1 /* 2 * edac_mc kernel module 3 * (C) 2005, 2006 Linux Networx (http://lnxi.com) 4 * This file may be distributed under the terms of the 5 * GNU General Public License. 6 * 7 * Written by Thayne Harbaugh 8 * Based on work by Dan Hollis <goemon at anime dot net> and others. 9 * http://www.anime.net/~goemon/linux-ecc/ 10 * 11 * Modified by Dave Peterson and Doug Thompson 12 * 13 */ 14 15 #include <linux/module.h> 16 #include <linux/proc_fs.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/smp.h> 20 #include <linux/init.h> 21 #include <linux/sysctl.h> 22 #include <linux/highmem.h> 23 #include <linux/timer.h> 24 #include <linux/slab.h> 25 #include <linux/jiffies.h> 26 #include <linux/spinlock.h> 27 #include <linux/list.h> 28 #include <linux/ctype.h> 29 #include <linux/edac.h> 30 #include <linux/bitops.h> 31 #include <linux/uaccess.h> 32 #include <asm/page.h> 33 #include "edac_mc.h" 34 #include "edac_module.h" 35 #include <ras/ras_event.h> 36 37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB 38 #include <asm/edac.h> 39 #else 40 #define edac_atomic_scrub(va, size) do { } while (0) 41 #endif 42 43 int edac_op_state = EDAC_OPSTATE_INVAL; 44 EXPORT_SYMBOL_GPL(edac_op_state); 45 46 /* lock to memory controller's control array */ 47 static DEFINE_MUTEX(mem_ctls_mutex); 48 static LIST_HEAD(mc_devices); 49 50 /* 51 * Used to lock EDAC MC to just one module, avoiding two drivers e. g. 52 * apei/ghes and i7core_edac to be used at the same time. 53 */ 54 static const char *edac_mc_owner; 55 56 static struct mem_ctl_info *error_desc_to_mci(struct edac_raw_error_desc *e) 57 { 58 return container_of(e, struct mem_ctl_info, error_desc); 59 } 60 61 unsigned int edac_dimm_info_location(struct dimm_info *dimm, char *buf, 62 unsigned int len) 63 { 64 struct mem_ctl_info *mci = dimm->mci; 65 int i, n, count = 0; 66 char *p = buf; 67 68 for (i = 0; i < mci->n_layers; i++) { 69 n = snprintf(p, len, "%s %d ", 70 edac_layer_name[mci->layers[i].type], 71 dimm->location[i]); 72 p += n; 73 len -= n; 74 count += n; 75 if (!len) 76 break; 77 } 78 79 return count; 80 } 81 82 #ifdef CONFIG_EDAC_DEBUG 83 84 static void edac_mc_dump_channel(struct rank_info *chan) 85 { 86 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx); 87 edac_dbg(4, " channel = %p\n", chan); 88 edac_dbg(4, " channel->csrow = %p\n", chan->csrow); 89 edac_dbg(4, " channel->dimm = %p\n", chan->dimm); 90 } 91 92 static void edac_mc_dump_dimm(struct dimm_info *dimm) 93 { 94 char location[80]; 95 96 if (!dimm->nr_pages) 97 return; 98 99 edac_dimm_info_location(dimm, location, sizeof(location)); 100 101 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n", 102 dimm->mci->csbased ? "rank" : "dimm", 103 dimm->idx, location, dimm->csrow, dimm->cschannel); 104 edac_dbg(4, " dimm = %p\n", dimm); 105 edac_dbg(4, " dimm->label = '%s'\n", dimm->label); 106 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); 107 edac_dbg(4, " dimm->grain = %d\n", dimm->grain); 108 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); 109 } 110 111 static void edac_mc_dump_csrow(struct csrow_info *csrow) 112 { 113 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx); 114 edac_dbg(4, " csrow = %p\n", csrow); 115 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page); 116 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page); 117 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask); 118 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels); 119 edac_dbg(4, " csrow->channels = %p\n", csrow->channels); 120 edac_dbg(4, " csrow->mci = %p\n", csrow->mci); 121 } 122 123 static void edac_mc_dump_mci(struct mem_ctl_info *mci) 124 { 125 edac_dbg(3, "\tmci = %p\n", mci); 126 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap); 127 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap); 128 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap); 129 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check); 130 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n", 