1 // SPDX-License-Identifier: GPL-2.0-only 2 #include "amd64_edac.h" 3 #include <asm/amd_nb.h> 4 5 static struct edac_pci_ctl_info *pci_ctl; 6 7 /* 8 * Set by command line parameter. If BIOS has enabled the ECC, this override is 9 * cleared to prevent re-enabling the hardware by this driver. 10 */ 11 static int ecc_enable_override; 12 module_param(ecc_enable_override, int, 0644); 13 14 static struct msr __percpu *msrs; 15 16 static struct amd64_family_type *fam_type; 17 18 /* Per-node stuff */ 19 static struct ecc_settings **ecc_stngs; 20 21 /* 22 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing 23 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching- 24 * or higher value'. 25 * 26 *FIXME: Produce a better mapping/linearisation. 27 */ 28 static const struct scrubrate { 29 u32 scrubval; /* bit pattern for scrub rate */ 30 u32 bandwidth; /* bandwidth consumed (bytes/sec) */ 31 } scrubrates[] = { 32 { 0x01, 1600000000UL}, 33 { 0x02, 800000000UL}, 34 { 0x03, 400000000UL}, 35 { 0x04, 200000000UL}, 36 { 0x05, 100000000UL}, 37 { 0x06, 50000000UL}, 38 { 0x07, 25000000UL}, 39 { 0x08, 12284069UL}, 40 { 0x09, 6274509UL}, 41 { 0x0A, 3121951UL}, 42 { 0x0B, 1560975UL}, 43 { 0x0C, 781440UL}, 44 { 0x0D, 390720UL}, 45 { 0x0E, 195300UL}, 46 { 0x0F, 97650UL}, 47 { 0x10, 48854UL}, 48 { 0x11, 24427UL}, 49 { 0x12, 12213UL}, 50 { 0x13, 6101UL}, 51 { 0x14, 3051UL}, 52 { 0x15, 1523UL}, 53 { 0x16, 761UL}, 54 { 0x00, 0UL}, /* scrubbing off */ 55 }; 56 57 int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset, 58 u32 *val, const char *func) 59 { 60 int err = 0; 61 62 err = pci_read_config_dword(pdev, offset, val); 63 if (err) 64 amd64_warn("%s: error reading F%dx%03x.\n", 65 func, PCI_FUNC(pdev->devfn), offset); 66 67 return err; 68 } 69 70 int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset, 71 u32 val, const char *func) 72 { 73 int err = 0; 74 75 err = pci_write_config_dword(pdev, offset, val); 76 if (err) 77 amd64_warn("%s: error writing to F%dx%03x.\n", 78 func, PCI_FUNC(pdev->devfn), offset); 79 80 return err; 81 } 82 83 /* 84 * Select DCT to which PCI cfg accesses are routed 85 */ 86 static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct) 87 { 88 u32 reg = 0; 89 90 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, ®); 91 reg &= (pvt->model == 0x30) ? ~3 : ~1; 92 reg |= dct; 93 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg); 94 } 95 96 /* 97 * 98 * Depending on the family, F2 DCT reads need special handling: 99 * 100 * K8: has a single DCT only and no address offsets >= 0x100 101 * 102 * F10h: each DCT has its own set of regs 103 * DCT0 -> F2x040.. 104 * DCT1 -> F2x140.. 105 * 106 * F16h: has only 1 DCT 107 * 108 * F15h: we select which DCT we access using F1x10C[DctCfgSel] 109 */ 110 static inline int amd64_read_dct_pci_cfg(struct amd64_pvt *pvt, u8 dct, 111 int offset, u32 *val) 112 { 113 switch (pvt->fam) { 114 case 0xf: 115 if (dct || offset >= 0x100) 116 return -EINVAL; 117 break; 118 119 case 0x10: 120 if (dct) { 121 /* 122 * Note: If ganging is enabled, barring the regs 123 * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx 124 * return 0. (cf. Section 2.8.1 F10h BKDG) 125 */ 126 if (dct_ganging_enabled(pvt)) 127 return 0; 128 129 offset += 0x100; 130 } 131 break; 132 133 case 0x15: 134 /* 135 * F15h: F2x1xx addresses do not map explicitly to DCT1. 136 * We should select which DCT we access using F1x10C[DctCfgSel] 137 */ 138 dct = (dct && pvt->model == 0x30) ? 3 : dct; 139 f15h_select_dct(pvt, dct); 140 break; 141 142 case 0x16: 143 if (dct) 144 return -EINVAL; 145 break; 146 147 default: 148 break; 149 } 150 return amd64_read_pci_cfg(pvt->F2, offset, val); 151 } 152 153 /* 154 * Memory scrubber control interface. For K8, memory scrubbing is handled by 155 * hardware and can involve L2 cache, dcache as well as the main memory. With 156 * F10, this is extended to L3 cache scrubbing on CPU models sporting that 157 * functionality. 158 * 159 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks 160 * (dram) over to cache lines. This is nasty, so we will use bandwidth in 161 * bytes/sec for the setting. 162 * 163 * Currently, we only do dram scrubbing. If the scrubbing is done in software on 164 * other archs, we might not have access to the caches directly. 165 */ 166 167 static inline void __f17h_set_scrubval(struct amd64_pvt *pvt, u32 scrubval) 168 { 169 /* 170 * Fam17h supports scrub values between 0x5 and 0x14. Also, the values 171 * are shifted down by 0x5, so scrubval 0x5 is written to the register 172 * as 0x0, scrubval 0x6 as 0x1, etc. 173 */ 174 if (scrubval >= 0x5 && scrubval <= 0x14) { 175 scrubval -= 0x5; 176 pci_write_bits32(pvt->F6, F17H_SCR_LIMIT_ADDR, scrubval, 0xF); 177 pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 1, 0x1); 178 } else { 179 pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 0, 0x1); 180 } 181 } 182 /* 183 * Scan the scrub rate mapping table for a close or matching bandwidth value to 184 * issue. If requested is too big, then use last maximum value found. 185 */ 186 static int __set_scrub_rate(struct amd64_pvt *pvt, u32 new_bw, u32 min_rate) 187 { 188 u32 scrubval; 189 int i; 190 191 /* 192 * map the configured rate (new_bw) to a value specific to the AMD64 193 * memory controller and apply to register. Search for the first 194 * bandwidth entry that is greater or equal than the setting requested 195 * and program that. If at last entry, turn off DRAM scrubbing. 196 * 197 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely 198 * by falling back to the last element in scrubrates[]. 199 */ 200 for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) { 201 /* 202 * skip scrub rates which aren't recommended 203 * (see F10 BKDG, F3x58) 204 */ 205 if (scrubrates[i].scrubval < min_rate) 206 continue; 207 208 if (scrubrates[i].bandwidth <= new_bw) 209 break; 210 } 211 212 scrubval = scrubrates[i].scrubval; 213 214 if (pvt->umc) { 215 __f17h_set_scrubval(pvt, scrubval); 216 } else if (pvt->fam == 0x15 && pvt->model == 0x60) { 217 f15h_select_dct(pvt, 0); 218 pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F); 219 f15h_select_dct(pvt, 1); 220 pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F); 221 } else { 222 pci_write_bits32(pvt->F3, SCRCTRL, scrubval, 0x001F); 223 } 224 225 if (scrubval) 226 return scrubrates[i].bandwidth; 227 228 return 0; 229 } 230 231 static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw) 232 { 233 struct amd64_pvt *pvt = mci->pvt_info; 234 u32 min_scrubrate = 0x5; 235 236 if (pvt->fam == 0xf) 237 min_scrubrate = 0x0; 238 239 if (pvt->fam == 0x15) { 240 /* Erratum #505 */ 241 if (pvt->model < 0x10) 242 f15h_select_dct(pvt, 0); 243 244 if (pvt->model == 0x60) 245 min_scrubrate = 0x6; 246 } 247 return __set_scrub_rate(pvt, bw, min_scrubrate); 248 } 249 250 static int get_scrub_rate(struct mem_ctl_info *mci) 251 { 252 struct amd64_pvt *pvt = mci->pvt_info; 253 int i, retval = -EINVAL; 254 u32 scrubval = 0; 255 256 if (pvt->umc) { 257 amd64_read_pci_cfg(pvt->F6, F17H_SCR_BASE_ADDR, &scrubval); 258 if (scrubval & BIT(0)) { 259 amd64_read_pci_cfg(pvt->F6, F17H_SCR_LIMIT_ADDR, &scrubval); 260 scrubval &= 0xF; 261 scrubval += 0x5; 262 } else { 263 scrubval = 0; 264 } 265 } else if (pvt->fam == 0x15) { 266 /* Erratum #505 */ 267 if (pvt->model < 0x10) 268 f15h_select_dct(pvt, 0); 269 270 if (pvt->model == 0x60) 271 amd64_read_pci_cfg(pvt->F2, F15H_M60H_SCRCTRL, &scrubval); 272 else 273 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval); 274 } else { 275 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval); 276 } 277 278 scrubval = scrubval & 0x001F; 279 280 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) { 281 if (scrubrates[i].scrubval == scrubval) { 282 retval = scrubrates[i].bandwidth; 283 break; 284 } 285 } 286 return retval; 287 } 288 289 /* 290 * returns true if the SysAddr given by sys_addr matches the 291 * DRAM base/limit associated with node_id 292 */ 293 static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid) 294 { 295 u64 addr; 296 297 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be 298 * all ones if the most significant implemented address bit is 1. 299 * Here we discard bits 63-40. See section 3.4.2 of AMD publication 300 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1 301 * Application Programming. 