xref: /openbmc/linux/drivers/edac/amd64_edac.h (revision bc000245)
1 /*
2  * AMD64 class Memory Controller kernel module
3  *
4  * Copyright (c) 2009 SoftwareBitMaker.
5  * Copyright (c) 2009 Advanced Micro Devices, Inc.
6  *
7  * This file may be distributed under the terms of the
8  * GNU General Public License.
9  *
10  *	Originally Written by Thayne Harbaugh
11  *
12  *      Changes by Douglas "norsk" Thompson  <dougthompson@xmission.com>:
13  *		- K8 CPU Revision D and greater support
14  *
15  *      Changes by Dave Peterson <dsp@llnl.gov> <dave_peterson@pobox.com>:
16  *		- Module largely rewritten, with new (and hopefully correct)
17  *		code for dealing with node and chip select interleaving,
18  *		various code cleanup, and bug fixes
19  *		- Added support for memory hoisting using DRAM hole address
20  *		register
21  *
22  *	Changes by Douglas "norsk" Thompson <dougthompson@xmission.com>:
23  *		-K8 Rev (1207) revision support added, required Revision
24  *		specific mini-driver code to support Rev F as well as
25  *		prior revisions
26  *
27  *	Changes by Douglas "norsk" Thompson <dougthompson@xmission.com>:
28  *		-Family 10h revision support added. New PCI Device IDs,
29  *		indicating new changes. Actual registers modified
30  *		were slight, less than the Rev E to Rev F transition
31  *		but changing the PCI Device ID was the proper thing to
32  *		do, as it provides for almost automactic family
33  *		detection. The mods to Rev F required more family
34  *		information detection.
35  *
36  *	Changes/Fixes by Borislav Petkov <bp@alien8.de>:
37  *		- misc fixes and code cleanups
38  *
39  * This module is based on the following documents
40  * (available from http://www.amd.com/):
41  *
42  *	Title:	BIOS and Kernel Developer's Guide for AMD Athlon 64 and AMD
43  *		Opteron Processors
44  *	AMD publication #: 26094
45  *`	Revision: 3.26
46  *
47  *	Title:	BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh
48  *		Processors
49  *	AMD publication #: 32559
50  *	Revision: 3.00
51  *	Issue Date: May 2006
52  *
53  *	Title:	BIOS and Kernel Developer's Guide (BKDG) For AMD Family 10h
54  *		Processors
55  *	AMD publication #: 31116
56  *	Revision: 3.00
57  *	Issue Date: September 07, 2007
58  *
59  * Sections in the first 2 documents are no longer in sync with each other.
60  * The Family 10h BKDG was totally re-written from scratch with a new
61  * presentation model.
62  * Therefore, comments that refer to a Document section might be off.
63  */
64 
65 #include <linux/module.h>
66 #include <linux/ctype.h>
67 #include <linux/init.h>
68 #include <linux/pci.h>
69 #include <linux/pci_ids.h>
70 #include <linux/slab.h>
71 #include <linux/mmzone.h>
72 #include <linux/edac.h>
73 #include <asm/msr.h>
74 #include "edac_core.h"
75 #include "mce_amd.h"
76 
77 #define amd64_debug(fmt, arg...) \
78 	edac_printk(KERN_DEBUG, "amd64", fmt, ##arg)
79 
80 #define amd64_info(fmt, arg...) \
81 	edac_printk(KERN_INFO, "amd64", fmt, ##arg)
82 
83 #define amd64_notice(fmt, arg...) \
84 	edac_printk(KERN_NOTICE, "amd64", fmt, ##arg)
85 
86 #define amd64_warn(fmt, arg...) \
87 	edac_printk(KERN_WARNING, "amd64", fmt, ##arg)
88 
89 #define amd64_err(fmt, arg...) \
90 	edac_printk(KERN_ERR, "amd64", fmt, ##arg)
91 
92 #define amd64_mc_warn(mci, fmt, arg...) \
93 	edac_mc_chipset_printk(mci, KERN_WARNING, "amd64", fmt, ##arg)
94 
95 #define amd64_mc_err(mci, fmt, arg...) \
96 	edac_mc_chipset_printk(mci, KERN_ERR, "amd64", fmt, ##arg)
97 
98 /*
99  * Throughout the comments in this code, the following terms are used:
100  *
101  *	SysAddr, DramAddr, and InputAddr
102  *
103  *  These terms come directly from the amd64 documentation
104  * (AMD publication #26094).  They are defined as follows:
105  *
106  *     SysAddr:
107  *         This is a physical address generated by a CPU core or a device
108  *         doing DMA.  If generated by a CPU core, a SysAddr is the result of
109  *         a virtual to physical address translation by the CPU core's address
110  *         translation mechanism (MMU).