131 mci->nr_csrows, mci->csrows); 132 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n", 133 mci->tot_dimms, mci->dimms); 134 edac_dbg(3, "\tdev = %p\n", mci->pdev); 135 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n", 136 mci->mod_name, mci->ctl_name); 137 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info); 138 } 139 140 #endif /* CONFIG_EDAC_DEBUG */ 141 142 const char * const edac_mem_types[] = { 143 [MEM_EMPTY] = "Empty", 144 [MEM_RESERVED] = "Reserved", 145 [MEM_UNKNOWN] = "Unknown", 146 [MEM_FPM] = "FPM", 147 [MEM_EDO] = "EDO", 148 [MEM_BEDO] = "BEDO", 149 [MEM_SDR] = "Unbuffered-SDR", 150 [MEM_RDR] = "Registered-SDR", 151 [MEM_DDR] = "Unbuffered-DDR", 152 [MEM_RDDR] = "Registered-DDR", 153 [MEM_RMBS] = "RMBS", 154 [MEM_DDR2] = "Unbuffered-DDR2", 155 [MEM_FB_DDR2] = "FullyBuffered-DDR2", 156 [MEM_RDDR2] = "Registered-DDR2", 157 [MEM_XDR] = "XDR", 158 [MEM_DDR3] = "Unbuffered-DDR3", 159 [MEM_RDDR3] = "Registered-DDR3", 160 [MEM_LRDDR3] = "Load-Reduced-DDR3-RAM", 161 [MEM_LPDDR3] = "Low-Power-DDR3-RAM", 162 [MEM_DDR4] = "Unbuffered-DDR4", 163 [MEM_RDDR4] = "Registered-DDR4", 164 [MEM_LPDDR4] = "Low-Power-DDR4-RAM", 165 [MEM_LRDDR4] = "Load-Reduced-DDR4-RAM", 166 [MEM_DDR5] = "Unbuffered-DDR5", 167 [MEM_NVDIMM] = "Non-volatile-RAM", 168 [MEM_WIO2] = "Wide-IO-2", 169 [MEM_HBM2] = "High-bandwidth-memory-Gen2", 170 }; 171 EXPORT_SYMBOL_GPL(edac_mem_types); 172 173 /** 174 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation 175 * @p: pointer to a pointer with the memory offset to be used. At 176 * return, this will be incremented to point to the next offset 177 * @size: Size of the data structure to be reserved 178 * @n_elems: Number of elements that should be reserved 179 * 180 * If 'size' is a constant, the compiler will optimize this whole function 181 * down to either a no-op or the addition of a constant to the value of '*p'. 182 * 183 * The 'p' pointer is absolutely needed to keep the proper advancing 184 * further in memory to the proper offsets when allocating the struct along 185 * with its embedded structs, as edac_device_alloc_ctl_info() does it 186 * above, for example. 187 * 188 * At return, the pointer 'p' will be incremented to be used on a next call 189 * to this function. 190 */ 191 void *edac_align_ptr(void **p, unsigned int size, int n_elems) 192 { 193 unsigned int align, r; 194 void *ptr = *p; 195 196 *p += size * n_elems; 197 198 /* 199 * 'p' can possibly be an unaligned item X such that sizeof(X) is 200 * 'size'. Adjust 'p' so that its alignment is at least as 201 * stringent as what the compiler would provide for X and return 202 * the aligned result. 203 * Here we assume that the alignment of a "long long" is the most 204 * stringent alignment that the compiler will ever provide by default. 205 * As far as I know, this is a reasonable assumption. 206 */ 207 if (size > sizeof(long)) 208 align = sizeof(long long); 209 else if (size > sizeof(int)) 210 align = sizeof(long); 211 else if (size > sizeof(short)) 212 align = sizeof(int); 213 else if (size > sizeof(char)) 214 align = sizeof(short); 215 else 216 return (char *)ptr; 217 218 r = (unsigned long)p % align; 219 220 if (r == 0) 221 return (char *)ptr; 222 223 *p += align - r; 224 225 return (void *)(((unsigned long)ptr) + align - r); 226 } 227 228 static void _edac_mc_free(struct mem_ctl_info *mci) 229 { 230 put_device(&mci->dev); 231 } 232 233 static void mci_release(struct device *dev) 234 { 235 struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev); 236 struct csrow_info *csr; 237 int i, chn, row; 238 239 if (mci->dimms) { 240 for (i = 0; i < mci->tot_dimms; i++) 241 kfree(mci->dimms[i]); 242 kfree(mci->dimms); 243 } 244 245 if (mci->csrows) { 246 for (row = 0; row < mci->nr_csrows; row++) { 247 csr = mci->csrows[row]; 248 if (!csr) 249 continue; 250 251 if (csr->channels) { 252 for (chn = 0; chn < mci->num_cschannel; chn++) 253 kfree(csr->channels[chn]); 254 kfree(csr->channels); 255 } 256 kfree(csr); 257 } 258 kfree(mci->csrows); 259 } 260 kfree(mci); 261 } 262 263 static int edac_mc_alloc_csrows(struct mem_ctl_info *mci) 264 { 265 unsigned int tot_channels = mci->num_cschannel; 266 unsigned int tot_csrows = mci->nr_csrows; 267 unsigned int row, chn; 268 269 /* 270 * Alocate and fill the csrow/channels structs 271 */ 272 mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL); 273 if (!mci->csrows) 274 return -ENOMEM; 275 276 for (row = 0; row < tot_csrows; row++) { 277 struct csrow_info *csr; 278 279 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL); 280 if (!csr) 281 return -ENOMEM; 282 283 mci->csrows[row] = csr; 284 csr->csrow_idx = row; 285 csr->mci = mci; 286 csr->nr_channels = tot_channels; 287 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels), 288 GFP_KERNEL); 289 if (!csr->channels) 290 return -ENOMEM; 291 292 for (chn = 0; chn < tot_channels; chn++) { 293 struct rank_info *chan; 294 295 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL); 296 if (!chan) 297 return -ENOMEM; 298 299 csr->channels[chn] = chan; 300 chan->chan_idx = chn; 301 chan->csrow = csr; 302 } 303 } 304 305 return 0; 306 } 307 308 static int edac_mc_alloc_dimms(struct mem_ctl_info *mci) 309 { 310 unsigned int pos[EDAC_MAX_LAYERS]; 311 unsigned int row, chn, idx; 312 int layer; 313 void *p; 314 315 /* 316 * Allocate and fill the dimm structs 317 */ 318 mci->dimms = kcalloc(mci->tot_dimms, sizeof(*mci->dimms), GFP_KERNEL); 319 if (!mci->dimms) 320 return -ENOMEM; 321 322 memset(&pos, 0, sizeof(pos)); 323 row = 0; 324 chn = 0; 325 for (idx = 0; idx < mci->tot_dimms; idx++) { 326 struct dimm_info *dimm; 327 struct rank_info *chan; 328 int n, len; 329 330 chan = mci->csrows[row]->channels[chn]; 331 332 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL); 333 if (!dimm) 334 return -ENOMEM; 335 mci->dimms[idx] = dimm; 336 dimm->mci = mci; 337 dimm->idx = idx; 338 339 /* 340 * Copy DIMM location and initialize it. 341 */ 342 len = sizeof(dimm->label); 343 p = dimm->label; 344 n = snprintf(p, len, "mc#%u", mci->mc_idx); 345 p += n; 346 len -= n; 347 for (layer = 0; layer < mci->n_layers; layer++) { 348 n = snprintf(p, len, "%s#%u", 349 edac_layer_name[mci->layers[layer].type], 350 pos[layer]); 351 p += n; 352 len -= n; 353 dimm->location[layer] = pos[layer]; 354 355 if (len <= 0) 356 break; 357 } 358 359 /* Link it to the csrows old API data */ 360 chan->dimm = dimm; 361 dimm->csrow = row; 362 dimm->cschannel = chn; 363 364 /* Increment csrow location */ 365 if (mci->layers[0].is_virt_csrow) { 366 chn++; 367 if (chn == mci->num_cschannel) { 368 chn = 0; 369 row++; 370 } 371 } else { 372 row++; 373 if (row == mci->nr_csrows) { 374 row = 0; 375 chn++; 376 } 377 } 378 379 /* Increment dimm location */ 380 for (layer = mci->n_layers - 1; layer >= 0; layer--) { 381 pos[layer]++; 382 if (pos[layer] < mci->layers[layer].size) 383 break; 384 pos[layer] = 0; 385 } 386 } 387 388 return 0; 389 } 390 391 struct mem_ctl_info *edac_mc_alloc(unsigned int mc_num, 392 unsigned int n_layers, 393 struct edac_mc_layer *layers, 394 unsigned int sz_pvt) 395 { 396 struct mem_ctl_info *mci; 397 struct edac_mc_layer *layer; 398 unsigned int idx, size, tot_dimms = 1; 399 unsigned int tot_csrows = 1, tot_channels = 1; 400 void *pvt, *ptr = NULL; 401 bool per_rank = false; 402 403 if (WARN_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0)) 404 return NULL; 405 406 /* 407 * Calculate the total amount of dimms and csrows/cschannels while 408 * in the old API emulation mode 409 */ 410 for (idx = 0; idx < n_layers; idx++) { 411 tot_dimms *= layers[idx].size; 412 413 if (layers[idx].is_virt_csrow) 414 tot_csrows *= layers[idx].size; 415 else 416 tot_channels *= layers[idx].size; 417 418 if (layers[idx].type == EDAC_MC_LAYER_CHIP_SELECT) 419 per_rank = true; 420 } 421 422 /* Figure out the offsets of the various items from the start of an mc 423 * structure. We want the alignment of each item to be at least as 424 * stringent as what the compiler would provide if we could simply 425 * hardcode everything into a single struct. 