xref: /openbmc/linux/drivers/edac/edac_device.c (revision c21b37f6)
1 
2 /*
3  * edac_device.c
4  * (C) 2007 www.douglaskthompson.com
5  *
6  * This file may be distributed under the terms of the
7  * GNU General Public License.
8  *
9  * Written by Doug Thompson <norsk5@xmission.com>
10  *
11  * edac_device API implementation
12  * 19 Jan 2007
13  */
14 
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/smp.h>
18 #include <linux/init.h>
19 #include <linux/sysctl.h>
20 #include <linux/highmem.h>
21 #include <linux/timer.h>
22 #include <linux/slab.h>
23 #include <linux/jiffies.h>
24 #include <linux/spinlock.h>
25 #include <linux/list.h>
26 #include <linux/sysdev.h>
27 #include <linux/ctype.h>
28 #include <linux/workqueue.h>
29 #include <asm/uaccess.h>
30 #include <asm/page.h>
31 
32 #include "edac_core.h"
33 #include "edac_module.h"
34 
35 /* lock for the list: 'edac_device_list', manipulation of this list
36  * is protected by the 'device_ctls_mutex' lock
37  */
38 static DEFINE_MUTEX(device_ctls_mutex);
39 static struct list_head edac_device_list = LIST_HEAD_INIT(edac_device_list);
40 
41 #ifdef CONFIG_EDAC_DEBUG
42 static void edac_device_dump_device(struct edac_device_ctl_info *edac_dev)
43 {
44 	debugf3("\tedac_dev = %p dev_idx=%d \n", edac_dev, edac_dev->dev_idx);
45 	debugf4("\tedac_dev->edac_check = %p\n", edac_dev->edac_check);
46 	debugf3("\tdev = %p\n", edac_dev->dev);
47 	debugf3("\tmod_name:ctl_name = %s:%s\n",
48 		edac_dev->mod_name, edac_dev->ctl_name);
49 	debugf3("\tpvt_info = %p\n\n", edac_dev->pvt_info);
50 }
51 #endif				/* CONFIG_EDAC_DEBUG */
52 
53 
54 /*
55  * edac_device_alloc_ctl_info()
56  *	Allocate a new edac device control info structure
57  *
58  *	The control structure is allocated in complete chunk
59  *	from the OS. It is in turn sub allocated to the
60  *	various objects that compose the struture
61  *
62  *	The structure has a 'nr_instance' array within itself.
63  *	Each instance represents a major component
64  *		Example:  L1 cache and L2 cache are 2 instance components
65  *
66  *	Within each instance is an array of 'nr_blocks' blockoffsets
67  */
68 struct edac_device_ctl_info *edac_device_alloc_ctl_info(
69 	unsigned sz_private,
70 	char *edac_device_name, unsigned nr_instances,
71 	char *edac_block_name, unsigned nr_blocks,
72 	unsigned offset_value,		/* zero, 1, or other based offset */
73 	struct edac_dev_sysfs_block_attribute *attrib_spec, unsigned nr_attrib,
74 	int device_index)
75 {
76 	struct edac_device_ctl_info *dev_ctl;
77 	struct edac_device_instance *dev_inst, *inst;
78 	struct edac_device_block *dev_blk, *blk_p, *blk;
79 	struct edac_dev_sysfs_block_attribute *dev_attrib, *attrib_p, *attrib;
80 	unsigned total_size;
81 	unsigned count;
82 	unsigned instance, block, attr;
83 	void *pvt;
84 	int err;
85 
86 	debugf4("%s() instances=%d blocks=%d\n",
87 		__func__, nr_instances, nr_blocks);
88 
89 	/* Calculate the size of memory we need to allocate AND
90 	 * determine the offsets of the various item arrays
91 	 * (instance,block,attrib) from the start of an  allocated structure.
92 	 * We want the alignment of each item  (instance,block,attrib)
93 	 * to be at least as stringent as what the compiler would
94 	 * provide if we could simply hardcode everything into a single struct.