111  *
112  *     DramAddr:
113  *         A DramAddr is derived from a SysAddr by subtracting an offset that
114  *         depends on which node the SysAddr maps to and whether the SysAddr
115  *         is within a range affected by memory hoisting.  The DRAM Base
116  *         (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers
117  *         determine which node a SysAddr maps to.
118  *
119  *         If the DRAM Hole Address Register (DHAR) is enabled and the SysAddr
120  *         is within the range of addresses specified by this register, then
121  *         a value x from the DHAR is subtracted from the SysAddr to produce a
122  *         DramAddr.  Here, x represents the base address for the node that
123  *         the SysAddr maps to plus an offset due to memory hoisting.  See
124  *         section 3.4.8 and the comments in amd64_get_dram_hole_info() and
125  *         sys_addr_to_dram_addr() below for more information.
126  *
127  *         If the SysAddr is not affected by the DHAR then a value y is
128  *         subtracted from the SysAddr to produce a DramAddr.  Here, y is the
129  *         base address for the node that the SysAddr maps to.  See section
130  *         3.4.4 and the comments in sys_addr_to_dram_addr() below for more
131  *         information.
132  *
133  *     InputAddr:
134  *         A DramAddr is translated to an InputAddr before being passed to the
135  *         memory controller for the node that the DramAddr is associated
136  *         with.  The memory controller then maps the InputAddr to a csrow.
137  *         If node interleaving is not in use, then the InputAddr has the same
138  *         value as the DramAddr.  Otherwise, the InputAddr is produced by
139  *         discarding the bits used for node interleaving from the DramAddr.
140  *         See section 3.4.4 for more information.
141  *
142  *         The memory controller for a given node uses its DRAM CS Base and
143  *         DRAM CS Mask registers to map an InputAddr to a csrow.  See
144  *         sections 3.5.4 and 3.5.5 for more information.
145  */
146 
147 #define EDAC_AMD64_VERSION		"3.4.0"
148 #define EDAC_MOD_STR			"amd64_edac"
149 
150 /* Extended Model from CPUID, for CPU Revision numbers */
151 #define K8_REV_D			1
152 #define K8_REV_E			2
153 #define K8_REV_F			4
154 
155 /* Hardware limit on ChipSelect rows per MC and processors per system */
156 #define NUM_CHIPSELECTS			8
157 #define DRAM_RANGES			8
158 
159 #define ON true
160 #define OFF false
161 
162 /*
163  * PCI-defined configuration space registers
164  */
165 #define PCI_DEVICE_ID_AMD_15H_M30H_NB_F1 0x141b
166 #define PCI_DEVICE_ID_AMD_15H_M30H_NB_F2 0x141c
167 #define PCI_DEVICE_ID_AMD_15H_NB_F1	0x1601
168 #define PCI_DEVICE_ID_AMD_15H_NB_F2	0x1602
169 #define PCI_DEVICE_ID_AMD_16H_NB_F1	0x1531
170 #define PCI_DEVICE_ID_AMD_16H_NB_F2	0x1532
171 
172 /*
173  * Function 1 - Address Map
174  */
175 #define DRAM_BASE_LO			0x40
176 #define DRAM_LIMIT_LO			0x44
177 
178 /*
179  * F15 M30h D18F1x2[1C:00]
180  */
181 #define DRAM_CONT_BASE			0x200
182 #define DRAM_CONT_LIMIT			0x204
183 
184 /*
185  * F15 M30h D18F1x2[4C:40]
186  */
187 #define DRAM_CONT_HIGH_OFF		0x240
188 
189 #define dram_rw(pvt, i)			((u8)(pvt->ranges[i].base.lo & 0x3))
190 #define dram_intlv_sel(pvt, i)		((u8)((pvt->ranges[i].lim.lo >> 8) & 0x7))
191 #define dram_dst_node(pvt, i)		((u8)(pvt->ranges[i].lim.lo & 0x7))
192 
