->error_count = error_count; 1162 e->top_layer = top_layer; 1163 e->mid_layer = mid_layer; 1164 e->low_layer = low_layer; 1165 e->page_frame_number = page_frame_number; 1166 e->offset_in_page = offset_in_page; 1167 e->syndrome = syndrome; 1168 e->msg = msg; 1169 e->other_detail = other_detail; 1170 1171 /* 1172 * Check if the event report is consistent and if the memory 1173 * location is known. If it is known, enable_per_layer_report will be 1174 * true, the DIMM(s) label info will be filled and the per-layer 1175 * error counters will be incremented. 1176 */ 1177 for (i = 0; i < mci->n_layers; i++) { 1178 if (pos[i] >= (int)mci->layers[i].size) { 1179 1180 edac_mc_printk(mci, KERN_ERR, 1181 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n", 1182 edac_layer_name[mci->layers[i].type], 1183 pos[i], mci->layers[i].size); 1184 /* 1185 * Instead of just returning it, let's use what's 1186 * known about the error. The increment routines and 1187 * the DIMM filter logic will do the right thing by 1188 * pointing the likely damaged DIMMs. 1189 */ 1190 pos[i] = -1; 1191 } 1192 if (pos[i] >= 0) 1193 e->enable_per_layer_report = true; 1194 } 1195 1196 /* 1197 * Get the dimm label/grain that applies to the match criteria. 1198 * As the error algorithm may not be able to point to just one memory 1199 * stick, the logic here will get all possible labels that could 1200 * pottentially be affected by the error. 1201 * On FB-DIMM memory controllers, for uncorrected errors, it is common 1202 * to have only the MC channel and the MC dimm (also called "branch") 1203 * but the channel is not known, as the memory is arranged in pairs, 1204 * where each memory belongs to a separate channel within the same 1205 * branch. 1206 */ 1207 p = e->label; 1208 *p = '\0'; 1209 1210 for (i = 0; i < mci->tot_dimms; i++) { 1211 struct dimm_info *dimm = mci->dimms[i]; 1212 1213 if (top_layer >= 0 && top_layer != dimm->location[0]) 1214 continue; 1215 if (mid_layer >= 0 && mid_layer != dimm->location[1]) 1216 continue; 1217 if (low_layer >= 0 && low_layer != dimm->location[2]) 1218 continue; 1219 1220 /* get the max grain, over the error match range */ 1221 if (dimm->grain > e->grain) 1222 e->grain = dimm->grain; 1223 1224 /* 1225 * If the error is memory-controller wide, there's no need to 1226 * seek for the affected DIMMs because the whole 1227 * channel/memory controller/... may be affected. 1228 * Also, don't show errors for empty DIMM slots. 1229 */ 1230 if (e->enable_per_layer_report && dimm->nr_pages) { 1231 if (n_labels >= EDAC_MAX_LABELS) { 1232 e->enable_per_layer_report = false; 1233 break; 1234 } 1235 n_labels++; 1236 if (p != e->label) { 1237 strcpy(p, OTHER_LABEL); 1238 p += strlen(OTHER_LABEL); 1239 } 1240 strcpy(p, dimm->label); 1241 p += strlen(p); 1242 *p = '\0'; 1243 1244 /* 1245 * get csrow/channel of the DIMM, in order to allow 1246 * incrementing the compat API counters 1247 */ 1248 edac_dbg(4, "%s csrows map: (%d,%d)\n", 1249 mci->csbased ? "rank" : "dimm", 1250 dimm->csrow, dimm->cschannel); 1251 if (row == -1) 1252 row = dimm->csrow; 1253 else if (row >= 0 && row != dimm->csrow) 1254 row = -2; 1255 1256 if (chan == -1) 1257 chan = dimm->cschannel; 1258 else if (chan >= 0 && chan != dimm->cschannel) 1259 chan = -2; 1260 } 1261 } 1262 1263 if (!e->enable_per_layer_report) { 1264 strcpy(e->label, "any memory"); 1265 } else { 1266 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan); 1267 if (p == e->label) 1268 strcpy(e->label, "unknown memory"); 1269 if (type == HW_EVENT_ERR_CORRECTED) { 1270 if (row >= 0) { 1271 mci->csrows[row]->ce_count += error_count; 1272 if (chan >= 0) 1273 mci->csrows[row]->channels[chan]->ce_count += error_count; 1274 } 1275 } else 1276 if (row >= 0) 1277 mci->csrows[row]->ue_count += error_count; 1278 } 1279 1280 /* Fill the RAM location data */ 1281 p = e->location; 1282 1283 for (i = 0; i < mci->n_layers; i++) { 1284 if (pos[i] < 0) 1285 continue; 1286 1287 p += sprintf(p, "%s:%d ", 1288 edac_layer_name[mci->layers[i].type], 1289 pos[i]); 1290 } 1291 if (p > e->location) 1292 *(p - 1) = '\0'; 1293 1294 /* Report the error via the trace interface */ 1295 grain_bits = fls_long(e->grain) + 1; 1296 trace_mc_event(type, e->msg, e->label, e->error_count, 1297 mci->mc_idx, e->top_layer, e->mid_layer, e->low_layer, 1298 PAGES_TO_MiB(e->page_frame_number) | e->offset_in_page, 1299 grain_bits, e->syndrome, e->other_detail); 1300 1301 edac_raw_mc_handle_error(type, mci, e); 1302 } 1303 EXPORT_SYMBOL_GPL(edac_mc_handle_error); 1304