426 */ 427 mci = edac_align_ptr(&ptr, sizeof(*mci), 1); 428 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers); 429 pvt = edac_align_ptr(&ptr, sz_pvt, 1); 430 size = ((unsigned long)pvt) + sz_pvt; 431 432 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n", 433 size, 434 tot_dimms, 435 per_rank ? "ranks" : "dimms", 436 tot_csrows * tot_channels); 437 438 mci = kzalloc(size, GFP_KERNEL); 439 if (mci == NULL) 440 return NULL; 441 442 mci->dev.release = mci_release; 443 device_initialize(&mci->dev); 444 445 /* Adjust pointers so they point within the memory we just allocated 446 * rather than an imaginary chunk of memory located at address 0. 447 */ 448 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer)); 449 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL; 450 451 /* setup index and various internal pointers */ 452 mci->mc_idx = mc_num; 453 mci->tot_dimms = tot_dimms; 454 mci->pvt_info = pvt; 455 mci->n_layers = n_layers; 456 mci->layers = layer; 457 memcpy(mci->layers, layers, sizeof(*layer) * n_layers); 458 mci->nr_csrows = tot_csrows; 459 mci->num_cschannel = tot_channels; 460 mci->csbased = per_rank; 461 462 if (edac_mc_alloc_csrows(mci)) 463 goto error; 464 465 if (edac_mc_alloc_dimms(mci)) 466 goto error; 467 468 mci->op_state = OP_ALLOC; 469 470 return mci; 471 472 error: 473 _edac_mc_free(mci); 474 475 return NULL; 476 } 477 EXPORT_SYMBOL_GPL(edac_mc_alloc); 478 479 void edac_mc_free(struct mem_ctl_info *mci) 480 { 481 edac_dbg(1, "\n"); 482 483 _edac_mc_free(mci); 484 } 485 EXPORT_SYMBOL_GPL(edac_mc_free); 486 487 bool edac_has_mcs(void) 488 { 489 bool ret; 490 491 mutex_lock(&mem_ctls_mutex); 492 493 ret = list_empty(&mc_devices); 494 495 mutex_unlock(&mem_ctls_mutex); 496 497 return !ret; 498 } 499 EXPORT_SYMBOL_GPL(edac_has_mcs); 500 501 /* Caller must hold mem_ctls_mutex */ 502 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev) 503 { 504 struct mem_ctl_info *mci; 505 struct list_head *item; 506 507 edac_dbg(3, "\n"); 508 509 list_for_each(item, &mc_devices) { 510 mci = list_entry(item, struct mem_ctl_info, link); 511 512 if (mci->pdev == dev) 513 return mci; 514 } 515 516 return NULL; 517 } 518 519 /** 520 * find_mci_by_dev 521 * 522 * scan list of controllers looking for the one that manages 523 * the 'dev' device 524 * @dev: pointer to a struct device related with the MCI 525 */ 526 struct mem_ctl_info *find_mci_by_dev(struct device *dev) 527 { 528 struct mem_ctl_info *ret; 529 530 mutex_lock(&mem_ctls_mutex); 531 ret = __find_mci_by_dev(dev); 532 mutex_unlock(&mem_ctls_mutex); 533 534 return ret; 535 } 536 EXPORT_SYMBOL_GPL(find_mci_by_dev); 537 538 /* 539 * edac_mc_workq_function 540 * performs the operation scheduled by a workq request 541 */ 542 static void edac_mc_workq_function(struct work_struct *work_req) 543 { 544 struct delayed_work *d_work = to_delayed_work(work_req); 545 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work); 546 547 mutex_lock(&mem_ctls_mutex); 548 549 if (mci->op_state != OP_RUNNING_POLL) { 550 mutex_unlock(&mem_ctls_mutex); 551 return; 552 } 553 554 if (edac_op_state == EDAC_OPSTATE_POLL) 555 mci->edac_check(mci); 556 557 mutex_unlock(&mem_ctls_mutex); 558 559 /* Queue ourselves again. */ 560 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec())); 561 } 562 563 /* 564 * edac_mc_reset_delay_period(unsigned long value) 565 * 566 * user space has updated our poll period value, need to 567 * reset our workq delays 568 */ 569 void edac_mc_reset_delay_period(unsigned long value) 570 { 571 struct mem_ctl_info *mci; 572 struct list_head *item; 573 574 mutex_lock(&mem_ctls_mutex); 575 576 list_for_each(item, &mc_devices) { 577 mci = list_entry(item, struct mem_ctl_info, link); 578 579 if (mci->op_state == OP_RUNNING_POLL) 580 edac_mod_work(&mci->work, value); 581 } 582 mutex_unlock(&mem_ctls_mutex); 583 } 584 585 586 587 /* Return 0 on success, 1 on failure. 