193 #define DHAR				0xf0
194 #define dhar_mem_hoist_valid(pvt)	((pvt)->dhar & BIT(1))
195 #define dhar_base(pvt)			((pvt)->dhar & 0xff000000)
196 #define k8_dhar_offset(pvt)		(((pvt)->dhar & 0x0000ff00) << 16)
197 
198 					/* NOTE: Extra mask bit vs K8 */
199 #define f10_dhar_offset(pvt)		(((pvt)->dhar & 0x0000ff80) << 16)
200 
201 #define DCT_CFG_SEL			0x10C
202 
203 #define DRAM_LOCAL_NODE_BASE		0x120
204 #define DRAM_LOCAL_NODE_LIM		0x124
205 
206 #define DRAM_BASE_HI			0x140
207 #define DRAM_LIMIT_HI			0x144
208 
209 
210 /*
211  * Function 2 - DRAM controller
212  */
213 #define DCSB0				0x40
214 #define DCSB1				0x140
215 #define DCSB_CS_ENABLE			BIT(0)
216 
217 #define DCSM0				0x60
218 #define DCSM1				0x160
219 
220 #define csrow_enabled(i, dct, pvt)	((pvt)->csels[(dct)].csbases[(i)] & DCSB_CS_ENABLE)
221 
222 #define DBAM0				0x80
223 #define DBAM1				0x180
224 
225 /* Extract the DIMM 'type' on the i'th DIMM from the DBAM reg value passed */
226 #define DBAM_DIMM(i, reg)		((((reg) >> (4*(i)))) & 0xF)
227 
228 #define DBAM_MAX_VALUE			11
229 
230 #define DCLR0				0x90
231 #define DCLR1				0x190
232 #define REVE_WIDTH_128			BIT(16)
233 #define WIDTH_128			BIT(11)
234 
235 #define DCHR0				0x94
236 #define DCHR1				0x194
237 #define DDR3_MODE			BIT(8)
238 
239 #define DCT_SEL_LO			0x110
240 #define dct_high_range_enabled(pvt)	((pvt)->dct_sel_lo & BIT(0))
241 #define dct_interleave_enabled(pvt)	((pvt)->dct_sel_lo & BIT(2))
242 
243 #define dct_ganging_enabled(pvt)	((boot_cpu_data.x86 == 0x10) && ((pvt)->dct_sel_lo & BIT(4)))
244 
245 #define dct_data_intlv_enabled(pvt)	((pvt)->dct_sel_lo & BIT(5))
246 #define dct_memory_cleared(pvt)		((pvt)->dct_sel_lo & BIT(10))
247 
248 #define SWAP_INTLV_REG			0x10c
249 
250 #define DCT_SEL_HI			0x114
251 
252 /*
253  * Function 3 - Misc Control
254  */
255 #define NBCTL				0x40
256 
257 #define NBCFG				0x44
258 #define NBCFG_CHIPKILL			BIT(23)
259 #define NBCFG_ECC_ENABLE		BIT(22)
260 
261 /* F3x48: NBSL */
262 #define F10_NBSL_EXT_ERR_ECC		0x8
263 #define NBSL_PP_OBS			0x2
264 
265 #define SCRCTRL				0x58
266 
267 #define F10_ONLINE_SPARE		0xB0
268 #define online_spare_swap_done(pvt, c)	(((pvt)->online_spare >> (1 + 2 * (c))) & 0x1)
269 #define online_spare_bad_dramcs(pvt, c)	(((pvt)->online_spare >> (4 + 4 * (c))) & 0x7)
270 
271 #define F10_NB_ARRAY_ADDR		0xB8
272 #define F10_NB_ARRAY_DRAM		BIT(31)
273 
274 /* Bits [2:1] are used to select 16-byte section within a 64-byte cacheline  */
275 #define SET_NB_ARRAY_ADDR(section)	(((section) & 0x3) << 1)
276 
277 #define F10_NB_ARRAY_DATA		0xBC
278 #define F10_NB_ARR_ECC_WR_REQ		BIT(17)
279 #define SET_NB_DRAM_INJECTION_WRITE(inj)  \
280 					(BIT(((inj.word) & 0xF) + 20) | \
281 					F10_NB_ARR_ECC_WR_REQ | inj.bit_map)
282 #define SET_NB_DRAM_INJECTION_READ(inj)  \
283 					(BIT(((inj.word) & 0xF) + 20) | \
284 					BIT(16) |  inj.bit_map)
285 
286 
287 #define NBCAP				0xE8
288 #define NBCAP_CHIPKILL			BIT(4)
289 #define NBCAP_SECDED			BIT(3)
290 #define NBCAP_DCT_DUAL			BIT(0)
291 
292 #define EXT_NB_MCA_CFG			0x180
293 
294 /* MSRs */
295 #define MSR_MCGCTL_NBE			BIT(4)
296 
297 enum amd_families {
298 	K8_CPUS = 0,
299 	F10_CPUS,
300 	F15_CPUS,
301 	F15_M30H_CPUS,
302 	F16_CPUS,
303 	NUM_FAMILIES,
304 };
305 
306 /* Error injection control structure */
307 struct error_injection {
308 	u32	 section;
309 	u32	 word;
310 	u32	 bit_map;
311 };
312 
313 /* low and high part of PCI config space regs */
