xref: /openbmc/linux/drivers/edac/edac_mc.c (revision 09717af7)
1 /*
2  * edac_mc kernel module
3  * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Thayne Harbaugh
8  * Based on work by Dan Hollis <goemon at anime dot net> and others.
9  *	http://www.anime.net/~goemon/linux-ecc/
10  *
11  * Modified by Dave Peterson and Doug Thompson
12  *
13  */
14 
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <linux/uaccess.h>
32 #include <asm/page.h>
33 #include "edac_mc.h"
34 #include "edac_module.h"
35 #include <ras/ras_event.h>
36 
37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB
38 #include <asm/edac.h>
39 #else
40 #define edac_atomic_scrub(va, size) do { } while (0)
41 #endif
42 
43 int edac_op_state = EDAC_OPSTATE_INVAL;
44 EXPORT_SYMBOL_GPL(edac_op_state);
45 
46 /* lock to memory controller's control array */
47 static DEFINE_MUTEX(mem_ctls_mutex);
48 static LIST_HEAD(mc_devices);
49 
50 /*
51  * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
52  *	apei/ghes and i7core_edac to be used at the same time.
53  */
54 static const char *edac_mc_owner;
55 
56 static struct mem_ctl_info *error_desc_to_mci(struct edac_raw_error_desc *e)
57 {
58 	return container_of(e, struct mem_ctl_info, error_desc);
59 }
60 
61 unsigned int edac_dimm_info_location(struct dimm_info *dimm, char *buf,
62 				     unsigned int len)
63 {
64 	struct mem_ctl_info *mci = dimm->mci;
65 	int i, n, count = 0;
66 	char *p = buf;
67 
68 	for (i = 0; i < mci->n_layers; i++) {
69 		n = scnprintf(p, len, "%s %d ",
70 			      edac_layer_name[mci->layers[i].type],
71 			      dimm->location[i]);
72 		p += n;
73 		len -= n;
74 		count += n;
75 	}
76 
77 	return count;
78 }
79 
80 #ifdef CONFIG_EDAC_DEBUG
81 
82 static void edac_mc_dump_channel(struct rank_info *chan)
83 {
84 	edac_dbg(4, "  channel->chan_idx = %d\n", chan->chan_idx);
85 	edac_dbg(4, "    channel = %p\n", chan);
86 	edac_dbg(4, "    channel->csrow = %p\n", chan->csrow);
87 	edac_dbg(4, "    channel->dimm = %p\n", chan->dimm);
88 }
89 
90 static void edac_mc_dump_dimm(struct dimm_info *dimm)
91 {
92 	char location[80];
93 
94 	if (!dimm->nr_pages)
95 		return;
96 
97 	edac_dimm_info_location(dimm, location, sizeof(location));
98 
99 	edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
100 		 dimm->mci->csbased ? "rank" : "dimm",
101 		 dimm->idx, location, dimm->csrow, dimm->cschannel);
102 	edac_dbg(4, "  dimm = %p\n", dimm);
103 	edac_dbg(4, "  dimm->label = '%s'\n", dimm->label);
104 	edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
105 	edac_dbg(4, "  dimm->grain = %d\n", dimm->grain);
106 	edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
107 }
108 
109 static void edac_mc_dump_csrow(struct csrow_info *csrow)
110 {
111 	edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
112 	edac_dbg(4, "  csrow = %p\n", csrow);
113 	edac_dbg(4, "  csrow->first_page = 0x%lx\n", csrow->first_page);
114 	edac_dbg(4, "  csrow->last_page = 0x%lx\n", csrow->last_page);
115 	edac_dbg(4, "  csrow->page_mask = 0x%lx\n", csrow->page_mask);
116 	edac_dbg(4, "  csrow->nr_channels = %d\n", csrow->nr_channels);
117 	edac_dbg(4, "  csrow->channels = %p\n", csrow->channels);
118 	edac_dbg(4, "  csrow->mci = %p\n", csrow->mci);
119 }
120 
121 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
122 {
123 	edac_dbg(3, "\tmci = %p\n", mci);
124 	edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
125 	edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
126 	edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
127 	edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
128 	edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
129 		 mci->nr_csrows, mci->csrows);
130 	edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
131 		 mci->tot_dimms, mci->dimms);
132 	edac_dbg(3, "\tdev = %p\n", mci->pdev);
133 	edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
134 		 mci->mod_name, mci->ctl_name);
135 	edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
136 }
137 
138 #endif				/* CONFIG_EDAC_DEBUG */
139 