302 */ 303 addr = sys_addr & 0x000000ffffffffffull; 304 305 return ((addr >= get_dram_base(pvt, nid)) && 306 (addr <= get_dram_limit(pvt, nid))); 307 } 308 309 /* 310 * Attempt to map a SysAddr to a node. On success, return a pointer to the 311 * mem_ctl_info structure for the node that the SysAddr maps to. 312 * 313 * On failure, return NULL. 314 */ 315 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci, 316 u64 sys_addr) 317 { 318 struct amd64_pvt *pvt; 319 u8 node_id; 320 u32 intlv_en, bits; 321 322 /* 323 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section 324 * 3.4.4.2) registers to map the SysAddr to a node ID. 325 */ 326 pvt = mci->pvt_info; 327 328 /* 329 * The value of this field should be the same for all DRAM Base 330 * registers. Therefore we arbitrarily choose to read it from the 331 * register for node 0. 332 */ 333 intlv_en = dram_intlv_en(pvt, 0); 334 335 if (intlv_en == 0) { 336 for (node_id = 0; node_id < DRAM_RANGES; node_id++) { 337 if (base_limit_match(pvt, sys_addr, node_id)) 338 goto found; 339 } 340 goto err_no_match; 341 } 342 343 if (unlikely((intlv_en != 0x01) && 344 (intlv_en != 0x03) && 345 (intlv_en != 0x07))) { 346 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en); 347 return NULL; 348 } 349 350 bits = (((u32) sys_addr) >> 12) & intlv_en; 351 352 for (node_id = 0; ; ) { 353 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits) 354 break; /* intlv_sel field matches */ 355 356 if (++node_id >= DRAM_RANGES) 357 goto err_no_match; 358 } 359 360 /* sanity test for sys_addr */ 361 if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) { 362 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address" 363 "range for node %d with node interleaving enabled.\n", 364 __func__, sys_addr, node_id); 365 return NULL; 366 } 367 368 found: 369 return edac_mc_find((int)node_id); 370 371 err_no_match: 372 edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n", 373 (unsigned long)sys_addr); 374 375 return NULL; 376 } 377 378 /* 379 * compute the CS base address of the @csrow on the DRAM controller @dct. 380 * For details see F2x[5C:40] in the processor's BKDG 381 */ 382 static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct, 383 u64 *base, u64 *mask) 384 { 385 u64 csbase, csmask, base_bits, mask_bits; 386 u8 addr_shift; 387 388 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) { 389 csbase = pvt->csels[dct].csbases[csrow]; 390 csmask = pvt->csels[dct].csmasks[csrow]; 391 base_bits = GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9); 392 mask_bits = GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9); 393 addr_shift = 4; 394 395 /* 396 * F16h and F15h, models 30h and later need two addr_shift values: 397 * 8 for high and 6 for low (cf. F16h BKDG). 398 */ 399 } else if (pvt->fam == 0x16 || 400 (pvt->fam == 0x15 && pvt->model >= 0x30)) { 401 csbase = pvt->csels[dct].csbases[csrow]; 402 csmask = pvt->csels[dct].csmasks[csrow >> 1]; 403 404 *base = (csbase & GENMASK_ULL(15, 5)) << 6; 405 *base |= (csbase & GENMASK_ULL(30, 19)) << 8; 406 407 *mask = ~0ULL; 408 /* poke holes for the csmask */ 409 *mask &= ~((GENMASK_ULL(15, 5) << 6) | 410 (GENMASK_ULL(30, 19) << 8)); 411 412 *mask |= (csmask & GENMASK_ULL(15, 5)) << 6; 413 *mask |= (csmask & GENMASK_ULL(30, 19)) << 8; 414 415 return; 416 } else { 417 csbase = pvt->csels[dct].csbases[csrow]; 418 csmask = pvt->csels[dct].csmasks[csrow >> 1]; 419 addr_shift = 8; 420 421 if (pvt->fam == 0x15) 422 base_bits = mask_bits = 423 GENMASK_ULL(30,19) | GENMASK_ULL(13,5); 424 else 425 base_bits = mask_bits = 426 GENMASK_ULL(28,19) | GENMASK_ULL(13,5); 427 } 428 429 *base = (csbase & base_bits) << addr_shift; 430 431 *mask = ~0ULL; 432 /* poke holes for the csmask */ 433 *mask &= ~(mask_bits << addr_shift); 434 /* OR them in */ 435 *mask |= (csmask & mask_bits) << addr_shift; 436 } 437 438 #define for_each_chip_select(i, dct, pvt) \ 439 for (i = 0; i < pvt->csels[dct].b_cnt; i++) 440 441 #define chip_select_base(i, dct, pvt) \ 442 pvt->csels[dct].csbases[i] 443 444 #define for_each_chip_select_mask(i, dct, pvt) \ 445 for (i = 0; i < pvt->csels[dct].m_cnt; i++) 446 447 #define for_each_umc(i) \ 448 for (i = 0; i < fam_type->max_mcs; i++) 449 450 /* 451 * @input_addr is an InputAddr associated with the node given by mci. Return the 452 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr). 453 */ 454 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr) 455 { 456 struct amd64_pvt *pvt; 457 int csrow; 458 u64 base, mask; 459 460 pvt = mci->pvt_info; 461 462 for_each_chip_select(csrow, 0, pvt) { 463 if (!csrow_enabled(csrow, 0, pvt)) 464 continue; 465 466 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask); 467 468 mask = ~mask; 469 470 if ((input_addr & mask) == (base & mask)) { 471 edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n", 472 (unsigned long)input_addr, csrow, 473 pvt->mc_node_id); 474 475 return csrow; 476 } 477 } 478 edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n", 479 (unsigned long)input_addr, pvt->mc_node_id); 480 481 return -1; 482 } 483 484 /* 485 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094) 486 * for the node represented by mci. Info is passed back in *hole_base, 487 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if 488 * info is invalid. Info may be invalid for either of the following reasons: 489 * 490 * - The revision of the node is not E or greater. In this case, the DRAM Hole 491 * Address Register does not exist. 492 * 493 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register, 494 * indicating that its contents are not valid. 495 * 496 * The values passed back in *hole_base, *hole_offset, and *hole_size are 497 * complete 32-bit values despite the fact that the bitfields in the DHAR 498 * only represent bits 31-24 of the base and offset values. 499 */ 500 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base, 501 u64 *hole_offset, u64 *hole_size) 502 { 503 struct amd64_pvt *pvt = mci->pvt_info; 504 505 /* only revE and later have the DRAM Hole Address Register */ 506 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) { 507 edac_dbg(1, " revision %d for node %d does not support DHAR\n", 508 pvt->ext_model, pvt->mc_node_id); 509 return 1; 510 } 511 512 /* valid for Fam10h and above */ 513 if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) { 514 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n"); 515 return 1; 516 } 517 518 if (!dhar_valid(pvt)) { 519 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n", 520 pvt->mc_node_id); 521 return 1; 522 } 523 524 /* This node has Memory Hoisting */ 525 526 /* +------------------+--------------------+--------------------+----- 527 * | memory | DRAM hole | relocated | 528 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from | 529 * | | | DRAM hole | 530 * | | | [0x100000000, | 531 * | | | (0x100000000+ | 532 * | | | (0xffffffff-x))] | 533 * +------------------+--------------------+--------------------+----- 534 * 535 * Above is a diagram of physical memory showing the DRAM hole and the 536 * relocated addresses from the DRAM hole. As shown, the DRAM hole 537 * starts at address x (the base address) and extends through address 538 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the 539 * addresses in the hole so that they start at 0x100000000. 540 */ 541 542 *hole_base = dhar_base(pvt); 543 *hole_size = (1ULL << 32) - *hole_base; 544 545 *hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt) 546 : k8_dhar_offset(pvt); 547 548 edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n", 549 pvt->mc_node_id, (unsigned long)*hole_base, 550 (unsigned long)*hole_offset, (unsigned long)*hole_size); 551 552 return 0; 553 } 554 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info); 555 556 /* 557 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is 558 * assumed that sys_addr maps to the node given by mci. 559 * 560 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section 561 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a 562 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled, 563 * then it is also involved in translating a SysAddr to a DramAddr. Sections 564 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting. 565 * These parts of the documentation are unclear. I interpret them as follows: 566 * 567 * When node n receives a SysAddr, it processes the SysAddr as follows: 568 * 569 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM 570 * Limit registers for node n. If the SysAddr is not within the range 571 * specified by the base and limit values, then node n ignores the Sysaddr 572 * (since it does not map to node n). Otherwise continue to step 2 below. 