95 	 */
96 	dev_ctl = (struct edac_device_ctl_info *)NULL;
97 
98 	/* Calc the 'end' offset past end of ONE ctl_info structure
99 	 * which will become the start of the 'instance' array
100 	 */
101 	dev_inst = edac_align_ptr(&dev_ctl[1], sizeof(*dev_inst));
102 
103 	/* Calc the 'end' offset past the instance array within the ctl_info
104 	 * which will become the start of the block array
105 	 */
106 	dev_blk = edac_align_ptr(&dev_inst[nr_instances], sizeof(*dev_blk));
107 
108 	/* Calc the 'end' offset past the dev_blk array
109 	 * which will become the start of the attrib array, if any.
110 	 */
111 	count = nr_instances * nr_blocks;
112 	dev_attrib = edac_align_ptr(&dev_blk[count], sizeof(*dev_attrib));
113 
114 	/* Check for case of when an attribute array is specified */
115 	if (nr_attrib > 0) {
116 		/* calc how many nr_attrib we need */
117 		count *= nr_attrib;
118 
119 		/* Calc the 'end' offset past the attributes array */
120 		pvt = edac_align_ptr(&dev_attrib[count], sz_private);
121 	} else {
122 		/* no attribute array specificed */
123 		pvt = edac_align_ptr(dev_attrib, sz_private);
124 	}
125 
126 	/* 'pvt' now points to where the private data area is.
127 	 * At this point 'pvt' (like dev_inst,dev_blk and dev_attrib)
128 	 * is baselined at ZERO
129 	 */
130 	total_size = ((unsigned long)pvt) + sz_private;
131 
132 	/* Allocate the amount of memory for the set of control structures */
133 	dev_ctl = kzalloc(total_size, GFP_KERNEL);
134 	if (dev_ctl == NULL)
135 		return NULL;
136 
137 	/* Adjust pointers so they point within the actual memory we
138 	 * just allocated rather than an imaginary chunk of memory
139 	 * located at address 0.
140 	 * 'dev_ctl' points to REAL memory, while the others are
141 	 * ZERO based and thus need to be adjusted to point within
142 	 * the allocated memory.
143 	 */
144 	dev_inst = (struct edac_device_instance *)
145 		(((char *)dev_ctl) + ((unsigned long)dev_inst));
146 	dev_blk = (struct edac_device_block *)
147 		(((char *)dev_ctl) + ((unsigned long)dev_blk));
148 	dev_attrib = (struct edac_dev_sysfs_block_attribute *)
149 		(((char *)dev_ctl) + ((unsigned long)dev_attrib));
150 	pvt = sz_private ? (((char *)dev_ctl) + ((unsigned long)pvt)) : NULL;
151 
152 	/* Begin storing the information into the control info structure */
153 	dev_ctl->dev_idx = device_index;
154 	dev_ctl->nr_instances = nr_instances;
155 	dev_ctl->instances = dev_inst;
156 	dev_ctl->pvt_info = pvt;
157 
158 	/* Name of this edac device */
159 	snprintf(dev_ctl->name,sizeof(dev_ctl->name),"%s",edac_device_name);
160 
161 	debugf4("%s() edac_dev=%p next after end=%p\n",
162 		__func__, dev_ctl, pvt + sz_private );
163 
164 	/* Initialize every Instance */
165 	for (instance = 0; instance < nr_instances; instance++) {
166 		inst = &dev_inst[instance];
167 		inst->ctl = dev_ctl;
168 		inst->nr_blocks = nr_blocks;
169 		blk_p = &dev_blk[instance * nr_blocks];
170 		inst->blocks = blk_p;
171 
172 		/* name of this instance */
173 		snprintf(inst->name, sizeof(inst->name),
174 			 "%s%u", edac_device_name, instance);
175 
176 		/* Initialize every block in each instance */
177 		for (block = 0; block < nr_blocks; block++) {
178 			blk = &blk_p[block];
179 			blk->instance = inst;
180 			snprintf(blk->name, sizeof(blk->name),
181 				 "%s%d", edac_block_name, block+offset_value);
182 
183 			debugf4("%s() instance=%d inst_p=%p block=#%d "