140 const char * const edac_mem_types[] = {
141 	[MEM_EMPTY]	= "Empty",
142 	[MEM_RESERVED]	= "Reserved",
143 	[MEM_UNKNOWN]	= "Unknown",
144 	[MEM_FPM]	= "FPM",
145 	[MEM_EDO]	= "EDO",
146 	[MEM_BEDO]	= "BEDO",
147 	[MEM_SDR]	= "Unbuffered-SDR",
148 	[MEM_RDR]	= "Registered-SDR",
149 	[MEM_DDR]	= "Unbuffered-DDR",
150 	[MEM_RDDR]	= "Registered-DDR",
151 	[MEM_RMBS]	= "RMBS",
152 	[MEM_DDR2]	= "Unbuffered-DDR2",
153 	[MEM_FB_DDR2]	= "FullyBuffered-DDR2",
154 	[MEM_RDDR2]	= "Registered-DDR2",
155 	[MEM_XDR]	= "XDR",
156 	[MEM_DDR3]	= "Unbuffered-DDR3",
157 	[MEM_RDDR3]	= "Registered-DDR3",
158 	[MEM_LRDDR3]	= "Load-Reduced-DDR3-RAM",
159 	[MEM_LPDDR3]	= "Low-Power-DDR3-RAM",
160 	[MEM_DDR4]	= "Unbuffered-DDR4",
161 	[MEM_RDDR4]	= "Registered-DDR4",
162 	[MEM_LPDDR4]	= "Low-Power-DDR4-RAM",
163 	[MEM_LRDDR4]	= "Load-Reduced-DDR4-RAM",
164 	[MEM_DDR5]	= "Unbuffered-DDR5",
165 	[MEM_NVDIMM]	= "Non-volatile-RAM",
166 	[MEM_WIO2]	= "Wide-IO-2",
167 	[MEM_HBM2]	= "High-bandwidth-memory-Gen2",
168 };
169 EXPORT_SYMBOL_GPL(edac_mem_types);
170 
171 /**
172  * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
173  * @p:		pointer to a pointer with the memory offset to be used. At
174  *		return, this will be incremented to point to the next offset
175  * @size:	Size of the data structure to be reserved
176  * @n_elems:	Number of elements that should be reserved
177  *
178  * If 'size' is a constant, the compiler will optimize this whole function
179  * down to either a no-op or the addition of a constant to the value of '*p'.
180  *
181  * The 'p' pointer is absolutely needed to keep the proper advancing
182  * further in memory to the proper offsets when allocating the struct along
183  * with its embedded structs, as edac_device_alloc_ctl_info() does it
184  * above, for example.
185  *
186  * At return, the pointer 'p' will be incremented to be used on a next call
187  * to this function.
188  */
189 void *edac_align_ptr(void **p, unsigned int size, int n_elems)
190 {
191 	unsigned int align, r;
192 	void *ptr = *p;
193 
194 	*p += size * n_elems;
195 
196 	/*
197 	 * 'p' can possibly be an unaligned item X such that sizeof(X) is
198 	 * 'size'.  Adjust 'p' so that its alignment is at least as
199 	 * stringent as what the compiler would provide for X and return
200 	 * the aligned result.
201 	 * Here we assume that the alignment of a "long long" is the most
202 	 * stringent alignment that the compiler will ever provide by default.
203 	 * As far as I know, this is a reasonable assumption.
204 	 */
205 	if (size > sizeof(long))
206 		align = sizeof(long long);
207 	else if (size > sizeof(int))
208 		align = sizeof(long);
209 	else if (size > sizeof(short))
210 		align = sizeof(int);
211 	else if (size > sizeof(char))
212 		align = sizeof(short);
213 	else
214 		return (char *)ptr;
215 
216 	r = (unsigned long)p % align;
217 
218 	if (r == 0)
219 		return (char *)ptr;
220 
221 	*p += align - r;
222 
223 	return (void *)(((unsigned long)ptr) + align - r);
224 }
225 
226 static void _edac_mc_free(struct mem_ctl_info *mci)
227 {
228 	put_device(&mci->dev);
229 }
230 
231 static void mci_release(struct device *dev)
232 {
233 	struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
234 	struct csrow_info *csr;
235 	int i, chn, row;
236 
237 	if (mci->dimms) {
238 		for (i = 0; i < mci->tot_dimms; i++)
239 			kfree(mci->dimms[i]);
240 		kfree(mci->dimms);
241 	}
242 
243 	if (mci->csrows) {
244 		for (row = 0; row < mci->nr_csrows; row++) {
245 			csr = mci->csrows[row];
246 			if (!csr)
247 				continue;
248 
249 			if (csr->channels) {
250 				for (chn = 0; chn < mci->num_cschannel; chn++)
251 					kfree(csr->channels[chn]);
252 				kfree(csr->channels);
253 			}
254 			kfree(csr);
255 		}
256 		kfree(mci->csrows);
257 	}
258 	kfree(mci);
259 }
260 
261 static int edac_mc_alloc_csrows(struct mem_ctl_info *mci)
262 {
263 	unsigned int tot_channels = mci->num_cschannel;
264 	unsigned int tot_csrows = mci->nr_csrows;
265 	unsigned int row, chn;
266 
267 	/*
268 	 * Alocate and fill the csrow/channels structs