573 * 574 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is 575 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within 576 * the range of relocated addresses (starting at 0x100000000) from the DRAM 577 * hole. If not, skip to step 3 below. Else get the value of the 578 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the 579 * offset defined by this value from the SysAddr. 580 * 581 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM 582 * Base register for node n. To obtain the DramAddr, subtract the base 583 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70). 584 */ 585 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr) 586 { 587 struct amd64_pvt *pvt = mci->pvt_info; 588 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr; 589 int ret; 590 591 dram_base = get_dram_base(pvt, pvt->mc_node_id); 592 593 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset, 594 &hole_size); 595 if (!ret) { 596 if ((sys_addr >= (1ULL << 32)) && 597 (sys_addr < ((1ULL << 32) + hole_size))) { 598 /* use DHAR to translate SysAddr to DramAddr */ 599 dram_addr = sys_addr - hole_offset; 600 601 edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n", 602 (unsigned long)sys_addr, 603 (unsigned long)dram_addr); 604 605 return dram_addr; 606 } 607 } 608 609 /* 610 * Translate the SysAddr to a DramAddr as shown near the start of 611 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8 612 * only deals with 40-bit values. Therefore we discard bits 63-40 of 613 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we 614 * discard are all 1s. Otherwise the bits we discard are all 0s. See 615 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture 616 * Programmer's Manual Volume 1 Application Programming. 617 */ 618 dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base; 619 620 edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n", 621 (unsigned long)sys_addr, (unsigned long)dram_addr); 622 return dram_addr; 623 } 624 625 /* 626 * @intlv_en is the value of the IntlvEn field from a DRAM Base register 627 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used 628 * for node interleaving. 629 */ 630 static int num_node_interleave_bits(unsigned intlv_en) 631 { 632 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 }; 633 int n; 634 635 BUG_ON(intlv_en > 7); 636 n = intlv_shift_table[intlv_en]; 637 return n; 638 } 639 640 /* Translate the DramAddr given by @dram_addr to an InputAddr. */ 641 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr) 642 { 643 struct amd64_pvt *pvt; 644 int intlv_shift; 645 u64 input_addr; 646 647 pvt = mci->pvt_info; 648 649 /* 650 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E) 651 * concerning translating a DramAddr to an InputAddr. 652 */ 653 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0)); 654 input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) + 655 (dram_addr & 0xfff); 656 657 edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n", 658 intlv_shift, (unsigned long)dram_addr, 659 (unsigned long)input_addr); 660 661 return input_addr; 662 } 663 664 /* 665 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is 666 * assumed that @sys_addr maps to the node given by mci. 667 */ 668 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr) 669 { 670 u64 input_addr; 671 672 input_addr = 673 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr)); 674 675 edac_dbg(2, "SysAddr 0x%lx translates to InputAddr 0x%lx\n", 676 (unsigned long)sys_addr, (unsigned long)input_addr); 677 678 return input_addr; 679 } 680 681 /* Map the Error address to a PAGE and PAGE OFFSET. */ 682 static inline void error_address_to_page_and_offset(u64 error_address, 683 struct err_info *err) 684 { 685 err->page = (u32) (error_address >> PAGE_SHIFT); 686 err->offset = ((u32) error_address) & ~PAGE_MASK; 687 } 688 689 /* 690 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address 691 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers 692 * of a node that detected an ECC memory error. mci represents the node that 693 * the error address maps to (possibly different from the node that detected 694 * the error). Return the number of the csrow that sys_addr maps to, or -1 on 695 * error. 696 */ 697 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr) 698 { 699 int csrow; 700 701 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr)); 702 703 if (csrow == -1) 704 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for " 705 "address 0x%lx\n", (unsigned long)sys_addr); 706 return csrow; 707 } 708 709 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16); 710 711 /* 712 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs 713 * are ECC capable. 714 */ 715 static unsigned long determine_edac_cap(struct amd64_pvt *pvt) 716 { 717 unsigned long edac_cap = EDAC_FLAG_NONE; 718 u8 bit; 719 720 if (pvt->umc) { 721 u8 i, umc_en_mask = 0, dimm_ecc_en_mask = 0; 722 723 for_each_umc(i) { 724 if (!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT)) 725 continue; 726 727 umc_en_mask |= BIT(i); 728 729 /* UMC Configuration bit 12 (DimmEccEn) */ 730 if (pvt->umc[i].umc_cfg & BIT(12)) 731 dimm_ecc_en_mask |= BIT(i); 732 } 733 734 if (umc_en_mask == dimm_ecc_en_mask) 735 edac_cap = EDAC_FLAG_SECDED; 736 } else { 737 bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F) 738 ? 19 739 : 17; 740 741 if (pvt->dclr0 & BIT(bit)) 742 edac_cap = EDAC_FLAG_SECDED; 743 } 744 745 return edac_cap; 746 } 747 748 static void debug_display_dimm_sizes(struct amd64_pvt *, u8); 749 750 static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan) 751 { 752 edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr); 753 754 if (pvt->dram_type == MEM_LRDDR3) { 755 u32 dcsm = pvt->csels[chan].csmasks[0]; 756 /* 757 * It's assumed all LRDIMMs in a DCT are going to be of 758 * same 'type' until proven otherwise. So, use a cs 759 * value of '0' here to get dcsm value. 760 */ 761 edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm & 0x3)); 762 } 763 764 edac_dbg(1, "All DIMMs support ECC:%s\n", 765 (dclr & BIT(19)) ? "yes" : "no"); 766 767 768 edac_dbg(1, " PAR/ERR parity: %s\n", 769 (dclr & BIT(8)) ? "enabled" : "disabled"); 770 771 if (pvt->fam == 0x10) 772 edac_dbg(1, " DCT 128bit mode width: %s\n", 773 (dclr & BIT(11)) ? "128b" : "64b"); 774 775 edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n", 776 (dclr & BIT(12)) ? "yes" : "no", 777 (dclr & BIT(13)) ? "yes" : "no", 778 (dclr & BIT(14)) ? "yes" : "no", 779 (dclr & BIT(15)) ? "yes" : "no"); 780 } 781 782 #define CS_EVEN_PRIMARY BIT(0) 783 #define CS_ODD_PRIMARY BIT(1) 784 #define CS_EVEN_SECONDARY BIT(2) 785 #define CS_ODD_SECONDARY BIT(3) 786 787 #define CS_EVEN (CS_EVEN_PRIMARY | CS_EVEN_SECONDARY) 788 #define CS_ODD (CS_ODD_PRIMARY | CS_ODD_SECONDARY) 789 790 static int f17_get_cs_mode(int dimm, u8 ctrl, struct amd64_pvt *pvt) 791 { 792 int cs_mode = 0; 793 794 if (csrow_enabled(2 * dimm, ctrl, pvt)) 795 cs_mode |= CS_EVEN_PRIMARY; 796 797 if (csrow_enabled(2 * dimm + 1, ctrl, pvt)) 798 cs_mode |= CS_ODD_PRIMARY; 799 800 /* Asymmetric dual-rank DIMM support. */ 801 if (csrow_sec_enabled(2 * dimm + 1, ctrl, pvt)) 802 cs_mode |= CS_ODD_SECONDARY; 803 804 return cs_mode; 805 } 806 807 static void debug_display_dimm_sizes_df(struct amd64_pvt *pvt, u8 ctrl) 808 { 809 int dimm, size0, size1, cs0, cs1, cs_mode; 810 811 edac_printk(KERN_DEBUG, EDAC_MC, "UMC%d chip selects:\n", ctrl); 812 813 for (dimm = 0; dimm < 2; dimm++) { 814 cs0 = dimm * 2; 815 cs1 = dimm * 2 + 1; 816 817 cs_mode = f17_get_cs_mode(dimm, ctrl, pvt); 818 819 size0 = pvt->ops->dbam_to_cs(pvt, ctrl, cs_mode, cs0); 820 size1 = pvt->ops->dbam_to_cs(pvt, ctrl, cs_mode, cs1); 821 822 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n", 823 cs0, size0, 824 cs1, size1); 825 } 826 } 827 828 static void __dump_misc_regs_df(struct amd64_pvt *pvt) 829 { 830 struct amd64_umc *umc; 831 u32 i, tmp, umc_base; 832 833 for_each_umc(i) { 834 umc_base = get_umc_base(i); 835 umc = &pvt->umc[i]; 836 837 edac_dbg(1, "UMC%d DIMM cfg: 0x%x\n", i, umc->dimm_cfg); 838 edac_dbg(1, "UMC%d UMC cfg: 0x%x\n", i, umc->umc_cfg); 839 edac_dbg(1, "UMC%d SDP ctrl: 0x%x\n", i, umc->sdp_ctrl); 840 edac_dbg(1, "UMC%d ECC ctrl: 0x%x\n", i, umc->ecc_ctrl); 841 842 amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ECC_BAD_SYMBOL, &tmp); 843 edac_dbg(1, "UMC%d ECC bad symbol: 0x%x\n", i, tmp); 844 845 amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_UMC_CAP, &tmp); 846 edac_dbg(1, "UMC%d UMC cap: 0x%x\n", i, tmp); 847 edac_dbg(1, "UMC%d UMC cap high: 0x%x\n", i, umc->umc_cap_hi); 848 849 edac_dbg(1, "UMC%d ECC capable: %s, ChipKill ECC capable: %s\n", 850 i, (umc->umc_cap_hi & BIT(30)) ? "yes" : "no", 851 (umc->umc_cap_hi & BIT(31)) ? "yes" : "no"); 852 edac_dbg(1, "UMC%d All DIMMs support ECC: %s\n", 853 i, (umc->umc_cfg & BIT(12)) ? "yes" : "no"); 854 edac_dbg(1, "UMC%d x4 DIMMs present: %s\n", 855 i, (umc->dimm_cfg & BIT(6)) ? "yes" : "no"); 856 edac_dbg(1, "UMC%d x16 DIMMs present: %s\n", 857 i, (umc->dimm_cfg & BIT(7)) ? "yes" : "no"); 858 859 if (pvt->dram_type == MEM_LRDDR4) { 860 amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ADDR_CFG, &tmp); 861 edac_dbg(1, "UMC%d LRDIMM %dx rank multiply\n", 862 i, 1 << ((tmp >> 4) & 0x3)); 863 } 864 865 debug_display_dimm_sizes_df(pvt, i); 866 } 867 868 edac_dbg(1, "F0x104 (DRAM Hole Address): 0x%08x, base: 0x%08x\n", 869 pvt->dhar, dhar_base(pvt)); 870 } 871 872 /* Display and decode various NB registers for debug purposes. */ 873 static void __dump_misc_regs(struct amd64_pvt *pvt) 874 { 875 edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap); 876 877 edac_dbg(1, " NB two channel DRAM capable: %s\n", 878 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no"); 879 880 edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n", 881 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no", 882 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no"); 883 884 debug_dump_dramcfg_low(pvt, pvt->dclr0, 0); 885 886 edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare); 887 888 edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n", 889 pvt->dhar, dhar_base(pvt), 890 (pvt->fam == 0xf) ? k8_dhar_offset(pvt) 891 : f10_dhar_offset(pvt)); 892 893 debug_display_dimm_sizes(pvt, 0); 894 895 /* everything below this point is Fam10h and above */ 896 if (pvt->fam == 0xf) 897 return; 898 899 debug_display_dimm_sizes(pvt, 1); 900 901 /* Only if NOT ganged does dclr1 have valid info */ 902 if (!dct_ganging_enabled(pvt)) 903 debug_dump_dramcfg_low(pvt, pvt->dclr1, 1); 904 } 905 906 /* Display and decode various NB registers for debug purposes. */ 907 static void dump_misc_regs(struct amd64_pvt *pvt) 908 { 909 if (pvt->umc) 910 __dump_misc_regs_df(pvt); 911 else 912 __dump_misc_regs(pvt); 913 914 edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no"); 915 916 amd64_info("using x%u syndromes.\n", pvt->ecc_sym_sz); 917 } 918 919 /* 920 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60] 921 */ 922 static void prep_chip_selects(struct amd64_pvt *pvt) 923 { 924 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) { 925 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8; 926 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8; 927 } else if (pvt->fam == 0x15 && pvt->model == 0x30) { 928 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4; 929 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2; 930 } else if (pvt->fam >= 0x17) { 931 int umc; 932 933 for_each_umc(umc) { 934 pvt->csels[umc].b_cnt = 4; 935 pvt->csels[umc].m_cnt = 2; 936 } 937 938 } else { 939 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8; 940 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4; 941 } 942 } 943 944 static void read_umc_base_mask(struct amd64_pvt *pvt) 945 { 946 u32 umc_base_reg, umc_base_reg_sec; 947 u32 umc_mask_reg, umc_mask_reg_sec; 948 u32 base_reg, base_reg_sec; 949 u32 mask_reg, mask_reg_sec; 950 u32 *base, *base_sec; 951 u32 *mask, *mask_sec; 952 int cs, umc; 953 954 for_each_umc(umc) { 955 umc_base_reg = get_umc_base(umc) + UMCCH_BASE_ADDR; 956 umc_base_reg_sec = get_umc_base(umc) + UMCCH_BASE_ADDR_SEC; 957 958 for_each_chip_select(cs, umc, pvt) { 959 base = &pvt->csels[umc].csbases[cs]; 960 base_sec = &pvt->csels[umc].csbases_sec[cs]; 961 962 base_reg = umc_base_reg + (cs * 4); 963 base_reg_sec = umc_base_reg_sec + (cs * 4); 964 965 if (!amd_smn_read(pvt->mc_node_id, base_reg, base)) 966 edac_dbg(0, " DCSB%d[%d]=0x%08x reg: 0x%x\n", 967 umc, cs, *base, base_reg); 968 969 if (!amd_smn_read(pvt->mc_node_id, base_reg_sec, base_sec)) 970 edac_dbg(0, " DCSB_SEC%d[%d]=0x%08x reg: 0x%x\n", 971 umc, cs, *base_sec, base_reg_sec); 972 } 973 974 umc_mask_reg = get_umc_base(umc) + UMCCH_ADDR_MASK; 975 umc_mask_reg_sec = get_umc_base(umc) + UMCCH_ADDR_MASK_SEC; 976 977 for_each_chip_select_mask(cs, umc, pvt) { 978 mask = &pvt->csels[umc].csmasks[cs]; 979 mask_sec = &pvt->csels[umc].csmasks_sec[cs]; 980 981 mask_reg = umc_mask_reg + (cs * 4); 982 mask_reg_sec = umc_mask_reg_sec + (cs * 4); 983 984 if (!amd_smn_read(pvt->mc_node_id, mask_reg, mask)) 985 edac_dbg(0, " DCSM%d[%d]=0x%08x reg: 0x%x\n", 986 umc, cs, *mask, mask_reg); 987 988 if (!amd_smn_read(pvt->mc_node_id, mask_reg_sec, mask_sec)) 989 edac_dbg(0, " DCSM_SEC%d[%d]=0x%08x reg: 0x%x\n", 990 umc, cs, *mask_sec, mask_reg_sec); 991 } 992 } 993 } 994 995 /* 996 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers 997 */ 998 static void read_dct_base_mask(struct amd64_pvt *pvt) 999 { 1000 int cs; 1001 1002 prep_chip_selects(pvt); 1003 1004 if (pvt->umc) 1005 return read_umc_base_mask(pvt); 1006 1007 for_each_chip_select(cs, 0, pvt) { 1008 int reg0 = DCSB0 + (cs * 4); 1009 int reg1 = DCSB1 + (cs * 4); 1010 u32 *base0 = &pvt->csels[0].csbases[cs]; 1011 u32 *base1 = &pvt->csels[1].csbases[cs]; 1012 1013 if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, base0)) 1014 edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n", 1015 cs, *base0, reg0); 1016 1017 if (pvt->fam == 0xf) 1018 continue; 1019 1020 if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, base1)) 1021 edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n", 1022 cs, *base1, (pvt->fam == 0x10) ? reg1 1023 : reg0); 1024 } 1025 1026 for_each_chip_select_mask(cs, 0, pvt) { 1027 int reg0 = DCSM0 + (cs * 4); 1028 int reg1 = DCSM1 + (cs * 4); 1029 u32 *mask0 = &pvt->csels[0].csmasks[cs]; 1030 u32 *mask1 = &pvt->csels[1].csmasks[cs]; 1031 1032 if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, mask0)) 1033 edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n", 1034 cs, *mask0, reg0); 1035 1036 if (pvt->fam == 0xf) 1037 continue; 1038 1039 if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, mask1)) 1040 edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n", 1041 cs, *mask1, (pvt->fam == 0x10) ? reg1 1042 : reg0); 1043 } 1044 } 1045 1046 static void determine_memory_type(struct amd64_pvt *pvt) 1047 { 1048 u32 dram_ctrl, dcsm; 1049 1050 if (pvt->umc) { 1051 if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(5)) 1052 pvt->dram_type = MEM_LRDDR4; 1053 else if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(4)) 1054 pvt->dram_type = MEM_RDDR4; 1055 else 1056 pvt->dram_type = MEM_DDR4; 1057 return; 1058 } 1059 1060 switch (pvt->fam) { 1061 case 0xf: 1062 if (pvt->ext_model >= K8_REV_F) 1063 goto ddr3; 1064 1065 pvt->dram_type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR; 1066 return; 1067 1068 case 0x10: 1069 if (pvt->dchr0 & DDR3_MODE) 1070 goto ddr3; 1071 1072 pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2; 1073 return; 1074 1075 case 0x15: 1076 if (pvt->model < 0x60) 1077 goto ddr3; 1078 1079 /* 1080 * Model 0x60h needs special handling: 1081 * 1082 * We use a Chip Select value of '0' to obtain dcsm. 1083 * Theoretically, it is possible to populate LRDIMMs of different 1084 * 'Rank' value on a DCT. But this is not the common case. So, 1085 * it's reasonable to assume all DIMMs are going to be of same 1086 * 'type' until proven otherwise. 1087 */ 1088 amd64_read_dct_pci_cfg(pvt, 0, DRAM_CONTROL, &dram_ctrl); 1089 dcsm = pvt->csels[0].csmasks[0]; 1090 1091 if (((dram_ctrl >> 8) & 0x7) == 0x2) 1092 pvt->dram_type = MEM_DDR4; 1093 else if (pvt->dclr0 & BIT(16)) 1094 pvt->dram_type = MEM_DDR3; 1095 else if (dcsm & 0x3) 1096 pvt->dram_type = MEM_LRDDR3; 1097 else 1098 pvt->dram_type = MEM_RDDR3; 1099 1100 return; 1101 1102 case 0x16: 1103 goto ddr3; 1104 1105 default: 1106 WARN(1, KERN_ERR "%s: Family??? 0x%x\n", __func__, pvt->fam); 1107 pvt->dram_type = MEM_EMPTY; 1108 } 1109 return; 1110 1111 ddr3: 1112 pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3; 1113 } 1114 1115 /* Get the number of DCT channels the memory controller is using. */ 1116 static int k8_early_channel_count(struct amd64_pvt *pvt) 1117 { 1118 int flag; 1119 1120 if (pvt->ext_model >= K8_REV_F) 1121 /* RevF (NPT) and later */ 1122 flag = pvt->dclr0 & WIDTH_128; 1123 else 1124 /* RevE and earlier */ 1125 flag = pvt->dclr0 & REVE_WIDTH_128; 1126 1127 /* not used */ 1128 pvt->dclr1 = 0; 1129 1130 return (flag) ? 