184 				"block_p=%p name='%s'\n",
185 				__func__, instance, inst, block,
186 				blk, blk->name);
187 
188 			/* if there are NO attributes OR no attribute pointer
189 			 * then continue on to next block iteration
190 			 */
191 			if ((nr_attrib == 0) || (attrib_spec == NULL))
192 				continue;
193 
194 			/* setup the attribute array for this block */
195 			blk->nr_attribs = nr_attrib;
196 			attrib_p = &dev_attrib[block*nr_instances*nr_attrib];
197 			blk->block_attributes = attrib_p;
198 
199 			debugf4("%s() THIS BLOCK_ATTRIB=%p\n",
200 				__func__, blk->block_attributes);
201 
202 			/* Initialize every user specified attribute in this
203 			 * block with the data the caller passed in
204 			 * Each block gets its own copy of pointers,
205 			 * and its unique 'value'
206 			 */
207 			for (attr = 0; attr < nr_attrib; attr++) {
208 				attrib = &attrib_p[attr];
209 
210 				/* populate the unique per attrib
211 				 * with the code pointers and info
212 				 */
213 				attrib->attr = attrib_spec[attr].attr;
214 				attrib->show = attrib_spec[attr].show;
215 				attrib->store = attrib_spec[attr].store;
216 
217 				attrib->block = blk;	/* up link */
218 
219 				debugf4("%s() alloc-attrib=%p attrib_name='%s' "
220 					"attrib-spec=%p spec-name=%s\n",
221 					__func__, attrib, attrib->attr.name,
222 					&attrib_spec[attr],
223 					attrib_spec[attr].attr.name
224 					);
225 			}
226 		}
227 	}
228 
229 	/* Mark this instance as merely ALLOCATED */
230 	dev_ctl->op_state = OP_ALLOC;
231 
232 	/*
233 	 * Initialize the 'root' kobj for the edac_device controller
234 	 */
235 	err = edac_device_register_sysfs_main_kobj(dev_ctl);
236 	if (err) {
237 		kfree(dev_ctl);
238 		return NULL;
239 	}
240 
241 	/* at this point, the root kobj is valid, and in order to
242 	 * 'free' the object, then the function:
243 	 *	edac_device_unregister_sysfs_main_kobj() must be called
244 	 * which will perform kobj unregistration and the actual free
245 	 * will occur during the kobject callback operation
246 	 */
247 
248 	return dev_ctl;
249 }
250 EXPORT_SYMBOL_GPL(edac_device_alloc_ctl_info);
251 
252 /*
253  * edac_device_free_ctl_info()
254  *	frees the memory allocated by the edac_device_alloc_ctl_info()
255  *	function
256  */
257 void edac_device_free_ctl_info(struct edac_device_ctl_info *ctl_info)
258 {
259 	edac_device_unregister_sysfs_main_kobj(ctl_info);
260 }
261 EXPORT_SYMBOL_GPL(edac_device_free_ctl_info);
262 
263 /*
264  * find_edac_device_by_dev
265  *	scans the edac_device list for a specific 'struct device *'
266  *
267  *	lock to be held prior to call:	device_ctls_mutex
268  *
269  *	Return:
270  *		pointer to control structure managing 'dev'
271  *		NULL if not found on list
272  */
273 static struct edac_device_ctl_info *find_edac_device_by_dev(struct device *dev)
274 {
275 	struct edac_device_ctl_info *edac_dev;
276 	struct list_head *item;
277 
278 	debugf0("%s()\n", __func__);
279 
280 	list_for_each(item, &edac_device_list) {
281 		edac_dev = list_entry(item, struct edac_device_ctl_info, link);
282 
283 		if (edac_dev->dev == dev)
284 			return edac_dev;
285 	}
286 
287 	return NULL;
288 }
289 
290 /*
291  * add_edac_dev_to_global_list
292  *	Before calling this function, caller must
293  *	assign a unique value to edac_dev->dev_idx.
294  *
295  *	lock to be held prior to call:	device_ctls_mutex
296  *
297  *	Return:
298  *		0 on success
299  *		1 on failure.
