1 /* 2 * Intel e7xxx Memory Controller kernel module 3 * (C) 2003 Linux Networx (http://lnxi.com) 4 * This file may be distributed under the terms of the 5 * GNU General Public License. 6 * 7 * See "enum e7xxx_chips" below for supported chipsets 8 * 9 * Written by Thayne Harbaugh 10 * Based on work by Dan Hollis <goemon at anime dot net> and others. 11 * http://www.anime.net/~goemon/linux-ecc/ 12 * 13 * Datasheet: 14 * http://www.intel.com/content/www/us/en/chipsets/e7501-chipset-memory-controller-hub-datasheet.html 15 * 16 * Contributors: 17 * Eric Biederman (Linux Networx) 18 * Tom Zimmerman (Linux Networx) 19 * Jim Garlick (Lawrence Livermore National Labs) 20 * Dave Peterson (Lawrence Livermore National Labs) 21 * That One Guy (Some other place) 22 * Wang Zhenyu (intel.com) 23 * 24 * $Id: edac_e7xxx.c,v 1.5.2.9 2005/10/05 00:43:44 dsp_llnl Exp $ 25 * 26 */ 27 28 #include <linux/module.h> 29 #include <linux/init.h> 30 #include <linux/pci.h> 31 #include <linux/pci_ids.h> 32 #include <linux/edac.h> 33 #include "edac_core.h" 34 35 #define E7XXX_REVISION " Ver: 2.0.2" 36 #define EDAC_MOD_STR "e7xxx_edac" 37 38 #define e7xxx_printk(level, fmt, arg...) \ 39 edac_printk(level, "e7xxx", fmt, ##arg) 40 41 #define e7xxx_mc_printk(mci, level, fmt, arg...) \ 42 edac_mc_chipset_printk(mci, level, "e7xxx", fmt, ##arg) 43 44 #ifndef PCI_DEVICE_ID_INTEL_7205_0 45 #define PCI_DEVICE_ID_INTEL_7205_0 0x255d 46 #endif /* PCI_DEVICE_ID_INTEL_7205_0 */ 47 48 #ifndef PCI_DEVICE_ID_INTEL_7205_1_ERR 49 #define PCI_DEVICE_ID_INTEL_7205_1_ERR 0x2551 50 #endif /* PCI_DEVICE_ID_INTEL_7205_1_ERR */ 51 52 #ifndef PCI_DEVICE_ID_INTEL_7500_0 53 #define PCI_DEVICE_ID_INTEL_7500_0 0x2540 54 #endif /* PCI_DEVICE_ID_INTEL_7500_0 */ 55 56 #ifndef PCI_DEVICE_ID_INTEL_7500_1_ERR 57 #define PCI_DEVICE_ID_INTEL_7500_1_ERR 0x2541 58 #endif /* PCI_DEVICE_ID_INTEL_7500_1_ERR */ 59 60 #ifndef PCI_DEVICE_ID_INTEL_7501_0 61 #define PCI_DEVICE_ID_INTEL_7501_0 0x254c 62 #endif /* PCI_DEVICE_ID_INTEL_7501_0 */ 63 64 #ifndef PCI_DEVICE_ID_INTEL_7501_1_ERR 65 #define PCI_DEVICE_ID_INTEL_7501_1_ERR 0x2541 66 #endif /* PCI_DEVICE_ID_INTEL_7501_1_ERR */ 67 68 #ifndef PCI_DEVICE_ID_INTEL_7505_0 69 #define PCI_DEVICE_ID_INTEL_7505_0 0x2550 70 #endif /* PCI_DEVICE_ID_INTEL_7505_0 */ 71 72 #ifndef PCI_DEVICE_ID_INTEL_7505_1_ERR 73 #define PCI_DEVICE_ID_INTEL_7505_1_ERR 0x2551 74 #endif /* PCI_DEVICE_ID_INTEL_7505_1_ERR */ 75 76 #define E7XXX_NR_CSROWS 8 /* number of csrows */ 77 #define E7XXX_NR_DIMMS 8 /* 2 channels, 4 dimms/channel */ 78 79 /* E7XXX register addresses - device 0 function 0 */ 80 #define E7XXX_DRB 0x60 /* DRAM row boundary register (8b) */ 81 #define E7XXX_DRA 0x70 /* DRAM row attribute register (8b) */ 82 /* 83 * 31 Device width row 7 0=x8 1=x4 84 * 27 Device width row 6 85 * 23 Device width row 5 86 * 19 Device width row 4 87 * 15 Device width row 3 88 * 11 Device width row 2 89 * 7 Device width row 1 90 * 3 Device width row 0 91 */ 92 #define E7XXX_DRC 0x7C /* DRAM controller mode reg (32b) */ 93 /* 94 * 22 Number