269 	 */
270 	mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
271 	if (!mci->csrows)
272 		return -ENOMEM;
273 
274 	for (row = 0; row < tot_csrows; row++) {
275 		struct csrow_info *csr;
276 
277 		csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
278 		if (!csr)
279 			return -ENOMEM;
280 
281 		mci->csrows[row] = csr;
282 		csr->csrow_idx = row;
283 		csr->mci = mci;
284 		csr->nr_channels = tot_channels;
285 		csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
286 					GFP_KERNEL);
287 		if (!csr->channels)
288 			return -ENOMEM;
289 
290 		for (chn = 0; chn < tot_channels; chn++) {
291 			struct rank_info *chan;
292 
293 			chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
294 			if (!chan)
295 				return -ENOMEM;
296 
297 			csr->channels[chn] = chan;
298 			chan->chan_idx = chn;
299 			chan->csrow = csr;
300 		}
301 	}
302 
303 	return 0;
304 }
305 
306 static int edac_mc_alloc_dimms(struct mem_ctl_info *mci)
307 {
308 	unsigned int pos[EDAC_MAX_LAYERS];
309 	unsigned int row, chn, idx;
310 	int layer;
311 	void *p;
312 
313 	/*
314 	 * Allocate and fill the dimm structs
315 	 */
316 	mci->dimms  = kcalloc(mci->tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
317 	if (!mci->dimms)
318 		return -ENOMEM;
319 
320 	memset(&pos, 0, sizeof(pos));
321 	row = 0;
322 	chn = 0;
323 	for (idx = 0; idx < mci->tot_dimms; idx++) {
324 		struct dimm_info *dimm;
325 		struct rank_info *chan;
326 		int n, len;
327 
328 		chan = mci->csrows[row]->channels[chn];
329 
330 		dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
331 		if (!dimm)
332 			return -ENOMEM;
333 		mci->dimms[idx] = dimm;
334 		dimm->mci = mci;
335 		dimm->idx = idx;
336 
337 		/*
338 		 * Copy DIMM location and initialize it.
339 		 */
340 		len = sizeof(dimm->label);
341 		p = dimm->label;
342 		n = scnprintf(p, len, "mc#%u", mci->mc_idx);
343 		p += n;
344 		len -= n;
345 		for (layer = 0; layer < mci->n_layers; layer++) {
346 			n = scnprintf(p, len, "%s#%u",
347 				      edac_layer_name[mci->layers[layer].type],
348 				      pos[layer]);
349 			p += n;
350 			len -= n;
351 			dimm->location[layer] = pos[layer];
352 		}
353 
354 		/* Link it to the csrows old API data */
355 		chan->dimm = dimm;
356 		dimm->csrow = row;
357 		dimm->cschannel = chn;
358 
359 		/* Increment csrow location */
360 		if (mci->layers[0].is_virt_csrow) {
361 			chn++;
362 			if (chn == mci->num_cschannel) {
363 				chn = 0;
364 				row++;
365 			}
366 		} else {
367 			row++;
368 			if (row == mci->nr_csrows) {
369 				row = 0;
370 				chn++;
371 			}
372 		}
373 
374 		/* Increment dimm location */
375 		for (layer = mci->n_layers - 1; layer >= 0; layer--) {
376 			pos[layer]++;
377 			if (pos[layer] < mci->layers[layer].size)
378 				break;
379 			pos[layer] = 0;
380 		}
381 	}
382 
383 	return 0;
384 }
385 
386 struct mem_ctl_info *edac_mc_alloc(unsigned int mc_num,
387 				   unsigned int n_layers,
388 				   struct edac_mc_layer *layers,
389 				   unsigned int sz_pvt)
390 {
391 	struct mem_ctl_info *mci;
392 	struct edac_mc_layer *layer;
393 	unsigned int idx, size, tot_dimms = 1;
394 	unsigned int tot_csrows = 1, tot_channels = 1;
395 	void *pvt, *ptr = NULL;
396 	bool per_rank = false;
397 
398 	if (WARN_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0))
399 		return NULL;
400 
401 	/*
402 	 * Calculate the total amount of dimms and csrows/cschannels while
403 	 * in the old API emulation mode
404 	 */
405 	for (idx = 0; idx < n_layers; idx++) {
406 		tot_dimms *= layers[idx].size;
407 
408 		if (layers[idx].is_virt_csrow)
409 			tot_csrows *= layers[idx].size;
410 		else
411 			tot_channels *= layers[idx].size;
412 
413 		if (layers[idx].type == EDAC_MC_LAYER_CHIP_SELECT)
414 			per_rank = true;
415 	}
416 
417 	/* Figure out the offsets of the various items from the start of an mc
418 	 * structure.  We want the alignment of each item to be at least as
419 	 * stringent as what the compiler would provide if we could simply
420 	 * hardcode everything into a single struct.