300  */
301 static int add_edac_dev_to_global_list(struct edac_device_ctl_info *edac_dev)
302 {
303 	struct list_head *item, *insert_before;
304 	struct edac_device_ctl_info *rover;
305 
306 	insert_before = &edac_device_list;
307 
308 	/* Determine if already on the list */
309 	rover = find_edac_device_by_dev(edac_dev->dev);
310 	if (unlikely(rover != NULL))
311 		goto fail0;
312 
313 	/* Insert in ascending order by 'dev_idx', so find position */
314 	list_for_each(item, &edac_device_list) {
315 		rover = list_entry(item, struct edac_device_ctl_info, link);
316 
317 		if (rover->dev_idx >= edac_dev->dev_idx) {
318 			if (unlikely(rover->dev_idx == edac_dev->dev_idx))
319 				goto fail1;
320 
321 			insert_before = item;
322 			break;
323 		}
324 	}
325 
326 	list_add_tail_rcu(&edac_dev->link, insert_before);
327 	return 0;
328 
329 fail0:
330 	edac_printk(KERN_WARNING, EDAC_MC,
331 			"%s (%s) %s %s already assigned %d\n",
332 			rover->dev->bus_id, dev_name(rover),
333 			rover->mod_name, rover->ctl_name, rover->dev_idx);
334 	return 1;
335 
336 fail1:
337 	edac_printk(KERN_WARNING, EDAC_MC,
338 			"bug in low-level driver: attempt to assign\n"
339 			"    duplicate dev_idx %d in %s()\n", rover->dev_idx,
340 			__func__);
341 	return 1;
342 }
343 
344 /*
345  * complete_edac_device_list_del
346  *
347  *	callback function when reference count is zero
348  */
349 static void complete_edac_device_list_del(struct rcu_head *head)
350 {
351 	struct edac_device_ctl_info *edac_dev;
352 
353 	edac_dev = container_of(head, struct edac_device_ctl_info, rcu);
354 	INIT_LIST_HEAD(&edac_dev->link);
355 	complete(&edac_dev->removal_complete);
356 }
357 
358 /*
359  * del_edac_device_from_global_list
360  *
361  *	remove the RCU, setup for a callback call,
362  *	then wait for the callback to occur
363  */
364 static void del_edac_device_from_global_list(struct edac_device_ctl_info
365 						*edac_device)
366 {
367 	list_del_rcu(&edac_device->link);
368 
369 	init_completion(&edac_device->removal_complete);
370 	call_rcu(&edac_device->rcu, complete_edac_device_list_del);
371 	wait_for_completion(&edac_device->removal_complete);
372 }
373 
374 /**
375  * edac_device_find
376  *	Search for a edac_device_ctl_info structure whose index is 'idx'.
377  *
378  * If found, return a pointer to the structure.
379  * Else return NULL.
380  *
381  * Caller must hold device_ctls_mutex.
382  */
383 struct edac_device_ctl_info *edac_device_find(int idx)
384 {
385 	struct list_head *item;
386 	struct edac_device_ctl_info *edac_dev;
387 
388 	/* Iterate over list, looking for exact match of ID */
389 	list_for_each(item, &edac_device_list) {
390 		edac_dev = list_entry(item, struct edac_device_ctl_info, link);
391 
392 		if (edac_dev->dev_idx >= idx) {
393 			if (edac_dev->dev_idx == idx)
394 				return edac_dev;
395 
396 			/* not on list, so terminate early */
397 			break;
398 		}
399 	}
400 
401 	return NULL;
402 }
403 EXPORT_SYMBOL_GPL(edac_device_find);
404 
405 /*
406  * edac_device_workq_function
407  *	performs the operation scheduled by a workq request
408  *
409  *	this workq is embedded within an edac_device_ctl_info
410  *	structure, that needs to be polled for possible error events.
411  *
412  *	This operation is to acquire the list mutex lock
413  *	(thus preventing insertation or deletion)
414  *	and then call the device's poll function IFF this device is
415  *	running polled and there is a poll function defined.