channels 0=1,1=2 95 * 19:18 DRB Granularity 32/64MB 96 */ 97 #define E7XXX_TOLM 0xC4 /* DRAM top of low memory reg (16b) */ 98 #define E7XXX_REMAPBASE 0xC6 /* DRAM remap base address reg (16b) */ 99 #define E7XXX_REMAPLIMIT 0xC8 /* DRAM remap limit address reg (16b) */ 100 101 /* E7XXX register addresses - device 0 function 1 */ 102 #define E7XXX_DRAM_FERR 0x80 /* DRAM first error register (8b) */ 103 #define E7XXX_DRAM_NERR 0x82 /* DRAM next error register (8b) */ 104 #define E7XXX_DRAM_CELOG_ADD 0xA0 /* DRAM first correctable memory */ 105 /* error address register (32b) */ 106 /* 107 * 31:28 Reserved 108 * 27:6 CE address (4k block 33:12) 109 * 5:0 Reserved 110 */ 111 #define E7XXX_DRAM_UELOG_ADD 0xB0 /* DRAM first uncorrectable memory */ 112 /* error address register (32b) */ 113 /* 114 * 31:28 Reserved 115 * 27:6 CE address (4k block 33:12) 116 * 5:0 Reserved 117 */ 118 #define E7XXX_DRAM_CELOG_SYNDROME 0xD0 /* DRAM first correctable memory */ 119 /* error syndrome register (16b) */ 120 121 enum e7xxx_chips { 122 E7500 = 0, 123 E7501, 124 E7505, 125 E7205, 126 }; 127 128 struct e7xxx_pvt { 129 struct pci_dev *bridge_ck; 130 u32 tolm; 131 u32 remapbase; 132 u32 remaplimit; 133 const struct e7xxx_dev_info *dev_info; 134 }; 135 136 struct e7xxx_dev_info { 137 u16 err_dev; 138 const char *ctl_name; 139 }; 140 141 struct e7xxx_error_info { 142 u8 dram_ferr; 143 u8 dram_nerr; 144 u32 dram_celog_add; 145 u16 dram_celog_syndrome; 146 u32 dram_uelog_add; 147 }; 148 149 static struct edac_pci_ctl_info *e7xxx_pci; 150 151 static const struct e7xxx_dev_info e7xxx_devs[] = { 152 [E7500] = { 153 .err_dev = PCI_DEVICE_ID_INTEL_7500_1_ERR, 154 .ctl_name = "E7500"}, 155 [E7501] = { 156 .err_dev = PCI_DEVICE_ID_INTEL_7501_1_ERR, 157 .ctl_name = "E7501"}, 158 [E7505] = { 159 .err_dev = PCI_DEVICE_ID_INTEL_7505_1_ERR, 160 .ctl_name = "E7505"}, 161 [E7205] = { 162 .err_dev = PCI_DEVICE_ID_INTEL_7205_1_ERR, 163 .ctl_name = "E7205"}, 164 }; 165 166 /* FIXME - is this valid for both SECDED and S4ECD4ED? */ 167 static inline int e7xxx_find_channel(u16 syndrome) 168 { 169 debugf3("%s()\n", __func__); 170 171 if ((syndrome & 0xff00) == 0) 172 return 0; 173 174 if ((syndrome & 0x00ff) == 0) 175 return 1; 176 177 if ((syndrome & 0xf000) == 0 || (syndrome & 0x0f00) == 0) 178 return 0; 179 180 return 1; 181 } 182 183 static unsigned long ctl_page_to_phys(struct mem_ctl_info *mci, 184 unsigned long page) 185 { 186 u32 remap; 187 struct e7xxx_pvt *pvt = (struct e7xxx_pvt *)mci->pvt_info; 188 189 debugf3("%s()\n", __func__); 190 191 if ((page < pvt->tolm) || 192 ((page >= 0x100000) && (page < pvt->remapbase))) 193 return page; 194 195 remap = (page - pvt->tolm) + pvt->remapbase; 196 197 if (remap < pvt->remaplimit) 198 return remap; 199 200 e7xxx_printk(KERN_ERR, "Invalid page %lx - out of range\n", page); 201 return pvt->tolm - 1; 202 } 203 204 static void process_ce(struct mem_ctl_info *mci, struct e7xxx_error_info *info) 205 { 206 u32 error_1b, page; 207 u16 syndrome; 208 int row; 209 int channel; 210 211 