2 : 1; 1131 } 1132 1133 /* On F10h and later ErrAddr is MC4_ADDR[47:1] */ 1134 static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m) 1135 { 1136 u16 mce_nid = amd_get_nb_id(m->extcpu); 1137 struct mem_ctl_info *mci; 1138 u8 start_bit = 1; 1139 u8 end_bit = 47; 1140 u64 addr; 1141 1142 mci = edac_mc_find(mce_nid); 1143 if (!mci) 1144 return 0; 1145 1146 pvt = mci->pvt_info; 1147 1148 if (pvt->fam == 0xf) { 1149 start_bit = 3; 1150 end_bit = 39; 1151 } 1152 1153 addr = m->addr & GENMASK_ULL(end_bit, start_bit); 1154 1155 /* 1156 * Erratum 637 workaround 1157 */ 1158 if (pvt->fam == 0x15) { 1159 u64 cc6_base, tmp_addr; 1160 u32 tmp; 1161 u8 intlv_en; 1162 1163 if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7) 1164 return addr; 1165 1166 1167 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp); 1168 intlv_en = tmp >> 21 & 0x7; 1169 1170 /* add [47:27] + 3 trailing bits */ 1171 cc6_base = (tmp & GENMASK_ULL(20, 0)) << 3; 1172 1173 /* reverse and add DramIntlvEn */ 1174 cc6_base |= intlv_en ^ 0x7; 1175 1176 /* pin at [47:24] */ 1177 cc6_base <<= 24; 1178 1179 if (!intlv_en) 1180 return cc6_base | (addr & GENMASK_ULL(23, 0)); 1181 1182 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp); 1183 1184 /* faster log2 */ 1185 tmp_addr = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1); 1186 1187 /* OR DramIntlvSel into bits [14:12] */ 1188 tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9; 1189 1190 /* add remaining [11:0] bits from original MC4_ADDR */ 1191 tmp_addr |= addr & GENMASK_ULL(11, 0); 1192 1193 return cc6_base | tmp_addr; 1194 } 1195 1196 return addr; 1197 } 1198 1199 static struct pci_dev *pci_get_related_function(unsigned int vendor, 1200 unsigned int device, 1201 struct pci_dev *related) 1202 { 1203 struct pci_dev *dev = NULL; 1204 1205 while ((dev = pci_get_device(vendor, device, dev))) { 1206 if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) && 1207 (dev->bus->number == related->bus->number) && 1208 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn))) 1209 break; 1210 } 1211 1212 return dev; 1213 } 1214 1215 static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range) 1216 { 1217 struct amd_northbridge *nb; 1218 struct pci_dev *f1 = NULL; 1219 unsigned int pci_func; 1220 int off = range << 3; 1221 u32 llim; 1222 1223 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo); 1224 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo); 1225 1226 if (pvt->fam == 0xf) 1227 return; 1228 1229 if (!dram_rw(pvt, range)) 1230 return; 1231 1232 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi); 1233 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi); 1234 1235 /* F15h: factor in CC6 save area by reading dst node's limit reg */ 1236 if (pvt->fam != 0x15) 1237 return; 1238 1239 nb = node_to_amd_nb(dram_dst_node(pvt, range)); 1240 if (WARN_ON(!nb)) 1241 return; 1242 1243 if (pvt->model == 0x60) 1244 pci_func = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1; 1245 else if (pvt->model == 0x30) 1246 pci_func = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1; 1247 else 1248 pci_func = PCI_DEVICE_ID_AMD_15H_NB_F1; 1249 1250 f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc); 1251 if (WARN_ON(!f1)) 1252 return; 1253 1254 amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim); 1255 1256 pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0); 1257 1258 /* {[39:27],111b} */ 1259 pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16; 1260 1261 pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0); 1262 1263 /* [47:40] */ 1264 pvt->ranges[range].lim.hi |= llim >> 13; 1265 1266 pci_dev_put(f1); 1267 } 1268 1269 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr, 1270 struct err_info *err) 1271 { 1272 struct amd64_pvt *pvt = mci->pvt_info; 1273 1274 error_address_to_page_and_offset(sys_addr, err); 1275 1276 /* 1277 * Find out which node the error address belongs to. This may be 1278 * different from the node that detected the error. 1279 */ 1280 err->src_mci = find_mc_by_sys_addr(mci, sys_addr); 1281 if (!err->src_mci) { 1282 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n", 1283 (unsigned long)sys_addr); 1284 err->err_code = ERR_NODE; 1285 return; 1286 } 1287 1288 /* Now map the sys_addr to a CSROW */ 1289 err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr); 1290 if (err->csrow < 0) { 1291 err->err_code = ERR_CSROW; 1292 return; 1293 } 1294 1295 /* CHIPKILL enabled */ 1296 if (pvt->nbcfg & NBCFG_CHIPKILL) { 1297 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome); 1298 if (err->channel < 0) { 1299 /* 1300 * Syndrome didn't map, so we don't know which of the 1301 * 2 DIMMs is in error. So we need to ID 'both' of them 1302 * as suspect. 1303 */ 1304 amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - " 1305 "possible error reporting race\n", 1306 err->syndrome); 1307 err->err_code = ERR_CHANNEL; 1308 return; 1309 } 1310 } else { 1311 /* 1312 * non-chipkill ecc mode 1313 * 1314 * The k8 documentation is unclear about how to determine the 1315 * channel number when using non-chipkill memory. This method 1316 * was obtained from email communication with someone at AMD. 1317 * (Wish the email was placed in this comment - norsk) 1318 */ 1319 err->channel = ((sys_addr & BIT(3)) != 0); 1320 } 1321 } 1322 1323 static int ddr2_cs_size(unsigned i, bool dct_width) 1324 { 1325 unsigned shift = 0; 1326 1327 if (i <= 2) 1328 shift = i; 1329 else if (!(i & 0x1)) 1330 shift = i >> 1; 1331 else 1332 shift = (i + 1) >> 1; 1333 1334 return 128 << (shift + !!dct_width); 1335 } 1336 1337 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, 1338 unsigned cs_mode, int cs_mask_nr) 1339 { 1340 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0; 1341 1342 if (pvt->ext_model >= K8_REV_F) { 1343 WARN_ON(cs_mode > 11); 1344 return ddr2_cs_size(cs_mode, dclr & WIDTH_128); 1345 } 1346 else if (pvt->ext_model >= K8_REV_D) { 1347 unsigned diff; 1348 WARN_ON(cs_mode > 10); 1349 1350 /* 1351 * the below calculation, besides trying to win an obfuscated C 1352 * contest, maps cs_mode values to DIMM chip select sizes. The 1353 * mappings are: 1354 * 1355 * cs_mode CS size (mb) 1356 * ======= ============ 1357 * 0 32 1358 * 1 64 1359 * 2 128 1360 * 3 128 1361 * 4 256 1362 * 5 512 1363 * 6 256 1364 * 7 512 1365 * 8 1024 1366 * 9 1024 1367 * 10 2048 1368 * 1369 * Basically, it calculates a value with which to shift the 1370 * smallest CS size of 32MB. 1371 * 1372 * ddr[23]_cs_size have a similar purpose. 1373 */ 1374 diff = cs_mode/3 + (unsigned)(cs_mode > 5); 1375 1376 return 32 << (cs_mode - diff); 1377 } 1378 else { 1379 WARN_ON(cs_mode > 6); 1380 return 32 << cs_mode; 1381 } 1382 } 1383 1384 /* 1385 * Get the number of DCT channels in use. 1386 * 1387 * Return: 1388 * number of Memory Channels in operation 1389 * Pass back: 1390 * contents of the DCL0_LOW register 1391 */ 1392 static int f1x_early_channel_count(struct amd64_pvt *pvt) 1393 { 1394 int i, j, channels = 0; 1395 1396 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */ 1397 if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128)) 1398 return 2; 1399 1400 /* 1401 * Need to check if in unganged mode: In such, there are 2 channels, 1402 * but they are not in 128 bit mode and thus the above 'dclr0' status 1403 * bit will be OFF. 1404 * 1405 * Need to check DCT0[0] and DCT1[0] to see if only one of them has 1406 * their CSEnable bit on. If so, then SINGLE DIMM case. 1407 */ 1408 edac_dbg(0, "Data width is not 128 bits - need more decoding\n"); 1409 1410 /* 1411 * Check DRAM Bank Address Mapping values for each DIMM to see if there 1412 * is more than just one DIMM present in unganged mode. Need to check 1413 * both controllers since DIMMs can be placed in either one. 1414 */ 1415 for (i = 0; i < 2; i++) { 1416 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0); 1417 1418 for (j = 0; j < 4; j++) { 1419 if (DBAM_DIMM(j, dbam) > 0) { 1420 channels++; 1421 break; 1422 } 1423 } 1424 } 1425 1426 if (channels > 2) 1427 channels = 2; 1428 1429 amd64_info("MCT channel count: %d\n", channels); 1430 1431 return channels; 1432 } 1433 1434 static int f17_early_channel_count(struct amd64_pvt *pvt) 1435 { 1436 int i, channels = 0; 1437 1438 /* SDP Control bit 31 (SdpInit) is clear for unused UMC channels */ 1439 for_each_umc(i) 1440 channels += !!