416  */
417 static void edac_device_workq_function(struct work_struct *work_req)
418 {
419 	struct delayed_work *d_work = (struct delayed_work *)work_req;
420 	struct edac_device_ctl_info *edac_dev = to_edac_device_ctl_work(d_work);
421 
422 	mutex_lock(&device_ctls_mutex);
423 
424 	/* Only poll controllers that are running polled and have a check */
425 	if ((edac_dev->op_state == OP_RUNNING_POLL) &&
426 		(edac_dev->edac_check != NULL)) {
427 			edac_dev->edac_check(edac_dev);
428 	}
429 
430 	mutex_unlock(&device_ctls_mutex);
431 
432 	/* Reschedule the workq for the next time period to start again
433 	 * if the number of msec is for 1 sec, then adjust to the next
434 	 * whole one second to save timers fireing all over the period
435 	 * between integral seconds
436 	 */
437 	if (edac_dev->poll_msec == 1000)
438 		queue_delayed_work(edac_workqueue, &edac_dev->work,
439 				round_jiffies(edac_dev->delay));
440 	else
441 		queue_delayed_work(edac_workqueue, &edac_dev->work,
442 				edac_dev->delay);
443 }
444 
445 /*
446  * edac_device_workq_setup
447  *	initialize a workq item for this edac_device instance
448  *	passing in the new delay period in msec
449  */
450 void edac_device_workq_setup(struct edac_device_ctl_info *edac_dev,
451 				unsigned msec)
452 {
453 	debugf0("%s()\n", __func__);
454 
455 	/* take the arg 'msec' and set it into the control structure
456 	 * to used in the time period calculation
457 	 * then calc the number of jiffies that represents
458 	 */
459 	edac_dev->poll_msec = msec;
460 	edac_dev->delay = msecs_to_jiffies(msec);
461 
462 	INIT_DELAYED_WORK(&edac_dev->work, edac_device_workq_function);
463 
464 	/* optimize here for the 1 second case, which will be normal value, to
465 	 * fire ON the 1 second time event. This helps reduce all sorts of
466 	 * timers firing on sub-second basis, while they are happy
467 	 * to fire together on the 1 second exactly
468 	 */
469 	if (edac_dev->poll_msec == 1000)
470 		queue_delayed_work(edac_workqueue, &edac_dev->work,
471 				round_jiffies(edac_dev->delay));
472 	else
473 		queue_delayed_work(edac_workqueue, &edac_dev->work,
474 				edac_dev->delay);
475 }
476 
477 /*
478  * edac_device_workq_teardown
479  *	stop the workq processing on this edac_dev
480  */
481 void edac_device_workq_teardown(struct edac_device_ctl_info *edac_dev)
482 {
483 	int status;
484 
485 	status = cancel_delayed_work(&edac_dev->work);
486 	if (status == 0) {
487 		/* workq instance might be running, wait for it */
488 		flush_workqueue(edac_workqueue);
489 	}
490 }
491 
492 /*
493  * edac_device_reset_delay_period
494  *
495  *	need to stop any outstanding workq queued up at this time
496  *	because we will be resetting the sleep time.
497  *	Then restart the workq on the new delay
498  */
499 void edac_device_reset_delay_period(struct edac_device_ctl_info *edac_dev,
500 					unsigned long value)
501 {
502 	/* cancel the current workq request, without the mutex lock */
503 	edac_device_workq_teardown(edac_dev);
504 
505 	/* acquire the mutex before doing the workq setup */
506 	mutex_lock(&device_ctls_mutex);
507 
508 	/* restart the workq request, with new delay value */
509 	edac_device_workq_setup(edac_dev, value);
510 
511 	mutex_unlock(&device_ctls_mutex);
512 }
513 
514 /**
515  * edac_device_add_device: Insert the 'edac_dev' structure into the
516  * edac_device global list and create sysfs entries associated with
517  * edac_device structure.
518  * @edac_device: pointer to the edac_device structure to be added to the list
519  * 'edac_device' structure.