debugf3("%s()\n", __func__); 212 /* read the error address */ 213 error_1b = info->dram_celog_add; 214 /* FIXME - should use PAGE_SHIFT */ 215 page = error_1b >> 6; /* convert the address to 4k page */ 216 /* read the syndrome */ 217 syndrome = info->dram_celog_syndrome; 218 /* FIXME - check for -1 */ 219 row = edac_mc_find_csrow_by_page(mci, page); 220 /* convert syndrome to channel */ 221 channel = e7xxx_find_channel(syndrome); 222 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, page, 0, syndrome, 223 row, channel, -1, "e7xxx CE", "", NULL); 224 } 225 226 static void process_ce_no_info(struct mem_ctl_info *mci) 227 { 228 debugf3("%s()\n", __func__); 229 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 0, 0, 0, -1, -1, -1, 230 "e7xxx CE log register overflow", "", NULL); 231 } 232 233 static void process_ue(struct mem_ctl_info *mci, struct e7xxx_error_info *info) 234 { 235 u32 error_2b, block_page; 236 int row; 237 238 debugf3("%s()\n", __func__); 239 /* read the error address */ 240 error_2b = info->dram_uelog_add; 241 /* FIXME - should use PAGE_SHIFT */ 242 block_page = error_2b >> 6; /* convert to 4k address */ 243 row = edac_mc_find_csrow_by_page(mci, block_page); 244 245 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, block_page, 0, 0, 246 row, -1, -1, "e7xxx UE", "", NULL); 247 } 248 249 static void process_ue_no_info(struct mem_ctl_info *mci) 250 { 251 debugf3("%s()\n", __func__); 252 253 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 0, 0, 0, -1, -1, -1, 254 "e7xxx UE log register overflow", "", NULL); 255 } 256 257 static void e7xxx_get_error_info(struct mem_ctl_info *mci, 258 struct e7xxx_error_info *info) 259 { 260 struct e7xxx_pvt *pvt; 261 262 pvt = (struct e7xxx_pvt *)mci->pvt_info; 263 pci_read_config_byte(pvt->bridge_ck, E7XXX_DRAM_FERR, &info->dram_ferr); 264 pci_read_config_byte(pvt->bridge_ck, E7XXX_DRAM_NERR, &info->dram_nerr); 265 266 if ((info->dram_ferr & 1) || (info->dram_nerr & 1)) { 267 pci_read_config_dword(pvt->bridge_ck, E7XXX_DRAM_CELOG_ADD, 268 &info->dram_celog_add); 269 pci_read_config_word(pvt->bridge_ck, 270 E7XXX_DRAM_CELOG_SYNDROME, 271 &info->dram_celog_syndrome); 272 } 273 274 if ((info->dram_ferr & 2) || (info->dram_nerr & 2)) 275 pci_read_config_dword(pvt->bridge_ck, E7XXX_DRAM_UELOG_ADD, 276 &info->dram_uelog_add); 277 278 if (info->dram_ferr & 3) 279 pci_write_bits8(pvt->bridge_ck, E7XXX_DRAM_FERR, 0x03, 0x03); 280 281 if (info->dram_nerr & 3) 282 pci_write_bits8(pvt->bridge_ck, E7XXX_DRAM_NERR, 0x03, 0x03); 283 } 284 285 static int e7xxx_process_error_info(struct mem_ctl_info *mci, 286 struct e7xxx_error_info *info, 287 int handle_errors) 288 { 289 int error_found; 290 291 error_found = 0; 292 293 /* decode and report errors */ 294 if (info->dram_ferr & 1) { /* check first error correctable */ 295 error_found = 1; 296 297 if (handle_errors) 298 process_ce(mci, info); 299 } 300 301 if (info->dram_ferr & 2) { /* check first error uncorrectable */ 302 error_found = 1; 303 304 if (handle_errors) 305 process_ue(mci, info); 