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT); 1441 1442 amd64_info("MCT channel count: %d\n", channels); 1443 1444 return channels; 1445 } 1446 1447 static int ddr3_cs_size(unsigned i, bool dct_width) 1448 { 1449 unsigned shift = 0; 1450 int cs_size = 0; 1451 1452 if (i == 0 || i == 3 || i == 4) 1453 cs_size = -1; 1454 else if (i <= 2) 1455 shift = i; 1456 else if (i == 12) 1457 shift = 7; 1458 else if (!(i & 0x1)) 1459 shift = i >> 1; 1460 else 1461 shift = (i + 1) >> 1; 1462 1463 if (cs_size != -1) 1464 cs_size = (128 * (1 << !!dct_width)) << shift; 1465 1466 return cs_size; 1467 } 1468 1469 static int ddr3_lrdimm_cs_size(unsigned i, unsigned rank_multiply) 1470 { 1471 unsigned shift = 0; 1472 int cs_size = 0; 1473 1474 if (i < 4 || i == 6) 1475 cs_size = -1; 1476 else if (i == 12) 1477 shift = 7; 1478 else if (!(i & 0x1)) 1479 shift = i >> 1; 1480 else 1481 shift = (i + 1) >> 1; 1482 1483 if (cs_size != -1) 1484 cs_size = rank_multiply * (128 << shift); 1485 1486 return cs_size; 1487 } 1488 1489 static int ddr4_cs_size(unsigned i) 1490 { 1491 int cs_size = 0; 1492 1493 if (i == 0) 1494 cs_size = -1; 1495 else if (i == 1) 1496 cs_size = 1024; 1497 else 1498 /* Min cs_size = 1G */ 1499 cs_size = 1024 * (1 << (i >> 1)); 1500 1501 return cs_size; 1502 } 1503 1504 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, 1505 unsigned cs_mode, int cs_mask_nr) 1506 { 1507 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0; 1508 1509 WARN_ON(cs_mode > 11); 1510 1511 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE) 1512 return ddr3_cs_size(cs_mode, dclr & WIDTH_128); 1513 else 1514 return ddr2_cs_size(cs_mode, dclr & WIDTH_128); 1515 } 1516 1517 /* 1518 * F15h supports only 64bit DCT interfaces 1519 */ 1520 static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, 1521 unsigned cs_mode, int cs_mask_nr) 1522 { 1523 WARN_ON(cs_mode > 12); 1524 1525 return ddr3_cs_size(cs_mode, false); 1526 } 1527 1528 /* F15h M60h supports DDR4 mapping as well.. */ 1529 static int f15_m60h_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, 1530 unsigned cs_mode, int cs_mask_nr) 1531 { 1532 int cs_size; 1533 u32 dcsm = pvt->csels[dct].csmasks[cs_mask_nr]; 1534 1535 WARN_ON(cs_mode > 12); 1536 1537 if (pvt->dram_type == MEM_DDR4) { 1538 if (cs_mode > 9) 1539 return -1; 1540 1541 cs_size = ddr4_cs_size(cs_mode); 1542 } else if (pvt->dram_type == MEM_LRDDR3) { 1543 unsigned rank_multiply = dcsm & 0xf; 1544 1545 if (rank_multiply == 3) 1546 rank_multiply = 4; 1547 cs_size = ddr3_lrdimm_cs_size(cs_mode, rank_multiply); 1548 } else { 1549 /* Minimum cs size is 512mb for F15hM60h*/ 1550 if (cs_mode == 0x1) 1551 return -1; 1552 1553 cs_size = ddr3_cs_size(cs_mode, false); 1554 } 1555 1556 return cs_size; 1557 } 1558 1559 /* 1560 * F16h and F15h model 30h have only limited cs_modes. 1561 */ 1562 static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, 1563 unsigned cs_mode, int cs_mask_nr) 1564 { 1565 WARN_ON(cs_mode > 12); 1566 1567 if (cs_mode == 6 || cs_mode == 8 || 1568 cs_mode == 9 || cs_mode == 12) 1569 return -1; 1570 else 1571 return ddr3_cs_size(cs_mode, false); 1572 } 1573 1574 static int f17_addr_mask_to_cs_size(struct amd64_pvt *pvt, u8 umc, 1575 unsigned int cs_mode, int csrow_nr) 1576 { 1577 u32 addr_mask_orig, addr_mask_deinterleaved; 1578 u32 msb, weight, num_zero_bits; 1579 int dimm, size = 0; 1580 1581 /* No Chip Selects are enabled. */ 1582 if (!cs_mode) 1583 return size; 1584 1585 /* Requested size of an even CS but none are enabled. */ 1586 if (!(cs_mode & CS_EVEN) && !(csrow_nr & 1)) 1587 return size; 1588 1589 /* Requested size of an odd CS but none are enabled. */ 1590 if (!(cs_mode & CS_ODD) && (csrow_nr & 1)) 1591 return size; 1592 1593 /* 1594 * There is one mask per DIMM, and two Chip Selects per DIMM. 1595 * CS0 and CS1 -> DIMM0 1596 * CS2 and CS3 -> DIMM1 1597 */ 1598 dimm = csrow_nr >> 1; 1599 1600 /* Asymmetric dual-rank DIMM support. */ 1601 if ((csrow_nr & 1) && (cs_mode & CS_ODD_SECONDARY)) 1602 addr_mask_orig = pvt->csels[umc].csmasks_sec[dimm]; 1603 else 1604 addr_mask_orig = pvt->csels[umc].csmasks[dimm]; 1605 1606 /* 1607 * The number of zero bits in the mask is equal to the number of bits 1608 * in a full mask minus the number of bits in the current mask. 1609 * 1610 * The MSB is the number of bits in the full mask because BIT[0] is 1611 * always 0. 1612 */ 1613 msb = fls(addr_mask_orig) - 1; 1614 weight = hweight_long(addr_mask_orig); 1615 num_zero_bits = msb - weight; 1616 1617 /* Take the number of zero bits off from the top of the mask. */ 1618 addr_mask_deinterleaved = GENMASK_ULL(msb - num_zero_bits, 1); 1619 1620 edac_dbg(1, "CS%d DIMM%d AddrMasks:\n", csrow_nr, dimm); 1621 edac_dbg(1, " Original AddrMask: 0x%x\n", addr_mask_orig); 1622 edac_dbg(1, " Deinterleaved AddrMask: 0x%x\n", addr_mask_deinterleaved); 1623 1624 /* Register [31:1] = Address [39:9]. Size is in kBs here. */ 1625 size = (addr_mask_deinterleaved >> 2) + 1; 1626 1627 /* Return size in MBs. */ 1628 return size >> 10; 1629 } 1630 1631 static void read_dram_ctl_register(struct amd64_pvt *pvt) 1632 { 1633 1634 if (pvt->fam == 0xf) 1635 return; 1636 1637 if (!amd64_read_pci_cfg(pvt->F2, DCT_SEL_LO, &pvt->dct_sel_lo)) { 1638 edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n", 1639 pvt->dct_sel_lo, dct_sel_baseaddr(pvt)); 1640 1641 edac_dbg(0, " DCTs operate in %s mode\n", 1642 (dct_ganging_enabled(pvt) ? "ganged" : "unganged")); 1643 1644 if (!dct_ganging_enabled(pvt)) 1645 edac_dbg(0, " Address range split per DCT: %s\n", 1646 (dct_high_range_enabled(pvt) ? "yes" : "no")); 1647 1648 edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n", 1649 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"), 1650 (dct_memory_cleared(pvt) ? "yes" : "no")); 1651 1652 edac_dbg(0, " channel interleave: %s, " 1653 "interleave bits selector: 0x%x\n", 1654 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"), 1655 dct_sel_interleave_addr(pvt)); 1656 } 1657 1658 amd64_read_pci_cfg(pvt->F2, DCT_SEL_HI, &pvt->dct_sel_hi); 1659 } 1660 1661 /* 1662 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG, 1663 * 2.10.12 Memory Interleaving Modes). 1664 */ 1665 static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr, 1666 u8 intlv_en, int num_dcts_intlv, 1667 u32 dct_sel) 1668 { 1669 u8 channel = 0; 1670 u8 select; 1671 1672 if (!(intlv_en)) 1673 return (u8)(dct_sel); 1674 1675 if (num_dcts_intlv == 2) { 1676 select = (sys_addr >> 8) & 0x3; 1677 channel = select ? 0x3 : 0; 1678 } else if (num_dcts_intlv == 4) { 1679 u8 intlv_addr = dct_sel_interleave_addr(pvt); 1680 switch (intlv_addr) { 1681 case 0x4: 1682 channel = (sys_addr >> 8) & 0x3; 1683 break; 1684 case 0x5: 1685 channel = (sys_addr >> 9) & 0x3; 1686 break; 1687 } 1688 } 1689 return channel; 1690 } 1691 1692 /* 1693 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory 1694 * Interleaving Modes. 1695 */ 1696 static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr, 1697 bool hi_range_sel, u8 intlv_en) 1698 { 1699 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1; 1700 1701 if (dct_ganging_enabled(pvt)) 1702 return 0; 1703 1704 if (hi_range_sel) 1705 return dct_sel_high; 1706 1707 /* 1708 * see F2x110[DctSelIntLvAddr] - channel interleave mode 1709 */ 1710 if (dct_interleave_enabled(pvt)) { 1711 u8 intlv_addr = dct_sel_interleave_addr(pvt); 1712 1713 /* return DCT select function: 0=DCT0, 1=DCT1 */ 1714 if (!intlv_addr) 1715 return sys_addr >> 6 & 1; 1716 1717 if (intlv_addr & 0x2) { 1718 u8 shift = intlv_addr & 0x1 ? 9 : 6; 1719 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) & 1; 1720 1721 return ((sys_addr >> shift) & 1) ^ temp; 1722 } 1723 1724 if (intlv_addr & 0x4) { 1725 u8 shift = intlv_addr & 0x1 ? 9 : 8; 1726 1727 return (sys_addr >> shift) & 1; 1728 } 1729 1730 return (sys_addr >> (12 + hweight8(intlv_en))) & 1; 1731 } 1732 1733 if (dct_high_range_enabled(pvt)) 1734 return ~dct_sel_high & 1; 1735 1736 return 0; 1737 } 1738 1739 /* Convert the sys_addr to the normalized DCT address */ 1740 static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range, 1741 u64 sys_addr, bool hi_rng, 1742 u32 dct_sel_base_addr) 1743 { 1744 u64 chan_off; 1745 u64 dram_base = get_dram_base(pvt, range); 1746 u64 hole_off = f10_dhar_offset(pvt); 1747 u64 dct_sel_base_off = (u64)(pvt->dct_sel_hi & 0xFFFFFC00) << 16; 1748 1749 if (hi_rng) { 1750 /* 1751 * if 1752 * base address of high range is below 4Gb 1753 * (bits [47:27] at [31:11]) 1754 * DRAM address space on this DCT is hoisted above 4Gb && 1755 * sys_addr > 4Gb 1756 * 1757 * remove hole offset from sys_addr 1758 * else 1759 * remove high range offset from sys_addr 1760 */ 1761 if ((!