314 struct reg_pair {
315 	u32 lo, hi;
316 };
317 
318 /*
319  * See F1x[1, 0][7C:40] DRAM Base/Limit Registers
320  */
321 struct dram_range {
322 	struct reg_pair base;
323 	struct reg_pair lim;
324 };
325 
326 /* A DCT chip selects collection */
327 struct chip_select {
328 	u32 csbases[NUM_CHIPSELECTS];
329 	u8 b_cnt;
330 
331 	u32 csmasks[NUM_CHIPSELECTS];
332 	u8 m_cnt;
333 };
334 
335 struct amd64_pvt {
336 	struct low_ops *ops;
337 
338 	/* pci_device handles which we utilize */
339 	struct pci_dev *F1, *F2, *F3;
340 
341 	u16 mc_node_id;		/* MC index of this MC node */
342 	u8 fam;			/* CPU family */
343 	u8 model;		/* ... model */
344 	u8 stepping;		/* ... stepping */
345 
346 	int ext_model;		/* extended model value of this node */
347 	int channel_count;
348 
349 	/* Raw registers */
350 	u32 dclr0;		/* DRAM Configuration Low DCT0 reg */
351 	u32 dclr1;		/* DRAM Configuration Low DCT1 reg */
352 	u32 dchr0;		/* DRAM Configuration High DCT0 reg */
353 	u32 dchr1;		/* DRAM Configuration High DCT1 reg */
354 	u32 nbcap;		/* North Bridge Capabilities */
355 	u32 nbcfg;		/* F10 North Bridge Configuration */
356 	u32 ext_nbcfg;		/* Extended F10 North Bridge Configuration */
357 	u32 dhar;		/* DRAM Hoist reg */
358 	u32 dbam0;		/* DRAM Base Address Mapping reg for DCT0 */
359 	u32 dbam1;		/* DRAM Base Address Mapping reg for DCT1 */
360 
361 	/* one for each DCT */
362 	struct chip_select csels[2];
363 
364 	/* DRAM base and limit pairs F1x[78,70,68,60,58,50,48,40] */
365 	struct dram_range ranges[DRAM_RANGES];
366 
367 	u64 top_mem;		/* top of memory below 4GB */
368 	u64 top_mem2;		/* top of memory above 4GB */
369 
370 	u32 dct_sel_lo;		/* DRAM Controller Select Low */
371 	u32 dct_sel_hi;		/* DRAM Controller Select High */
372 	u32 online_spare;	/* On-Line spare Reg */
373 
374 	/* x4 or x8 syndromes in use */
375 	u8 ecc_sym_sz;
376 
377 	/* place to store error injection parameters prior to issue */
378 	struct error_injection injection;
379 };
380 
381 enum err_codes {
382 	DECODE_OK	=  0,
383 	ERR_NODE	= -1,
384 	ERR_CSROW	= -2,
385 	ERR_CHANNEL	= -3,
386 };
387 
388 struct err_info {
389 	int err_code;
390 	struct mem_ctl_info *src_mci;
391 	int csrow;
392 	int channel;
393 	u16 syndrome;
394 	u32 page;
395 	u32 offset;
396 };
397 
398 static inline u64 get_dram_base(struct amd64_pvt *pvt, u8 i)
399 {
400 	u64 addr = ((u64)pvt->ranges[i].base.lo & 0xffff0000) << 8;
401 
402 	if (boot_cpu_data.x86 == 0xf)
403 		return addr;
404 
405 	return (((u64)pvt->ranges[i].base.hi & 0x000000ff) << 40) | addr;
406 }
407 
408 static inline u64 get_dram_limit(struct amd64_pvt *pvt, u8 i)
409 {
410 	u64 lim = (((u64)pvt->ranges[i].lim.lo & 0xffff0000) << 8) | 0x00ffffff;
411 
412 	if (boot_cpu_data.x86 == 0xf)
413 		return lim;
414 
415 	return (((u64)pvt->ranges[i].lim.hi & 0x000000ff) << 40) | lim;
416 }
417 
418 static inline u16 extract_syndrome(u64 status)
419 {
420 	return ((status >> 47) & 0xff) | ((status >> 16) & 0xff00);
421 }
422 
423 static inline u8 dct_sel_interleave_addr(struct amd64_pvt *pvt)
424 {
425 	if (pvt->fam == 0x15 && pvt->model >= 0x30)
426 		return (((pvt->dct_sel_hi >> 9) & 0x1) << 2) |
427 			((pvt->dct_sel_lo >> 6) & 0x3);
428 
429 	return	((pvt)->dct_sel_lo >> 6) & 0x3;
430 }
431 /*
432  * per-node ECC settings descriptor
433  */
434 struct ecc_settings {
435 	u32 old_nbctl;
436 	bool nbctl_valid;
437 
438 	struct flags {