306 } 307 308 if (info->dram_nerr & 1) { /* check next error correctable */ 309 error_found = 1; 310 311 if (handle_errors) { 312 if (info->dram_ferr & 1) 313 process_ce_no_info(mci); 314 else 315 process_ce(mci, info); 316 } 317 } 318 319 if (info->dram_nerr & 2) { /* check next error uncorrectable */ 320 error_found = 1; 321 322 if (handle_errors) { 323 if (info->dram_ferr & 2) 324 process_ue_no_info(mci); 325 else 326 process_ue(mci, info); 327 } 328 } 329 330 return error_found; 331 } 332 333 static void e7xxx_check(struct mem_ctl_info *mci) 334 { 335 struct e7xxx_error_info info; 336 337 debugf3("%s()\n", __func__); 338 e7xxx_get_error_info(mci, &info); 339 e7xxx_process_error_info(mci, &info, 1); 340 } 341 342 /* Return 1 if dual channel mode is active. Else return 0. */ 343 static inline int dual_channel_active(u32 drc, int dev_idx) 344 { 345 return (dev_idx == E7501) ? ((drc >> 22) & 0x1) : 1; 346 } 347 348 /* Return DRB granularity (0=32mb, 1=64mb). */ 349 static inline int drb_granularity(u32 drc, int dev_idx) 350 { 351 /* only e7501 can be single channel */ 352 return (dev_idx == E7501) ? ((drc >> 18) & 0x3) : 1; 353 } 354 355 static void e7xxx_init_csrows(struct mem_ctl_info *mci, struct pci_dev *pdev, 356 int dev_idx, u32 drc) 357 { 358 unsigned long last_cumul_size; 359 int index, j; 360 u8 value; 361 u32 dra, cumul_size, nr_pages; 362 int drc_chan, drc_drbg, drc_ddim, mem_dev; 363 struct csrow_info *csrow; 364 struct dimm_info *dimm; 365 366 pci_read_config_dword(pdev, E7XXX_DRA, &dra); 367 drc_chan = dual_channel_active(drc, dev_idx); 368 drc_drbg = drb_granularity(drc, dev_idx); 369 drc_ddim = (drc >> 20) & 0x3; 370 last_cumul_size = 0; 371 372 /* The dram row boundary (DRB) reg values are boundary address 373 * for each DRAM row with a granularity of 32 or 64MB (single/dual 374 * channel operation). DRB regs are cumulative; therefore DRB7 will 375 * contain the total memory contained in all eight rows. 376 */ 377 for (index = 0; index < mci->nr_csrows; index++) { 378 /* mem_dev 0=x8, 1=x4 */ 379 mem_dev = (dra >> (index * 4 + 3)) & 0x1; 380 csrow = &mci->csrows[index]; 381 382 pci_read_config_byte(pdev, E7XXX_DRB + index, &value); 383 /* convert a 64 or 32 MiB DRB to a page size. */ 384 cumul_size = value << (25 + drc_drbg - PAGE_SHIFT); 385 debugf3("%s(): (%d) cumul_size 0x%x\n", __func__, index, 386 cumul_size); 387 if (cumul_size == last_cumul_size) 388 continue; /* not populated */ 389 390 csrow->first_page = last_cumul_size; 391 csrow->last_page = cumul_size - 1; 392 nr_pages = cumul_size - last_cumul_size; 393 last_cumul_size = cumul_size; 394 395 for (j = 0; j < drc_chan + 1; j++) { 396 dimm = csrow->channels[j].dimm; 397 398 dimm->nr_pages = nr_pages / (drc_chan + 1); 399 dimm->grain = 1 << 12; /* 4KiB - resolution of CELOG */ 400 dimm->mtype = MEM_RDDR; /* only one type supported */ 401 dimm->dtype = mem_dev ? DEV_X4 : DEV_X8; 402 403 /* 404 * if single channel or x8 devices then SECDED 405 * if dual channel and x4 then S4ECD4ED 406 */ 407 if (drc_ddim) { 408 if (drc_chan && mem_dev) { 409 dimm->edac_mode = EDAC_S4ECD4ED; 410 mci->edac_cap |= EDAC_FLAG_S4ECD4ED; 411 } else { 412 dimm->edac_mode = EDAC_SECDED; 413 mci->edac_cap |= EDAC_FLAG_SECDED; 414 } 415 } else 416 dimm->edac_mode = EDAC_NONE; 417 } 418 } 419 } 420 421 static int e7xxx_probe1(struct pci_dev *pdev, int dev_idx) 422 { 423 u16 pci_data; 424 struct mem_ctl_info *mci = NULL; 425 struct edac_mc_layer layers[2]; 426 struct e7xxx_pvt *pvt = NULL; 427 u32 drc; 428 int drc_chan; 429 struct e7xxx_error_info discard; 430 431 debugf0("%s(): mci\n", __func__); 432 433 pci_read_config_dword(pdev, E7XXX_DRC, &drc); 434 435 drc_chan = dual_channel_active(drc, dev_idx); 436 /* 437 * According with the datasheet, this device has a maximum of 438 * 4 DIMMS per channel, either single-rank or dual-rank. So, the 439 * total amount of dimms is 8 (E7XXX_NR_DIMMS). 440 * That means that the DIMM is mapped as CSROWs, and the channel 441 * will map the rank. So, an error to either channel should be 442 * attributed to the same dimm. 443 */ 444 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; 445 layers[0].size = E7XXX_NR_CSROWS; 446 layers[0].is_virt_csrow = true; 447 layers[1].type = EDAC_MC_LAYER_CHANNEL; 448 layers[1].size = drc_chan + 1; 449 layers[1].is_virt_csrow = false; 450 mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt)); 451 if (mci == NULL) 452 return -ENOMEM; 453 454 debugf3("%s(): init mci\n", __func__); 455 mci->mtype_cap = MEM_FLAG_RDDR; 456 mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED | 457 EDAC_FLAG_S4ECD4ED; 458 /* FIXME - what if different memory types are in different csrows? */ 459 mci->mod_name = EDAC_MOD_STR; 460 mci->mod_ver = E7XXX_REVISION; 461 mci->dev = &pdev->dev; 462 debugf3("%s(): init pvt\n", __func__); 463 pvt = (struct e7xxx_pvt *)mci->pvt_info; 464 pvt->dev_info = &e7xxx_devs[dev_idx]; 465 pvt->bridge_ck = pci_get_device(PCI_VENDOR_ID_INTEL, 466 pvt->dev_info->err_dev, pvt->bridge_ck); 467 468 if (!pvt->bridge_ck) { 469 e7xxx_printk(KERN_ERR, "error reporting device not found:" 470 "vendor %x device 0x%x (broken BIOS?)\n", 471 PCI_VENDOR_ID_INTEL, e7xxx_devs[dev_idx].err_dev); 472 goto fail0; 473 } 474 475 debugf3("%s(): more mci init\n", __func__); 476 mci->ctl_name = pvt->dev_info->ctl_name; 477 mci->dev_name = pci_name(pdev); 478 mci->edac_check = e7xxx_check; 479 mci->ctl_page_to_phys = ctl_page_to_phys; 480 e7xxx_init_csrows(mci, pdev, dev_idx, drc); 481 mci->edac_cap |= EDAC_FLAG_NONE; 482 debugf3("%s(): tolm, remapbase, remaplimit\n", __func__); 483 /* load the top of low memory, remap base, and remap limit vars */ 484 pci_read_config_word(pdev, E7XXX_TOLM, &pci_data); 485 pvt->tolm = ((u32) pci_data) << 4; 486 pci_read_config_word(pdev, E7XXX_REMAPBASE, &pci_data); 487 pvt->remapbase = ((u32) pci_data) << 14; 488 pci_read_config_word(pdev, E7XXX_REMAPLIMIT, &pci_data); 489 pvt->remaplimit = ((u32) pci_data) << 14; 490 e7xxx_printk(KERN_INFO, 491 "tolm = %x, remapbase = %x, remaplimit = %x\n", pvt->tolm, 492 pvt->remapbase, pvt->remaplimit); 493 494 /* clear any pending errors, or initial state bits */ 495 e7xxx_get_error_info(mci, &discard); 496 497 /* Here we assume that we will never see multiple instances of this 498 * type of memory controller. The ID is therefore hardcoded to 0. 