588 * Before calling this function, caller must 589 * assign a unique value to mci->mc_idx. 590 * 591 * locking model: 592 * 593 * called with the mem_ctls_mutex lock held 594 */ 595 static int add_mc_to_global_list(struct mem_ctl_info *mci) 596 { 597 struct list_head *item, *insert_before; 598 struct mem_ctl_info *p; 599 600 insert_before = &mc_devices; 601 602 p = __find_mci_by_dev(mci->pdev); 603 if (unlikely(p != NULL)) 604 goto fail0; 605 606 list_for_each(item, &mc_devices) { 607 p = list_entry(item, struct mem_ctl_info, link); 608 609 if (p->mc_idx >= mci->mc_idx) { 610 if (unlikely(p->mc_idx == mci->mc_idx)) 611 goto fail1; 612 613 insert_before = item; 614 break; 615 } 616 } 617 618 list_add_tail_rcu(&mci->link, insert_before); 619 return 0; 620 621 fail0: 622 edac_printk(KERN_WARNING, EDAC_MC, 623 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev), 624 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx); 625 return 1; 626 627 fail1: 628 edac_printk(KERN_WARNING, EDAC_MC, 629 "bug in low-level driver: attempt to assign\n" 630 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__); 631 return 1; 632 } 633 634 static int del_mc_from_global_list(struct mem_ctl_info *mci) 635 { 636 list_del_rcu(&mci->link); 637 638 /* these are for safe removal of devices from global list while 639 * NMI handlers may be traversing list 640 */ 641 synchronize_rcu(); 642 INIT_LIST_HEAD(&mci->link); 643 644 return list_empty(&mc_devices); 645 } 646 647 struct mem_ctl_info *edac_mc_find(int idx) 648 { 649 struct mem_ctl_info *mci; 650 struct list_head *item; 651 652 mutex_lock(&mem_ctls_mutex); 653 654 list_for_each(item, &mc_devices) { 655 mci = list_entry(item, struct mem_ctl_info, link); 656 if (mci->mc_idx == idx) 657 goto unlock; 658 } 659 660 mci = NULL; 661 unlock: 662 mutex_unlock(&mem_ctls_mutex); 663 return mci; 664 } 665 EXPORT_SYMBOL(edac_mc_find); 666 667 const char *edac_get_owner(void) 668 { 669 return edac_mc_owner; 670 } 671 EXPORT_SYMBOL_GPL(edac_get_owner); 672 673 /* FIXME - should a warning be printed if no error detection? correction? */ 674 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci, 675 const struct attribute_group **groups) 676 { 677 int ret = -EINVAL; 678 edac_dbg(0, "\n"); 679 680 #ifdef CONFIG_EDAC_DEBUG 681 if (edac_debug_level >= 3) 682 edac_mc_dump_mci(mci); 683 684 if (edac_debug_level >= 4) { 685 struct dimm_info *dimm; 686 int i; 687 688 for (i = 0; i < mci->nr_csrows; i++) { 689 struct csrow_info *csrow = mci->csrows[i]; 690 u32 nr_pages = 0; 691 int j; 692 693 for (j = 0; j < csrow->nr_channels; j++) 694 nr_pages += csrow->channels[j]->dimm->nr_pages; 695 if (!nr_pages) 696 continue; 697 edac_mc_dump_csrow(csrow); 698 for (j = 0; j < csrow->nr_channels; j++) 699 if (csrow->channels[j]->dimm->nr_pages) 700 edac_mc_dump_channel(csrow->channels[j]); 701 } 702 703 mci_for_each_dimm(mci, dimm) 704 edac_mc_dump_dimm(dimm); 705 } 706 #endif 707 mutex_lock(&mem_ctls_mutex); 708 709 if (edac_mc_owner && edac_mc_owner != mci->mod_name) { 710 ret = -EPERM; 711 goto fail0; 712 } 713 714 if (add_mc_to_global_list(mci)) 715 goto fail0; 716 717 /* set load time so that error rate can be tracked */ 718 mci->start_time = jiffies; 719 720 mci->bus = edac_get_sysfs_subsys(); 721 722 if (edac_create_sysfs_mci_device(mci, groups)) { 723 edac_mc_printk(mci, KERN_WARNING, 724 "failed to create sysfs device\n"); 725 goto fail1; 726 } 727 728 if (mci->edac_check) { 729 mci->op_state = OP_RUNNING_POLL; 730 731 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function); 732 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec())); 733 734 } else { 735 mci->op_state = OP_RUNNING_INTERRUPT; 736 } 737 738 /* Report action taken */ 739 edac_mc_printk(mci, KERN_INFO, 740 "Giving out device to module %s controller %s: DEV %s (%s)\n", 741 mci->mod_name, mci->ctl_name, mci->dev_name, 742 edac_op_state_to_string(mci->op_state)); 743 744 edac_mc_owner = mci->mod_name; 745 746 mutex_unlock(&mem_ctls_mutex); 