421 	 */
422 	mci	= edac_align_ptr(&ptr, sizeof(*mci), 1);
423 	layer	= edac_align_ptr(&ptr, sizeof(*layer), n_layers);
424 	pvt	= edac_align_ptr(&ptr, sz_pvt, 1);
425 	size	= ((unsigned long)pvt) + sz_pvt;
426 
427 	edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
428 		 size,
429 		 tot_dimms,
430 		 per_rank ? "ranks" : "dimms",
431 		 tot_csrows * tot_channels);
432 
433 	mci = kzalloc(size, GFP_KERNEL);
434 	if (mci == NULL)
435 		return NULL;
436 
437 	mci->dev.release = mci_release;
438 	device_initialize(&mci->dev);
439 
440 	/* Adjust pointers so they point within the memory we just allocated
441 	 * rather than an imaginary chunk of memory located at address 0.
442 	 */
443 	layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
444 	pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
445 
446 	/* setup index and various internal pointers */
447 	mci->mc_idx = mc_num;
448 	mci->tot_dimms = tot_dimms;
449 	mci->pvt_info = pvt;
450 	mci->n_layers = n_layers;
451 	mci->layers = layer;
452 	memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
453 	mci->nr_csrows = tot_csrows;
454 	mci->num_cschannel = tot_channels;
455 	mci->csbased = per_rank;
456 
457 	if (edac_mc_alloc_csrows(mci))
458 		goto error;
459 
460 	if (edac_mc_alloc_dimms(mci))
461 		goto error;
462 
463 	mci->op_state = OP_ALLOC;
464 
465 	return mci;
466 
467 error:
468 	_edac_mc_free(mci);
469 
470 	return NULL;
471 }
472 EXPORT_SYMBOL_GPL(edac_mc_alloc);
473 
474 void edac_mc_free(struct mem_ctl_info *mci)
475 {
476 	edac_dbg(1, "\n");
477 
478 	_edac_mc_free(mci);
479 }
480 EXPORT_SYMBOL_GPL(edac_mc_free);
481 
482 bool edac_has_mcs(void)
483 {
484 	bool ret;
485 
486 	mutex_lock(&mem_ctls_mutex);
487 
488 	ret = list_empty(&mc_devices);
489 
490 	mutex_unlock(&mem_ctls_mutex);
491 
492 	return !ret;
493 }
494 EXPORT_SYMBOL_GPL(edac_has_mcs);
495 
496 /* Caller must hold mem_ctls_mutex */
497 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
498 {
499 	struct mem_ctl_info *mci;
500 	struct list_head *item;
501 
502 	edac_dbg(3, "\n");
503 
504 	list_for_each(item, &mc_devices) {
505 		mci = list_entry(item, struct mem_ctl_info, link);
506 
507 		if (mci->pdev == dev)
508 			return mci;
509 	}
510 
511 	return NULL;
512 }
513 
514 /**
515  * find_mci_by_dev
516  *
517  *	scan list of controllers looking for the one that manages
518  *	the 'dev' device
519  * @dev: pointer to a struct device related with the MCI
520  */
521 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
522 {
523 	struct mem_ctl_info *ret;
524 
525 	mutex_lock(&mem_ctls_mutex);
526 	ret = __find_mci_by_dev(dev);
527 	mutex_unlock(&mem_ctls_mutex);
528 
529 	return ret;
530 }
531 EXPORT_SYMBOL_GPL(find_mci_by_dev);
532 
533 /*
534  * edac_mc_workq_function
535  *	performs the operation scheduled by a workq request
536  */
537 static void edac_mc_workq_function(struct work_struct *work_req)
538 {
539 	struct delayed_work *d_work = to_delayed_work(work_req);
540 	struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
541 
542 	mutex_lock(&mem_ctls_mutex);
543 
544 	if (mci->op_state != OP_RUNNING_POLL) {
545 		mutex_unlock(&mem_ctls_mutex);
546 		return;
547 	}
548 
549 	if (edac_op_state == EDAC_OPSTATE_POLL)
550 		mci->edac_check(mci);
551 
552 	mutex_unlock(&mem_ctls_mutex);
553 
554 	/* Queue ourselves again. */
555 	edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
556 }
557 
558 /*
559  * edac_mc_reset_delay_period(unsigned long value)
560  *
561  *	user space has updated our poll period value, need to
562  *	reset our workq delays
563  */
564 void edac_mc_reset_delay_period(unsigned long value)
565 {
566 	struct mem_ctl_info *mci;
567 	struct list_head *item;
568 
569 	mutex_lock(&mem_ctls_mutex);
570 
571 	list_for_each(item, &mc_devices) {
572 		mci = list_entry(item, struct mem_ctl_info, link);
573 
574 		if (mci->op_state == OP_RUNNING_POLL)
575 			edac_mod_work(&mci->work, value);
576 	}
577 	mutex_unlock(&mem_ctls_mutex);
578 }
579 
580 
581 
582 /* Return 0 on success, 1 on failure.
583  * Before calling this function, caller must
584  * assign a unique value to mci->mc_idx.