499 */ 500 if (edac_mc_add_mc(mci)) { 501 debugf3("%s(): failed edac_mc_add_mc()\n", __func__); 502 goto fail1; 503 } 504 505 /* allocating generic PCI control info */ 506 e7xxx_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR); 507 if (!e7xxx_pci) { 508 printk(KERN_WARNING 509 "%s(): Unable to create PCI control\n", 510 __func__); 511 printk(KERN_WARNING 512 "%s(): PCI error report via EDAC not setup\n", 513 __func__); 514 } 515 516 /* get this far and it's successful */ 517 debugf3("%s(): success\n", __func__); 518 return 0; 519 520 fail1: 521 pci_dev_put(pvt->bridge_ck); 522 523 fail0: 524 edac_mc_free(mci); 525 526 return -ENODEV; 527 } 528 529 /* returns count (>= 0), or negative on error */ 530 static int __devinit e7xxx_init_one(struct pci_dev *pdev, 531 const struct pci_device_id *ent) 532 { 533 debugf0("%s()\n", __func__); 534 535 /* wake up and enable device */ 536 return pci_enable_device(pdev) ? 537 -EIO : e7xxx_probe1(pdev, ent->driver_data); 538 } 539 540 static void __devexit e7xxx_remove_one(struct pci_dev *pdev) 541 { 542 struct mem_ctl_info *mci; 543 struct e7xxx_pvt *pvt; 544 545 debugf0("%s()\n", __func__); 546 547 if (e7xxx_pci) 548 edac_pci_release_generic_ctl(e7xxx_pci); 549 550 if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL) 551 return; 552 553 pvt = (struct e7xxx_pvt *)mci->pvt_info; 554 pci_dev_put(pvt->bridge_ck); 555 edac_mc_free(mci); 556 } 557 558 static DEFINE_PCI_DEVICE_TABLE(e7xxx_pci_tbl) = { 559 { 560 PCI_VEND_DEV(INTEL, 7205_0), PCI_ANY_ID, PCI_ANY_ID, 0, 0, 561 E7205}, 562 { 563 PCI_VEND_DEV(INTEL, 7500_0), PCI_ANY_ID, PCI_ANY_ID, 0, 0, 564 E7500}, 565 { 566 PCI_VEND_DEV(INTEL, 7501_0), PCI_ANY_ID, PCI_ANY_ID, 0, 0, 567 E7501}, 568 { 569 PCI_VEND_DEV(INTEL, 7505_0), PCI_ANY_ID, PCI_ANY_ID, 0, 0, 570 E7505}, 571 { 572 0, 573 } /* 0 terminated list. */ 574 }; 575 576 MODULE_DEVICE_TABLE(pci, e7xxx_pci_tbl); 577 578 static struct pci_driver e7xxx_driver = { 579 .name = EDAC_MOD_STR, 580 .probe = e7xxx_init_one, 581 .remove = __devexit_p(e7xxx_remove_one), 582 .id_table = e7xxx_pci_tbl, 583 }; 584 585 static int __init e7xxx_init(void) 586 { 587 /* Ensure that the OPSTATE is set correctly for POLL or NMI */ 588 opstate_init(); 589 590 return pci_register_driver(&e7xxx_driver); 591 } 592 593 static void __exit e7xxx_exit(void) 594 { 595 pci_unregister_driver(&e7xxx_driver); 596 } 597 598 module_init(e7xxx_init); 599 module_exit(e7xxx_exit); 600 601 MODULE_LICENSE("GPL"); 602 MODULE_AUTHOR("Linux Networx (http://lnxi.com) Thayne Harbaugh et al\n" 603 "Based on.work by Dan Hollis et al"); 604 MODULE_DESCRIPTION("MC support for Intel e7xxx memory controllers"); 605 module_param(edac_op_state, int, 0444); 606 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); 607