747 return 0; 748 749 fail1: 750 del_mc_from_global_list(mci); 751 752 fail0: 753 mutex_unlock(&mem_ctls_mutex); 754 return ret; 755 } 756 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups); 757 758 struct mem_ctl_info *edac_mc_del_mc(struct device *dev) 759 { 760 struct mem_ctl_info *mci; 761 762 edac_dbg(0, "\n"); 763 764 mutex_lock(&mem_ctls_mutex); 765 766 /* find the requested mci struct in the global list */ 767 mci = __find_mci_by_dev(dev); 768 if (mci == NULL) { 769 mutex_unlock(&mem_ctls_mutex); 770 return NULL; 771 } 772 773 /* mark MCI offline: */ 774 mci->op_state = OP_OFFLINE; 775 776 if (del_mc_from_global_list(mci)) 777 edac_mc_owner = NULL; 778 779 mutex_unlock(&mem_ctls_mutex); 780 781 if (mci->edac_check) 782 edac_stop_work(&mci->work); 783 784 /* remove from sysfs */ 785 edac_remove_sysfs_mci_device(mci); 786 787 edac_printk(KERN_INFO, EDAC_MC, 788 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx, 789 mci->mod_name, mci->ctl_name, edac_dev_name(mci)); 790 791 return mci; 792 } 793 EXPORT_SYMBOL_GPL(edac_mc_del_mc); 794 795 static void edac_mc_scrub_block(unsigned long page, unsigned long offset, 796 u32 size) 797 { 798 struct page *pg; 799 void *virt_addr; 800 unsigned long flags = 0; 801 802 edac_dbg(3, "\n"); 803 804 /* ECC error page was not in our memory. Ignore it. */ 805 if (!pfn_valid(page)) 806 return; 807 808 /* Find the actual page structure then map it and fix */ 809 pg = pfn_to_page(page); 810 811 if (PageHighMem(pg)) 812 local_irq_save(flags); 813 814 virt_addr = kmap_atomic(pg); 815 816 /* Perform architecture specific atomic scrub operation */ 817 edac_atomic_scrub(virt_addr + offset, size); 818 819 /* Unmap and complete */ 820 kunmap_atomic(virt_addr); 821 822 if (PageHighMem(pg)) 823 local_irq_restore(flags); 824 } 825 826 /* FIXME - should return -1 */ 827 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page) 828 { 829 struct csrow_info **csrows = mci->csrows; 830 int row, i, j, n; 831 832 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page); 833 row = -1; 834 835 for (i = 0; i < mci->nr_csrows; i++) { 836 struct csrow_info *csrow = csrows[i]; 837 n = 0; 838 for (j = 0; j < csrow->nr_channels; j++) { 839 struct dimm_info *dimm = csrow->channels[j]->dimm; 840 n += dimm->nr_pages; 841 } 842 if (n == 0) 843 continue; 844 845 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n", 846 mci->mc_idx, 847 csrow->first_page, page, csrow->last_page, 848 csrow->page_mask); 849 850 if ((page >= csrow->first_page) && 851 (page <= csrow->last_page) && 852 ((page & csrow->page_mask) == 853 (csrow->first_page & csrow->page_mask))) { 854 row = i; 855 break; 856 } 857 } 858 859 if (row == -1) 860 edac_mc_printk(mci, KERN_ERR, 861 "could not look up page error address %lx\n", 862 (unsigned long)page); 863 864 return row; 865 } 866 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page); 867 868 const char *edac_layer_name[] = { 869 [EDAC_MC_LAYER_BRANCH] = "branch", 870 [EDAC_MC_LAYER_CHANNEL] = "channel", 871 [EDAC_MC_LAYER_SLOT] = "slot", 872 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow", 873 [EDAC_MC_LAYER_ALL_MEM] = "memory", 874 }; 875 EXPORT_SYMBOL_GPL(edac_layer_name); 876 877 static void edac_inc_ce_error(struct edac_raw_error_desc *e) 878 { 879 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer }; 880 struct mem_ctl_info *mci = error_desc_to_mci(e); 881 struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]); 882 883 mci->ce_mc += e->error_count; 884 885 if (dimm) 886 dimm->ce_count += e->error_count; 887 else 888 mci->ce_noinfo_count += e->error_count; 889 } 890 891 static void edac_inc_ue_error(struct edac_raw_error_desc *e) 892 { 893 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer }; 894 struct mem_ctl_info *mci = error_desc_to_mci(e); 895 struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]); 896 897 mci->ue_mc += e->error_count; 898 899 if (dimm) 900 dimm->ue_count += e->error_count; 901 else 902 mci->ue_noinfo_count += e->error_count; 903 } 904 905 static void edac_ce_error(struct edac_raw_error_desc *e) 906 { 907 struct mem_ctl_info *mci = error_desc_to_mci(e); 908 unsigned long remapped_page; 909 910 if (edac_mc_get_log_ce()) { 911 edac_mc_printk(mci, KERN_WARNING, 912 "%d CE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx%s%s)\n", 913 e->error_count, e->msg, 914 *e->msg ? " " : "", 915 e->label, e->location, e->page_frame_number, e->offset_in_page, 916 e->grain, e->syndrome, 917 *e->other_detail ? " - " : "", 918 e->other_detail); 919 } 920 921 edac_inc_ce_error(e); 922 923 if (mci->scrub_mode == SCRUB_SW_SRC) { 924 /* 925 * Some memory controllers (called MCs below) can remap 926 * memory so that it is still available at a different 927 * address when PCI devices map into memory. 928 * MC's that can't do this, lose the memory where PCI 929 * devices are mapped. This mapping is MC-dependent 930 * and so we call back into the MC driver for it to 931 * map the MC page to a physical (CPU) page which can 932 * then be mapped to a virtual page - which can then 933 * be scrubbed. 934 */ 935 remapped_page = mci->ctl_page_to_phys ? 936 mci->ctl_page_to_phys(mci, e->page_frame_number) : 937 e->page_frame_number; 938 939 edac_mc_scrub_block(remapped_page, e->offset_in_page, e->grain); 940 } 941 } 942 943 static void edac_ue_error(struct edac_raw_error_desc *e) 944 { 945 struct mem_ctl_info *mci = error_desc_to_mci(e); 946 947 if (edac_mc_get_log_ue()) { 948 edac_mc_printk(mci, KERN_WARNING, 949 "%d UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n", 950 e->error_count, e->msg, 951 *e->msg ? " " : "", 952 e->label, e->location, e->page_frame_number, e->offset_in_page, 953 e->grain, 954 *e->other_detail ? " - " : "", 955 e->other_detail); 956 } 957 958 edac_inc_ue_error(e); 959 960 if (edac_mc_get_panic_on_ue()) { 961 panic("UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n", 962 e->msg, 963 *e->msg ? " " : "", 964 e->label, e->location, e->page_frame_number, e->offset_in_page, 965 e->grain, 966 *e->other_detail ? " - " : "", 967 e->other_detail); 968 } 969 } 970 971 static void edac_inc_csrow(struct edac_raw_error_desc *e, int row, int chan) 972 { 973 struct mem_ctl_info *mci = error_desc_to_mci(e); 974 enum hw_event_mc_err_type type = e->type; 975 u16 count = e->error_count; 976 977 if (row < 0) 978 return; 979 980 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan); 981 982 if (type == HW_EVENT_ERR_CORRECTED) { 983 mci->csrows[row]->ce_count += count; 984 if (chan >= 0) 985 mci->csrows[row]->channels[chan]->ce_count += count; 986 } else { 987 mci->csrows[row]->ue_count += count; 988 } 989 } 990 991 void edac_raw_mc_handle_error(struct edac_raw_error_desc *e) 992 { 993 struct mem_ctl_info *mci = error_desc_to_mci(e); 994 u8 grain_bits; 995 996 /* Sanity-check driver-supplied grain value. */ 997 if (WARN_ON_ONCE(!e->grain)) 998 e->grain = 1; 999 1000 grain_bits = fls_long(e->grain - 1); 1001 1002 /* Report the error via the trace interface */ 1003 if (IS_ENABLED(CONFIG_RAS)) 1004 trace_mc_event(e->type, e->msg, e->label, e->error_count, 1005 mci->mc_idx, e->top_layer, e->mid_layer, 1006 e->low_layer, 1007 (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page, 1008 grain_bits, e->syndrome, e->other_detail); 1009 1010 if (e->type == HW_EVENT_ERR_CORRECTED) 1011 edac_ce_error(e); 1012 else 1013 edac_ue_error(e); 1014 } 1015 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error); 1016 1017 void edac_mc_handle_error(const enum hw_event_mc_err_type type, 1018 struct mem_ctl_info *mci, 1019 const u16 error_count, 1020 const unsigned long page_frame_number, 1021 const unsigned long offset_in_page, 1022 const unsigned long syndrome, 1023 const int top_layer, 1024 const int mid_layer, 1025 const int low_layer, 1026 const char *msg, 1027 const char *other_detail) 1028 { 1029 struct dimm_info *dimm; 1030 char *p; 1031 int row = -1, chan = -1; 1032 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer }; 1033 int