439 		unsigned long nb_mce_enable:1;
440 		unsigned long nb_ecc_prev:1;
441 	} flags;
442 };
443 
444 #ifdef CONFIG_EDAC_DEBUG
445 int amd64_create_sysfs_dbg_files(struct mem_ctl_info *mci);
446 void amd64_remove_sysfs_dbg_files(struct mem_ctl_info *mci);
447 
448 #else
449 static inline int amd64_create_sysfs_dbg_files(struct mem_ctl_info *mci)
450 {
451 	return 0;
452 }
453 static void inline amd64_remove_sysfs_dbg_files(struct mem_ctl_info *mci)
454 {
455 }
456 #endif
457 
458 #ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION
459 int amd64_create_sysfs_inject_files(struct mem_ctl_info *mci);
460 void amd64_remove_sysfs_inject_files(struct mem_ctl_info *mci);
461 
462 #else
463 static inline int amd64_create_sysfs_inject_files(struct mem_ctl_info *mci)
464 {
465 	return 0;
466 }
467 static inline void amd64_remove_sysfs_inject_files(struct mem_ctl_info *mci)
468 {
469 }
470 #endif
471 
472 /*
473  * Each of the PCI Device IDs types have their own set of hardware accessor
474  * functions and per device encoding/decoding logic.
475  */
476 struct low_ops {
477 	int (*early_channel_count)	(struct amd64_pvt *pvt);
478 	void (*map_sysaddr_to_csrow)	(struct mem_ctl_info *mci, u64 sys_addr,
479 					 struct err_info *);
480 	int (*dbam_to_cs)		(struct amd64_pvt *pvt, u8 dct, unsigned cs_mode);
481 	int (*read_dct_pci_cfg)		(struct amd64_pvt *pvt, int offset,
482 					 u32 *val, const char *func);
483 };
484 
485 struct amd64_family_type {
486 	const char *ctl_name;
487 	u16 f1_id, f3_id;
488 	struct low_ops ops;
489 };
490 
491 int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
492 			       u32 *val, const char *func);
493 int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
494 				u32 val, const char *func);
495 
496 #define amd64_read_pci_cfg(pdev, offset, val)	\
497 	__amd64_read_pci_cfg_dword(pdev, offset, val, __func__)
498 
499 #define amd64_write_pci_cfg(pdev, offset, val)	\
500 	__amd64_write_pci_cfg_dword(pdev, offset, val, __func__)
501 
502 #define amd64_read_dct_pci_cfg(pvt, offset, val) \
503 	pvt->ops->read_dct_pci_cfg(pvt, offset, val, __func__)
504 
505 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
506 			     u64 *hole_offset, u64 *hole_size);
507 
508 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
509 
510 /* Injection helpers */
511 static inline void disable_caches(void *dummy)
512 {
513 	write_cr0(read_cr0() | X86_CR0_CD);
514 	wbinvd();
515 }
516 
517 static inline void enable_caches(void *dummy)
518 {
519 	write_cr0(read_cr0() & ~X86_CR0_CD);
520 }
521 
522 static inline u8 dram_intlv_en(struct amd64_pvt *pvt, unsigned int i)
523 {
524 	if (pvt->fam == 0x15 && pvt->model >= 0x30) {
525 		u32 tmp;
526 		amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &tmp);
527 		return (u8) tmp & 0xF;
528 	}
529 	return (u8) (pvt->ranges[i].base.lo >> 8) & 0x7;
530 }
531 
532 static inline u8 dhar_valid(struct amd64_pvt *pvt)
533 {
534 	if (pvt->fam == 0x15 && pvt->model >= 0x30) {
535 		u32 tmp;
536 		amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &tmp);
537 		return (tmp >> 1) & BIT(0);
538 	}
539 	return (pvt)->dhar & BIT(0);
540 }
541 
542 static inline u32 dct_sel_baseaddr(struct amd64_pvt *pvt)
543 {
544 	if (pvt->fam == 0x15 && pvt->model >= 0x30) {
545 		u32 tmp;
546 		amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &tmp);
547 		return (tmp >> 11) & 0x1FFF;
548 	}
549 	return (pvt)->dct_sel_lo & 0xFFFFF800;
550 }
551