585  *
586  *	locking model:
587  *
588  *		called with the mem_ctls_mutex lock held
589  */
590 static int add_mc_to_global_list(struct mem_ctl_info *mci)
591 {
592 	struct list_head *item, *insert_before;
593 	struct mem_ctl_info *p;
594 
595 	insert_before = &mc_devices;
596 
597 	p = __find_mci_by_dev(mci->pdev);
598 	if (unlikely(p != NULL))
599 		goto fail0;
600 
601 	list_for_each(item, &mc_devices) {
602 		p = list_entry(item, struct mem_ctl_info, link);
603 
604 		if (p->mc_idx >= mci->mc_idx) {
605 			if (unlikely(p->mc_idx == mci->mc_idx))
606 				goto fail1;
607 
608 			insert_before = item;
609 			break;
610 		}
611 	}
612 
613 	list_add_tail_rcu(&mci->link, insert_before);
614 	return 0;
615 
616 fail0:
617 	edac_printk(KERN_WARNING, EDAC_MC,
618 		"%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
619 		edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
620 	return 1;
621 
622 fail1:
623 	edac_printk(KERN_WARNING, EDAC_MC,
624 		"bug in low-level driver: attempt to assign\n"
625 		"    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
626 	return 1;
627 }
628 
629 static int del_mc_from_global_list(struct mem_ctl_info *mci)
630 {
631 	list_del_rcu(&mci->link);
632 
633 	/* these are for safe removal of devices from global list while
634 	 * NMI handlers may be traversing list
635 	 */
636 	synchronize_rcu();
637 	INIT_LIST_HEAD(&mci->link);
638 
639 	return list_empty(&mc_devices);
640 }
641 
642 struct mem_ctl_info *edac_mc_find(int idx)
643 {
644 	struct mem_ctl_info *mci;
645 	struct list_head *item;
646 
647 	mutex_lock(&mem_ctls_mutex);
648 
649 	list_for_each(item, &mc_devices) {
650 		mci = list_entry(item, struct mem_ctl_info, link);
651 		if (mci->mc_idx == idx)
652 			goto unlock;
653 	}
654 
655 	mci = NULL;
656 unlock:
657 	mutex_unlock(&mem_ctls_mutex);
658 	return mci;
659 }
660 EXPORT_SYMBOL(edac_mc_find);
661 
662 const char *edac_get_owner(void)
663 {
664 	return edac_mc_owner;
665 }
666 EXPORT_SYMBOL_GPL(edac_get_owner);
667 
668 /* FIXME - should a warning be printed if no error detection? correction? */
669 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
670 			       const struct attribute_group **groups)
671 {
672 	int ret = -EINVAL;
673 	edac_dbg(0, "\n");
674 
675 #ifdef CONFIG_EDAC_DEBUG
676 	if (edac_debug_level >= 3)
677 		edac_mc_dump_mci(mci);
678 
679 	if (edac_debug_level >= 4) {
680 		struct dimm_info *dimm;
681 		int i;
682 
683 		for (i = 0; i < mci->nr_csrows; i++) {
684 			struct csrow_info *csrow = mci->csrows[i];
685 			u32 nr_pages = 0;
686 			int j;
687 
688 			for (j = 0; j < csrow->nr_channels; j++)
689 				nr_pages += csrow->channels[j]->dimm->nr_pages;
690 			if (!nr_pages)
691 				continue;
692 			edac_mc_dump_csrow(csrow);
693 			for (j = 0; j < csrow->nr_channels; j++)
694 				if (csrow->channels[j]->dimm->nr_pages)
695 					edac_mc_dump_channel(csrow->channels[j]);
696 		}
697 
698 		mci_for_each_dimm(mci, dimm)
699 			edac_mc_dump_dimm(dimm);
700 	}
701 #endif
702 	mutex_lock(&mem_ctls_mutex);
703 
704 	if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
705 		ret = -EPERM;
706 		goto fail0;
707 	}
708 
709 	if (add_mc_to_global_list(mci))
710 		goto fail0;
711 
712 	/* set load time so that error rate can be tracked */
713 	mci->start_time = jiffies;
714 
715 	mci->bus = edac_get_sysfs_subsys();
716 
717 	if (edac_create_sysfs_mci_device(mci, groups)) {
718 		edac_mc_printk(mci, KERN_WARNING,
719 			"failed to create sysfs device\n");
720 		goto fail1;
721 	}
722 
723 	if (mci->edac_check) {
724 		mci->op_state = OP_RUNNING_POLL;
725 
726 		INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
727 		edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
728 
729 	} else {
730 		mci->op_state = OP_RUNNING_INTERRUPT;
731 	}
732 
733 	/* Report action taken */
734 	edac_mc_printk(mci, KERN_INFO,
735 		"Giving out device to module %s controller %s: DEV %s (%s)\n",
736 		mci->mod_name, mci->ctl_name, mci->dev_name,
737 		edac_op_state_to_string(mci->op_state));
738 
739 	edac_mc_owner = mci->mod_name;
740 
741 	mutex_unlock(&mem_ctls_mutex);
742 	return 0;
743 
744 fail1:
745 	del_mc_from_global_list(mci);
746 
747 fail0:
748 	mutex_unlock(&mem_ctls_mutex);
749 	return ret;
750 }
751 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
752 
753 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
754 {
755 	struct mem_ctl_info *mci;
756 
757 	edac_dbg(0, "\n");
758 
759 	mutex_lock(&mem_ctls_mutex);
760 
761 	/* find the requested mci struct in the global list */