i, n_labels = 0; 1034 struct edac_raw_error_desc *e = &mci->error_desc; 1035 bool any_memory = true; 1036 1037 edac_dbg(3, "MC%d\n", mci->mc_idx); 1038 1039 /* Fills the error report buffer */ 1040 memset(e, 0, sizeof (*e)); 1041 e->error_count = error_count; 1042 e->type = type; 1043 e->top_layer = top_layer; 1044 e->mid_layer = mid_layer; 1045 e->low_layer = low_layer; 1046 e->page_frame_number = page_frame_number; 1047 e->offset_in_page = offset_in_page; 1048 e->syndrome = syndrome; 1049 /* need valid strings here for both: */ 1050 e->msg = msg ?: ""; 1051 e->other_detail = other_detail ?: ""; 1052 1053 /* 1054 * Check if the event report is consistent and if the memory location is 1055 * known. If it is, the DIMM(s) label info will be filled and the DIMM's 1056 * error counters will be incremented. 1057 */ 1058 for (i = 0; i < mci->n_layers; i++) { 1059 if (pos[i] >= (int)mci->layers[i].size) { 1060 1061 edac_mc_printk(mci, KERN_ERR, 1062 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n", 1063 edac_layer_name[mci->layers[i].type], 1064 pos[i], mci->layers[i].size); 1065 /* 1066 * Instead of just returning it, let's use what's 1067 * known about the error. The increment routines and 1068 * the DIMM filter logic will do the right thing by 1069 * pointing the likely damaged DIMMs. 1070 */ 1071 pos[i] = -1; 1072 } 1073 if (pos[i] >= 0) 1074 any_memory = false; 1075 } 1076 1077 /* 1078 * Get the dimm label/grain that applies to the match criteria. 1079 * As the error algorithm may not be able to point to just one memory 1080 * stick, the logic here will get all possible labels that could 1081 * pottentially be affected by the error. 1082 * On FB-DIMM memory controllers, for uncorrected errors, it is common 1083 * to have only the MC channel and the MC dimm (also called "branch") 1084 * but the channel is not known, as the memory is arranged in pairs, 1085 * where each memory belongs to a separate channel within the same 1086 * branch. 1087 */ 1088 p = e->label; 1089 *p = '\0'; 1090 1091 mci_for_each_dimm(mci, dimm) { 1092 if (top_layer >= 0 && top_layer != dimm->location[0]) 1093 continue; 1094 if (mid_layer >= 0 && mid_layer != dimm->location[1]) 1095 continue; 1096 if (low_layer >= 0 && low_layer != dimm->location[2]) 1097 continue; 1098 1099 /* get the max grain, over the error match range */ 1100 if (dimm->grain > e->grain) 1101 e->grain = dimm->grain; 1102 1103 /* 1104 * If the error is memory-controller wide, there's no need to 1105 * seek for the affected DIMMs because the whole channel/memory 1106 * controller/... may be affected. Also, don't show errors for 1107 * empty DIMM slots. 1108 */ 1109 if (!dimm->nr_pages) 1110 continue; 1111 1112 n_labels++; 1113 if (n_labels > EDAC_MAX_LABELS) { 1114 p = e->label; 1115 *p = '\0'; 1116 } else { 1117 if (p != e->label) { 1118 strcpy(p, OTHER_LABEL); 1119 p += strlen(OTHER_LABEL); 1120 } 1121 strcpy(p, dimm->label); 1122 p += strlen(p); 1123 } 1124 1125 /* 1126 * get csrow/channel of the DIMM, in order to allow 1127 * incrementing the compat API counters 1128 */ 1129 edac_dbg(4, "%s csrows map: (%d,%d)\n", 1130 mci->csbased ? "rank" : "dimm", 1131 dimm->csrow, dimm->cschannel); 1132 if (row == -1) 1133 row = dimm->csrow; 1134 else if (row >= 0 && row != dimm->csrow) 1135 row = -2; 1136 1137 if (chan == -1) 1138 chan = dimm->cschannel; 1139 else if (chan >= 0 && chan != dimm->cschannel) 1140 chan = -2; 1141 } 1142 1143 if (any_memory) 1144 strcpy(e->label, "any memory"); 1145 else if (!*e->label) 1146 strcpy(e->label, "unknown memory"); 1147 1148 edac_inc_csrow(e, row, chan); 1149 1150 /* Fill the RAM location data */ 1151 p = e->location; 1152 1153 for (i = 0; i < mci->n_layers; i++) { 1154 if (pos[i] < 0) 1155 continue; 1156 1157 p += sprintf(p, "%s:%d ", 1158 edac_layer_name[mci->layers[i].type], 1159 pos[i]); 1160 } 1161 if (p > e->location) 1162 *(p - 1) = '\0'; 1163 1164 edac_raw_mc_handle_error(e); 1165 } 1166 EXPORT_SYMBOL_GPL(edac_mc_handle_error); 1167