(dct_sel_base_addr >> 16) || 1762 dct_sel_base_addr < dhar_base(pvt)) && 1763 dhar_valid(pvt) && 1764 (sys_addr >= BIT_64(32))) 1765 chan_off = hole_off; 1766 else 1767 chan_off = dct_sel_base_off; 1768 } else { 1769 /* 1770 * if 1771 * we have a valid hole && 1772 * sys_addr > 4Gb 1773 * 1774 * remove hole 1775 * else 1776 * remove dram base to normalize to DCT address 1777 */ 1778 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32))) 1779 chan_off = hole_off; 1780 else 1781 chan_off = dram_base; 1782 } 1783 1784 return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23)); 1785 } 1786 1787 /* 1788 * checks if the csrow passed in is marked as SPARED, if so returns the new 1789 * spare row 1790 */ 1791 static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow) 1792 { 1793 int tmp_cs; 1794 1795 if (online_spare_swap_done(pvt, dct) && 1796 csrow == online_spare_bad_dramcs(pvt, dct)) { 1797 1798 for_each_chip_select(tmp_cs, dct, pvt) { 1799 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) { 1800 csrow = tmp_cs; 1801 break; 1802 } 1803 } 1804 } 1805 return csrow; 1806 } 1807 1808 /* 1809 * Iterate over the DRAM DCT "base" and "mask" registers looking for a 1810 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID' 1811 * 1812 * Return: 1813 * -EINVAL: NOT FOUND 1814 * 0..csrow = Chip-Select Row 1815 */ 1816 static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct) 1817 { 1818 struct mem_ctl_info *mci; 1819 struct amd64_pvt *pvt; 1820 u64 cs_base, cs_mask; 1821 int cs_found = -EINVAL; 1822 int csrow; 1823 1824 mci = edac_mc_find(nid); 1825 if (!mci) 1826 return cs_found; 1827 1828 pvt = mci->pvt_info; 1829 1830 edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct); 1831 1832 for_each_chip_select(csrow, dct, pvt) { 1833 if (!csrow_enabled(csrow, dct, pvt)) 1834 continue; 1835 1836 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask); 1837 1838 edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n", 1839 csrow, cs_base, cs_mask); 1840 1841 cs_mask = ~cs_mask; 1842 1843 edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n", 1844 (in_addr & cs_mask), (cs_base & cs_mask)); 1845 1846 if ((in_addr & cs_mask) == (cs_base & cs_mask)) { 1847 if (pvt->fam == 0x15 && pvt->model >= 0x30) { 1848 cs_found = csrow; 1849 break; 1850 } 1851 cs_found = f10_process_possible_spare(pvt, dct, csrow); 1852 1853 edac_dbg(1, " MATCH csrow=%d\n", cs_found); 1854 break; 1855 } 1856 } 1857 return cs_found; 1858 } 1859 1860 /* 1861 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is 1862 * swapped with a region located at the bottom of memory so that the GPU can use 1863 * the interleaved region and thus two channels. 1864 */ 1865 static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr) 1866 { 1867 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr; 1868 1869 if (pvt->fam == 0x10) { 1870 /* only revC3 and revE have that feature */ 1871 if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3)) 1872 return sys_addr; 1873 } 1874 1875 amd64_read_pci_cfg(pvt->F2, SWAP_INTLV_REG, &swap_reg); 1876 1877 if (!(swap_reg & 0x1)) 1878 return sys_addr; 1879 1880 swap_base = (swap_reg >> 3) & 0x7f; 1881 swap_limit = (swap_reg >> 11) & 0x7f; 1882 rgn_size = (swap_reg >> 20) & 0x7f; 1883 tmp_addr = sys_addr >> 27; 1884 1885 if (!(sys_addr >> 34) && 1886 (((tmp_addr >= swap_base) && 1887 (tmp_addr <= swap_limit)) || 1888 (tmp_addr < rgn_size))) 1889 return sys_addr ^ (u64)swap_base << 27; 1890 1891 return sys_addr; 1892 } 1893 1894 /* For a given @dram_range, check if @sys_addr falls within it. */ 1895 static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range, 1896 u64 sys_addr, int *chan_sel) 1897 { 1898 int cs_found = -EINVAL; 1899 u64 chan_addr; 1900 u32 dct_sel_base; 1901 u8 channel; 1902 bool high_range = false; 1903 1904 u8 node_id = dram_dst_node(pvt, range); 1905 u8 intlv_en = dram_intlv_en(pvt, range); 1906 u32 intlv_sel = dram_intlv_sel(pvt, range); 1907 1908 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n", 1909 range, sys_addr, get_dram_limit(pvt, range)); 1910 1911 if (dhar_valid(pvt) && 1912 dhar_base(pvt) <= sys_addr && 1913 sys_addr < BIT_64(32)) { 1914 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n", 1915 sys_addr); 1916 return -EINVAL; 1917 } 1918 1919 if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en))) 1920 return -EINVAL; 1921 1922 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr); 1923 1924 dct_sel_base = dct_sel_baseaddr(pvt); 1925 1926 /* 1927 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to 1928 * select between DCT0 and DCT1. 1929 */ 1930 if (dct_high_range_enabled(pvt) && 1931 !dct_ganging_enabled(pvt) && 1932 ((sys_addr >> 27) >= (dct_sel_base >> 11))) 1933 high_range = true; 1934 1935 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en); 1936 1937 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr, 1938 high_range, dct_sel_base); 1939 1940 /* Remove node interleaving, see F1x120 */ 1941 if (intlv_en) 1942 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) | 1943 (chan_addr & 0xfff); 1944 1945 /* remove channel interleave */ 1946 if (dct_interleave_enabled(pvt) && 1947 !dct_high_range_enabled(pvt) && 1948 !dct_ganging_enabled(pvt)) { 1949 1950 if (dct_sel_interleave_addr(pvt) != 1) { 1951 if (dct_sel_interleave_addr(pvt) == 0x3) 1952 /* hash 9 */ 1953 chan_addr = ((chan_addr >> 10) << 9) | 1954 (chan_addr & 0x1ff); 1955 else 1956 /* A[6] or hash 6 */ 1957 chan_addr = ((chan_addr >> 7) << 6) | 1958 (chan_addr & 0x3f); 1959 } else 1960 /* A[12] */ 1961 chan_addr = ((chan_addr >> 13) << 12) | 1962 (chan_addr & 0xfff); 1963 } 1964 1965 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr); 1966 1967 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel); 1968 1969 if (cs_found >= 0) 1970 *chan_sel = channel; 1971 1972 return cs_found; 1973 } 1974 1975 static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range, 1976 u64 sys_addr, int *chan_sel) 1977 { 1978 int cs_found = -EINVAL; 1979 int num_dcts_intlv = 0; 1980 u64 chan_addr, chan_offset; 1981 u64 dct_base, dct_limit; 1982 u32 dct_cont_base_reg, dct_cont_limit_reg, tmp; 1983 u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en; 1984 1985 u64 dhar_offset = f10_dhar_offset(pvt); 1986 u8 intlv_addr = dct_sel_interleave_addr(pvt); 1987 u8 node_id = dram_dst_node(pvt, range); 1988 u8 intlv_en = dram_intlv_en(pvt, range); 1989 1990 amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg); 1991 amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg); 1992 1993 dct_offset_en = (u8) ((dct_cont_base_reg >> 3) & BIT(0)); 1994 dct_sel = (u8) ((dct_cont_base_reg >> 4) & 0x7); 1995 1996 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n", 1997 range, sys_addr, get_dram_limit(pvt, range)); 1998 1999 if (!(get_dram_base(pvt, range) <= sys_addr) && 2000 !(get_dram_limit(pvt, range) >= sys_addr)) 2001 return -EINVAL; 2002 2003 if (dhar_valid(pvt) && 2004 dhar_base(pvt) <= sys_addr && 2005 sys_addr < BIT_64(32)) { 2006 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n", 2007 sys_addr); 2008 return -EINVAL; 2009 } 2010 2011 /* Verify sys_addr is within DCT Range. */ 2012 dct_base = (u64) dct_sel_baseaddr(pvt); 2013 dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF; 2014 2015 if (!(dct_cont_base_reg & BIT(0)) && 2016 !