762 	mci = __find_mci_by_dev(dev);
763 	if (mci == NULL) {
764 		mutex_unlock(&mem_ctls_mutex);
765 		return NULL;
766 	}
767 
768 	/* mark MCI offline: */
769 	mci->op_state = OP_OFFLINE;
770 
771 	if (del_mc_from_global_list(mci))
772 		edac_mc_owner = NULL;
773 
774 	mutex_unlock(&mem_ctls_mutex);
775 
776 	if (mci->edac_check)
777 		edac_stop_work(&mci->work);
778 
779 	/* remove from sysfs */
780 	edac_remove_sysfs_mci_device(mci);
781 
782 	edac_printk(KERN_INFO, EDAC_MC,
783 		"Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
784 		mci->mod_name, mci->ctl_name, edac_dev_name(mci));
785 
786 	return mci;
787 }
788 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
789 
790 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
791 				u32 size)
792 {
793 	struct page *pg;
794 	void *virt_addr;
795 	unsigned long flags = 0;
796 
797 	edac_dbg(3, "\n");
798 
799 	/* ECC error page was not in our memory. Ignore it. */
800 	if (!pfn_valid(page))
801 		return;
802 
803 	/* Find the actual page structure then map it and fix */
804 	pg = pfn_to_page(page);
805 
806 	if (PageHighMem(pg))
807 		local_irq_save(flags);
808 
809 	virt_addr = kmap_atomic(pg);
810 
811 	/* Perform architecture specific atomic scrub operation */
812 	edac_atomic_scrub(virt_addr + offset, size);
813 
814 	/* Unmap and complete */
815 	kunmap_atomic(virt_addr);
816 
817 	if (PageHighMem(pg))
818 		local_irq_restore(flags);
819 }
820 
821 /* FIXME - should return -1 */
822 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
823 {
824 	struct csrow_info **csrows = mci->csrows;
825 	int row, i, j, n;
826 
827 	edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
828 	row = -1;
829 
830 	for (i = 0; i < mci->nr_csrows; i++) {
831 		struct csrow_info *csrow = csrows[i];
832 		n = 0;
833 		for (j = 0; j < csrow->nr_channels; j++) {
834 			struct dimm_info *dimm = csrow->channels[j]->dimm;
835 			n += dimm->nr_pages;
836 		}
837 		if (n == 0)
838 			continue;
839 
840 		edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
841 			 mci->mc_idx,
842 			 csrow->first_page, page, csrow->last_page,
843 			 csrow->page_mask);
844 
845 		if ((page >= csrow->first_page) &&
846 		    (page <= csrow->last_page) &&
847 		    ((page & csrow->page_mask) ==
848 		     (csrow->first_page & csrow->page_mask))) {
849 			row = i;
850 			break;
851 		}
852 	}
853 
854 	if (row == -1)
855 		edac_mc_printk(mci, KERN_ERR,
856 			"could not look up page error address %lx\n",
857 			(unsigned long)page);
858 
859 	return row;
860 }
861 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
862 
863 const char *edac_layer_name[] = {
864 	[EDAC_MC_LAYER_BRANCH] = "branch",
865 	[EDAC_MC_LAYER_CHANNEL] = "channel",
866 	[EDAC_MC_LAYER_SLOT] = "slot",
867 	[EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
868 	[EDAC_MC_LAYER_ALL_MEM] = "memory",
869 };
870 EXPORT_SYMBOL_GPL(edac_layer_name);
871 
872 static void edac_inc_ce_error(struct edac_raw_error_desc *e)
873 {
874 	int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
875 	struct mem_ctl_info *mci = error_desc_to_mci(e);
876 	struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]);
877 
878 	mci->ce_mc += e->error_count;
879 
880 	if (dimm)
881 		dimm->ce_count += e->error_count;
882 	else
883 		mci->ce_noinfo_count += e->error_count;
884 }
885 
886 static void edac_inc_ue_error(struct edac_raw_error_desc *e)
887 {
888 	int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
889 	struct mem_ctl_info *mci = error_desc_to_mci(e);
890 	struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]);
891 
892 	mci->ue_mc += e->error_count;
893 
894 	if (dimm)
895 		dimm->ue_count += e->error_count;
896 	else
897 		mci->ue_noinfo_count += e->error_count;
898 }
899 
900 static void edac_ce_error(struct edac_raw_error_desc *e)
901 {
902 	struct mem_ctl_info *mci = error_desc_to_mci(e);
903 	unsigned long remapped_page;
904 
905 	if (edac_mc_get_log_ce()) {
906 		edac_mc_printk(mci, KERN_WARNING,
907 			"%d CE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx%s%s)\n",
908 			e->error_count, e->msg,
909 			*e->msg ? " " : "",
910 			e->label, e->location, e->page_frame_number, e->offset_in_page,
911 			e->grain, e->syndrome,
912 			*e->other_detail ? " - " : "",
913 			e->other_detail);
914 	}
915 
916 	edac_inc_ce_error(e);
917 
918 	if (mci->scrub_mode == SCRUB_SW_SRC) {
919 		/*
920 			* Some memory controllers (called MCs below) can remap
921 			* memory so that it is still available at a different
922 			* address when PCI devices map into memory.