520  *
521  * Return:
522  *	0	Success
523  *	!0	Failure
524  */
525 int edac_device_add_device(struct edac_device_ctl_info *edac_dev)
526 {
527 	debugf0("%s()\n", __func__);
528 
529 #ifdef CONFIG_EDAC_DEBUG
530 	if (edac_debug_level >= 3)
531 		edac_device_dump_device(edac_dev);
532 #endif
533 	mutex_lock(&device_ctls_mutex);
534 
535 	if (add_edac_dev_to_global_list(edac_dev))
536 		goto fail0;
537 
538 	/* set load time so that error rate can be tracked */
539 	edac_dev->start_time = jiffies;
540 
541 	/* create this instance's sysfs entries */
542 	if (edac_device_create_sysfs(edac_dev)) {
543 		edac_device_printk(edac_dev, KERN_WARNING,
544 					"failed to create sysfs device\n");
545 		goto fail1;
546 	}
547 
548 	/* If there IS a check routine, then we are running POLLED */
549 	if (edac_dev->edac_check != NULL) {
550 		/* This instance is NOW RUNNING */
551 		edac_dev->op_state = OP_RUNNING_POLL;
552 
553 		/*
554 		 * enable workq processing on this instance,
555 		 * default = 1000 msec
556 		 */
557 		edac_device_workq_setup(edac_dev, 1000);
558 	} else {
559 		edac_dev->op_state = OP_RUNNING_INTERRUPT;
560 	}
561 
562 	/* Report action taken */
563 	edac_device_printk(edac_dev, KERN_INFO,
564 				"Giving out device to module '%s' controller "
565 				"'%s': DEV '%s' (%s)\n",
566 				edac_dev->mod_name,
567 				edac_dev->ctl_name,
568 				dev_name(edac_dev),
569 				edac_op_state_to_string(edac_dev->op_state));
570 
571 	mutex_unlock(&device_ctls_mutex);
572 	return 0;
573 
574 fail1:
575 	/* Some error, so remove the entry from the lsit */
576 	del_edac_device_from_global_list(edac_dev);
577 
578 fail0:
579 	mutex_unlock(&device_ctls_mutex);
580 	return 1;
581 }
582 EXPORT_SYMBOL_GPL(edac_device_add_device);
583 
584 /**
585  * edac_device_del_device:
586  *	Remove sysfs entries for specified edac_device structure and
587  *	then remove edac_device structure from global list
588  *
589  * @pdev:
590  *	Pointer to 'struct device' representing edac_device
591  *	structure to remove.
592  *
593  * Return:
594  *	Pointer to removed edac_device structure,
595  *	OR NULL if device not found.
596  */
597 struct edac_device_ctl_info *edac_device_del_device(struct device *dev)
598 {
599 	struct edac_device_ctl_info *edac_dev;
600 
601 	debugf0("%s()\n", __func__);
602 
603 	mutex_lock(&device_ctls_mutex);
604 
605 	/* Find the structure on the list, if not there, then leave */
606 	edac_dev = find_edac_device_by_dev(dev);
607 	if (edac_dev == NULL) {
608 		mutex_unlock(&device_ctls_mutex);
609 		return NULL;
610 	}
611 
612 	/* mark this instance as OFFLINE */
613 	edac_dev->op_state = OP_OFFLINE;
614 
615 	/* clear workq processing on this instance */
616 	edac_device_workq_teardown(edac_dev);
617 
618 	/* deregister from global list */
619 	del_edac_device_from_global_list(edac_dev);
620 
621 	mutex_unlock(&device_ctls_mutex);
622 
623 	/* Tear down the sysfs entries for this instance */
624 	edac_device_remove_sysfs(edac_dev);
625 
626 	edac_printk(KERN_INFO, EDAC_MC,
627 		"Removed device %d for %s %s: DEV %s\n",
628 		edac_dev->dev_idx,
629 		edac_dev->mod_name, edac_dev->ctl_name, dev_name(edac_dev));
630 
631 	return edac_dev;
632 }
633 EXPORT_SYMBOL_GPL(edac_device_del_device);
634 
635 static inline int edac_device_get_log_ce(struct edac_device_ctl_info *edac_dev)
636 {
637 	return edac_dev->log_ce;
638 }