923 			* MC's that can't do this, lose the memory where PCI
924 			* devices are mapped. This mapping is MC-dependent
925 			* and so we call back into the MC driver for it to
926 			* map the MC page to a physical (CPU) page which can
927 			* then be mapped to a virtual page - which can then
928 			* be scrubbed.
929 			*/
930 		remapped_page = mci->ctl_page_to_phys ?
931 			mci->ctl_page_to_phys(mci, e->page_frame_number) :
932 			e->page_frame_number;
933 
934 		edac_mc_scrub_block(remapped_page, e->offset_in_page, e->grain);
935 	}
936 }
937 
938 static void edac_ue_error(struct edac_raw_error_desc *e)
939 {
940 	struct mem_ctl_info *mci = error_desc_to_mci(e);
941 
942 	if (edac_mc_get_log_ue()) {
943 		edac_mc_printk(mci, KERN_WARNING,
944 			"%d UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n",
945 			e->error_count, e->msg,
946 			*e->msg ? " " : "",
947 			e->label, e->location, e->page_frame_number, e->offset_in_page,
948 			e->grain,
949 			*e->other_detail ? " - " : "",
950 			e->other_detail);
951 	}
952 
953 	edac_inc_ue_error(e);
954 
955 	if (edac_mc_get_panic_on_ue()) {
956 		panic("UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n",
957 			e->msg,
958 			*e->msg ? " " : "",
959 			e->label, e->location, e->page_frame_number, e->offset_in_page,
960 			e->grain,
961 			*e->other_detail ? " - " : "",
962 			e->other_detail);
963 	}
964 }
965 
966 static void edac_inc_csrow(struct edac_raw_error_desc *e, int row, int chan)
967 {
968 	struct mem_ctl_info *mci = error_desc_to_mci(e);
969 	enum hw_event_mc_err_type type = e->type;
970 	u16 count = e->error_count;
971 
972 	if (row < 0)
973 		return;
974 
975 	edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
976 
977 	if (type == HW_EVENT_ERR_CORRECTED) {
978 		mci->csrows[row]->ce_count += count;
979 		if (chan >= 0)
980 			mci->csrows[row]->channels[chan]->ce_count += count;
981 	} else {
982 		mci->csrows[row]->ue_count += count;
983 	}
984 }
985 
986 void edac_raw_mc_handle_error(struct edac_raw_error_desc *e)
987 {
988 	struct mem_ctl_info *mci = error_desc_to_mci(e);
989 	u8 grain_bits;
990 
991 	/* Sanity-check driver-supplied grain value. */
992 	if (WARN_ON_ONCE(!e->grain))
993 		e->grain = 1;
994 
995 	grain_bits = fls_long(e->grain - 1);
996 
997 	/* Report the error via the trace interface */
998 	if (IS_ENABLED(CONFIG_RAS))
999 		trace_mc_event(e->type, e->msg, e->label, e->error_count,
1000 			       mci->mc_idx, e->top_layer, e->mid_layer,
1001 			       e->low_layer,
1002 			       (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
1003 			       grain_bits, e->syndrome, e->other_detail);
1004 
1005 	if (e->type == HW_EVENT_ERR_CORRECTED)
1006 		edac_ce_error(e);
1007 	else
1008 		edac_ue_error(e);
1009 }
1010 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1011 
1012 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1013 			  struct mem_ctl_info *mci,
1014 			  const u16 error_count,
1015 			  const unsigned long page_frame_number,
1016 			  const unsigned long offset_in_page,
1017 			  const unsigned long syndrome,
1018 			  const int top_layer,
1019 			  const int mid_layer,
1020 			  const int low_layer,
1021 			  const char *msg,
1022 			  const char *other_detail)
1023 {
1024 	struct dimm_info *dimm;
1025 	char *p, *end;
1026 	int row = -1, chan = -1;
1027 	int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1028 	int i, n_labels = 0;
1029 	struct edac_raw_error_desc *e = &mci->error_desc;
1030 	bool any_memory = true;
1031 	const char *prefix;
1032 
1033 	edac_dbg(3, "MC%d\n", mci->mc_idx);
1034 
1035 	/* Fills the error report buffer */
1036 	memset(e, 0, sizeof (*e));
1037 	e->error_count = error_count;
1038 	e->type = type;
1039 	e->top_layer = top_layer;
1040 	e->mid_layer = mid_layer;
1041 	e->low_layer = low_layer;
1042 	e->page_frame_number = page_frame_number;
1043 	e->offset_in_page = offset_in_page;
1044 	e->syndrome = syndrome;
1045 	/* need valid strings here for both: */
1046 	e->msg = msg ?: "";
1047 	e->other_detail = other_detail ?: "";
1048 
1049 	/*
1050 	 * Check if the event report is consistent and if the memory location is
1051 	 * known. If it is, the DIMM(s) label info will be filled and the DIMM's
1052 	 * error counters will be incremented.
1053 	 */
1054 	for (i = 0; i < mci->n_layers; i++) {
1055 		if (pos[i] >= (int)mci->layers[i].size) {
1056 
1057 			edac_mc_printk(mci, KERN_ERR,
1058 				       "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1059 				       edac_layer_name[mci->layers[i].type],
1060 				       pos[i], mci->layers[i].size);
1061 			/*
1062 			 * Instead of just returning it, let's use what's
1063 			 * known about the error. The increment routines and
1064 			 * the DIMM filter logic will do the right thing by
1065 			 * pointing the likely damaged DIMMs.
1066 			 */
1067 			pos[i] = -1;
1068 		}
1069 		if (pos[i] >= 0)
1070 			any_memory = false;
1071 	}
1072 
1073 	/*
1074 	 * Get the dimm label/grain that applies to the match criteria.
1075 	 * As the error algorithm may not be able to point to just one memory
1076 	 * stick, the logic here will get all possible labels that could
1077 	 * pottentially be affected by the error.
1078 	 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1079 	 * to have only the MC channel and the MC dimm (also called "branch")
1080 	 * but the channel is not known, as the memory is arranged in pairs,
1081 	 * where each memory belongs to a separate channel within the same
1082 	 * branch.
1083 	 */
1084 	p = e->label;
1085 	*p = '\0';
1086 	end = p + sizeof(e->label);
1087 	prefix = "";
1088 
1089 	mci_for_each_dimm(mci, dimm) {
1090 		if (top_layer >= 0 && top_layer != dimm->location[0])
1091 			continue;
1092 		if (mid_layer >= 0 && mid_layer != dimm->location[1])
1093 			continue;
1094 		if (low_layer >= 0 && low_layer != dimm->location[2])
1095 			continue;
1096 
1097 		/* get the max grain, over the error match range */
1098 		if (dimm->grain > e->grain)
1099 			e->grain = dimm->grain;
1100 
1101 		/*
1102 		 * If the error is memory-controller wide, there's no need to
1103 		 * seek for the affected DIMMs because the whole channel/memory
1104 		 * controller/... may be affected. Also, don't show errors for
1105 		 * empty DIMM slots.
1106 		 */
1107 		if (!dimm->nr_pages)
1108 			continue;
1109 
1110 		n_labels++;
1111 		if (n_labels > EDAC_MAX_LABELS) {
1112 			p = e->label;
1113 			*p = '\0';
1114 		} else {
1115 			p += scnprintf(p, end - p, "%s%s", prefix, dimm->label);
1116 			prefix = OTHER_LABEL;
1117 		}
1118 
1119 		/*
1120 		 * get csrow/channel of the DIMM, in order to allow
1121 		 * incrementing the compat API counters
1122 		 */
1123 		edac_dbg(4, "%s csrows map: (%d,%d)\n",
1124 			mci->csbased ? "rank" : "dimm",
1125 			dimm->csrow, dimm->cschannel);
1126 		if (row == -1)
1127 			row = dimm->csrow;
1128 		else if (row >= 0 && row != dimm->csrow)
1129 			row = -2;
1130 
1131 		if (chan == -1)
1132 			chan = dimm->cschannel;
1133 		else if (chan >= 0 && chan != dimm->cschannel)
1134 			chan = -2;
1135 	}
1136 
1137 	if (any_memory)
1138 		strscpy(e->label, "any memory", sizeof(e->label));
1139 	else if (!*e->label)
1140 		strscpy(e->label, "unknown memory", sizeof(e->label));
1141 
1142 	edac_inc_csrow(e, row, chan);
1143 
1144 	/* Fill the RAM location data */
1145 	p = e->location;
1146 	end = p + sizeof(e->location);
1147 	prefix = "";
1148 
1149 	for (i = 0; i < mci->n_layers; i++) {
1150 		if (pos[i] < 0)
1151 			continue;
1152 
1153 		p += scnprintf(p, end - p, "%s%s:%d", prefix,
1154 			       edac_layer_name[mci->layers[i].type], pos[i]);
1155 		prefix = " ";
1156 	}
1157 
1158 	edac_raw_mc_handle_error(e);
1159 }
1160 EXPORT_SYMBOL_GPL(edac_mc_handle_error);
1161