639 
640 static inline int edac_device_get_log_ue(struct edac_device_ctl_info *edac_dev)
641 {
642 	return edac_dev->log_ue;
643 }
644 
645 static inline int edac_device_get_panic_on_ue(struct edac_device_ctl_info
646 					*edac_dev)
647 {
648 	return edac_dev->panic_on_ue;
649 }
650 
651 /*
652  * edac_device_handle_ce
653  *	perform a common output and handling of an 'edac_dev' CE event
654  */
655 void edac_device_handle_ce(struct edac_device_ctl_info *edac_dev,
656 			int inst_nr, int block_nr, const char *msg)
657 {
658 	struct edac_device_instance *instance;
659 	struct edac_device_block *block = NULL;
660 
661 	if ((inst_nr >= edac_dev->nr_instances) || (inst_nr < 0)) {
662 		edac_device_printk(edac_dev, KERN_ERR,
663 				"INTERNAL ERROR: 'instance' out of range "
664 				"(%d >= %d)\n", inst_nr,
665 				edac_dev->nr_instances);
666 		return;
667 	}
668 
669 	instance = edac_dev->instances + inst_nr;
670 
671 	if ((block_nr >= instance->nr_blocks) || (block_nr < 0)) {
672 		edac_device_printk(edac_dev, KERN_ERR,
673 				"INTERNAL ERROR: instance %d 'block' "
674 				"out of range (%d >= %d)\n",
675 				inst_nr, block_nr,
676 				instance->nr_blocks);
677 		return;
678 	}
679 
680 	if (instance->nr_blocks > 0) {
681 		block = instance->blocks + block_nr;
682 		block->counters.ce_count++;
683 	}
684 
685 	/* Propogate the count up the 'totals' tree */
686 	instance->counters.ce_count++;
687 	edac_dev->counters.ce_count++;
688 
689 	if (edac_device_get_log_ce(edac_dev))
690 		edac_device_printk(edac_dev, KERN_WARNING,
691 				"CE: %s instance: %s block: %s '%s'\n",
692 				edac_dev->ctl_name, instance->name,
693 				block ? block->name : "N/A", msg);
694 }
695 EXPORT_SYMBOL_GPL(edac_device_handle_ce);
696 
697 /*
698  * edac_device_handle_ue
699  *	perform a common output and handling of an 'edac_dev' UE event
700  */
701 void edac_device_handle_ue(struct edac_device_ctl_info *edac_dev,
702 			int inst_nr, int block_nr, const char *msg)
703 {
704 	struct edac_device_instance *instance;
705 	struct edac_device_block *block = NULL;
706 
707 	if ((inst_nr >= edac_dev->nr_instances) || (inst_nr < 0)) {
708 		edac_device_printk(edac_dev, KERN_ERR,
709 				"INTERNAL ERROR: 'instance' out of range "
710 				"(%d >= %d)\n", inst_nr,
711 				edac_dev->nr_instances);
712 		return;
713 	}
714 
715 	instance = edac_dev->instances + inst_nr;
716 
717 	if ((block_nr >= instance->nr_blocks) || (block_nr < 0)) {
718 		edac_device_printk(edac_dev, KERN_ERR,
719 				"INTERNAL ERROR: instance %d 'block' "
720 				"out of range (%d >= %d)\n",
721 				inst_nr, block_nr,
722 				instance->nr_blocks);
723 		return;
724 	}
725 
726 	if (instance->nr_blocks > 0) {
727 		block = instance->blocks + block_nr;
728 		block->counters.ue_count++;
729 	}
730 
731 	/* Propogate the count up the 'totals' tree */
732 	instance->counters.ue_count++;
733 	edac_dev->counters.ue_count++;
734 
735 	if (edac_device_get_log_ue(edac_dev))
736 		edac_device_printk(edac_dev, KERN_EMERG,
737 				"UE: %s instance: %s block: %s '%s'\n",
738 				edac_dev->ctl_name, instance->name,
739 				block ? block->name : "N/A", msg);
740 
741 	if (edac_device_get_panic_on_ue(edac_dev))
742 		panic("EDAC %s: UE instance: %s block %s '%s'\n",
743 			edac_dev->ctl_name, instance->name,
744 			block ? block->name : "N/A", msg);
745 }
746 EXPORT_SYMBOL_GPL(edac_device_handle_ue);
747