(dct_base <= (sys_addr >> 27) && 2017 dct_limit >= (sys_addr >> 27))) 2018 return -EINVAL; 2019 2020 /* Verify number of dct's that participate in channel interleaving. */ 2021 num_dcts_intlv = (int) hweight8(intlv_en); 2022 2023 if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4)) 2024 return -EINVAL; 2025 2026 if (pvt->model >= 0x60) 2027 channel = f1x_determine_channel(pvt, sys_addr, false, intlv_en); 2028 else 2029 channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en, 2030 num_dcts_intlv, dct_sel); 2031 2032 /* Verify we stay within the MAX number of channels allowed */ 2033 if (channel > 3) 2034 return -EINVAL; 2035 2036 leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0)); 2037 2038 /* Get normalized DCT addr */ 2039 if (leg_mmio_hole && (sys_addr >= BIT_64(32))) 2040 chan_offset = dhar_offset; 2041 else 2042 chan_offset = dct_base << 27; 2043 2044 chan_addr = sys_addr - chan_offset; 2045 2046 /* remove channel interleave */ 2047 if (num_dcts_intlv == 2) { 2048 if (intlv_addr == 0x4) 2049 chan_addr = ((chan_addr >> 9) << 8) | 2050 (chan_addr & 0xff); 2051 else if (intlv_addr == 0x5) 2052 chan_addr = ((chan_addr >> 10) << 9) | 2053 (chan_addr & 0x1ff); 2054 else 2055 return -EINVAL; 2056 2057 } else if (num_dcts_intlv == 4) { 2058 if (intlv_addr == 0x4) 2059 chan_addr = ((chan_addr >> 10) << 8) | 2060 (chan_addr & 0xff); 2061 else if (intlv_addr == 0x5) 2062 chan_addr = ((chan_addr >> 11) << 9) | 2063 (chan_addr & 0x1ff); 2064 else 2065 return -EINVAL; 2066 } 2067 2068 if (dct_offset_en) { 2069 amd64_read_pci_cfg(pvt->F1, 2070 DRAM_CONT_HIGH_OFF + (int) channel * 4, 2071 &tmp); 2072 chan_addr += (u64) ((tmp >> 11) & 0xfff) << 27; 2073 } 2074 2075 f15h_select_dct(pvt, channel); 2076 2077 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr); 2078 2079 /* 2080 * Find Chip select: 2081 * if channel = 3, then alias it to 1. This is because, in F15 M30h, 2082 * there is support for 4 DCT's, but only 2 are currently functional. 2083 * They are DCT0 and DCT3. But we have read all registers of DCT3 into 2084 * pvt->csels[1]. So we need to use '1' here to get correct info. 2085 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications. 2086 */ 2087 alias_channel = (channel == 3) ? 1 : channel; 2088 2089 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel); 2090 2091 if (cs_found >= 0) 2092 *chan_sel = alias_channel; 2093 2094 return cs_found; 2095 } 2096 2097 static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, 2098 u64 sys_addr, 2099 int *chan_sel) 2100 { 2101 int cs_found = -EINVAL; 2102 unsigned range; 2103 2104 for (range = 0; range < DRAM_RANGES; range++) { 2105 if (!dram_rw(pvt, range)) 2106 continue; 2107 2108 if (pvt->fam == 0x15 && pvt->model >= 0x30) 2109 cs_found = f15_m30h_match_to_this_node(pvt, range, 2110 sys_addr, 2111 chan_sel); 2112 2113 else if ((get_dram_base(pvt, range) <= sys_addr) && 2114 (get_dram_limit(pvt, range) >= sys_addr)) { 2115 cs_found = f1x_match_to_this_node(pvt, range, 2116 sys_addr, chan_sel); 2117 if (cs_found >= 0) 2118 break; 2119 } 2120 } 2121 return cs_found; 2122 } 2123 2124 /* 2125 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps 2126 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW). 2127 * 2128 * The @sys_addr is usually an error address received from the hardware 2129 * (MCX_ADDR). 2130 */ 2131 static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr, 2132 struct err_info *err) 2133 { 2134 struct amd64_pvt *pvt = mci->pvt_info; 2135 2136 error_address_to_page_and_offset(sys_addr, err); 2137 2138 err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel); 2139 if (err->csrow < 0) { 2140 err->err_code = ERR_CSROW; 2141 return; 2142 } 2143 2144 /* 2145 * We need the syndromes for channel detection only when we're 2146 * ganged. Otherwise @chan should already contain the channel at 2147 * this point. 2148 */ 2149 if (dct_ganging_enabled(pvt)) 2150 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome); 2151 } 2152 2153 /* 2154 * debug routine to display the memory sizes of all logical DIMMs and its 2155 * CSROWs 2156 */ 2157 static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl) 2158 { 2159 int dimm, size0, size1; 2160 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases; 2161 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0; 2162 2163 if (pvt->fam == 0xf) { 2164 /* K8 families < revF not supported yet */ 2165 if (pvt->ext_model < K8_REV_F) 2166 return; 2167 else 2168 WARN_ON(ctrl != 0); 2169 } 2170 2171 if (pvt->fam == 0x10) { 2172 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 2173 : pvt->dbam0; 2174 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? 2175 pvt->csels[1].csbases : 2176 pvt->csels[0].csbases; 2177 } else if (ctrl) { 2178 dbam = pvt->dbam0; 2179 dcsb = pvt->csels[1].csbases; 2180 } 2181 edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", 2182 ctrl, dbam); 2183 2184 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl); 2185 2186 /* Dump memory sizes for DIMM and its CSROWs */ 2187 for (dimm = 0; dimm < 4; dimm++) { 2188 2189 size0 = 0; 2190 if (dcsb[dimm*2] & DCSB_CS_ENABLE) 2191 /* 2192 * For F15m60h, we need multiplier for LRDIMM cs_size 2193 * calculation. We pass dimm value to the dbam_to_cs 2194 * mapper so we can find the multiplier from the 2195 * corresponding DCSM. 2196 */ 2197 size0 = pvt->ops->dbam_to_cs(pvt, ctrl, 2198 DBAM_DIMM(dimm, dbam), 2199 dimm); 2200 2201 size1 = 0; 2202 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE) 2203 size1 = pvt->ops->dbam_to_cs(pvt, ctrl, 2204 DBAM_DIMM(dimm, dbam), 2205 dimm); 2206 2207 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n", 2208 dimm * 2, size0, 2209 dimm * 2 + 1, size1); 2210 } 2211 } 2212 2213 static struct amd64_family_type family_types[] = { 2214 [K8_CPUS] = { 2215 .ctl_name = "K8", 2216 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP, 2217 .f2_id = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL, 2218 .max_mcs = 2, 2219 .ops = { 2220 .early_channel_count = k8_early_channel_count, 2221 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow, 2222 .dbam_to_cs = k8_dbam_to_chip_select, 2223 } 2224 }, 2225 [F10_CPUS] = { 2226 .ctl_name = "F10h", 2227 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP, 2228 .f2_id = PCI_DEVICE_ID_AMD_10H_NB_DRAM, 2229 .max_mcs = 2, 2230 .ops = { 2231 .early_channel_count = f1x_early_channel_count, 2232 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, 2233 .dbam_to_cs = f10_dbam_to_chip_select, 2234 } 2235 }, 2236 [F15_CPUS] = { 2237 .ctl_name = "F15h", 2238 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1, 2239 .f2_id = PCI_DEVICE_ID_AMD_15H_NB_F2, 2240 .max_mcs = 2, 2241 .ops = { 2242 .early_channel_count = f1x_early_channel_count, 2243 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, 2244 .dbam_to_cs = f15_dbam_to_chip_select, 2245 } 2246 }, 2247 [F15_M30H_CPUS] = { 2248 .ctl_name = "F15h_M30h", 2249 .f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1, 2250 .f2_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2, 2251 .max_mcs = 2, 2252 .ops = { 2253 .early_channel_count = f1x_early_channel_count, 2254 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, 2255 .dbam_to_cs = f16_dbam_to_chip_select, 2256 } 2257 }, 2258 [F15_M60H_CPUS] = { 2259 .ctl_name = "F15h_M60h", 2260 .f1_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1, 2261 .f2_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F2, 2262 .max_mcs = 2, 2263 .ops = { 2264 .early_channel_count = f1x_early_channel_count, 2265 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, 2266 .dbam_to_cs = f15_m60h_dbam_to_chip_select, 2267 } 2268 }, 2269 [F16_CPUS] = { 2270 .ctl_name = "F16h", 2271 .f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1, 2272 .f2_id = PCI_DEVICE_ID_AMD_16H_NB_F2, 2273 .max_mcs = 2, 2274 .ops = { 2275 .early_channel_count = f1x_early_channel_count, 2276 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, 2277 .dbam_to_cs = f16_dbam_to_chip_select, 2278 } 2279 }, 2280 [F16_M30H_CPUS] = { 2281 .ctl_name = "F16h_M30h", 2282 .f1_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F1, 2283 .f2_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F2, 2284 .max_mcs = 2, 2285 .ops = { 2286 .early_channel_count = f1x_early_channel_count, 2287 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, 2288 .dbam_to_cs = f16_dbam_to_chip_select, 2289 } 2290 }, 2291 [F17_CPUS] = { 2292 .ctl_name = "F17h", 2293 .f0_id = PCI_DEVICE_ID_AMD_17H_DF_F0, 2294 .f6_id = PCI_DEVICE_ID_AMD_17H_DF_F6, 2295 .max_mcs = 2, 2296 .ops = { 2297 .early_channel_count = f17_early_channel_count, 2298 .dbam_to_cs = f17_addr_mask_to_cs_size, 2299 } 2300 }, 2301 [F17_M10H_CPUS] = { 2302 .ctl_name = "F17h_M10h", 2303 .f0_id = PCI_DEVICE_ID_AMD_17H_M10H_DF_F0, 2304 .f6_id = PCI_DEVICE_ID_AMD_17H_M10H_DF_F6, 2305 .max_mcs = 2, 2306 .ops = { 2307 .early_channel_count = f17_early_channel_count, 2308 .dbam_to_cs = f17_addr_mask_to_cs_size, 2309 } 2310 }, 2311 [F17_M30H_CPUS] = { 2312 .ctl_name = "F17h_M30h", 2313 .f0_id = PCI_DEVICE_ID_AMD_17H_M30H_DF_F0, 2314 .f6_id = PCI_DEVICE_ID_AMD_17H_M30H_DF_F6, 2315 .max_mcs = 8, 2316 .ops = { 2317 .early_channel_count = f17_early_channel_count, 2318 .dbam_to_cs = f17_addr_mask_to_cs_size, 2319 } 2320 }, 2321 [F17_M60H_CPUS] = { 2322 .ctl_name = "F17h_M60h", 2323 .f0_id = PCI_DEVICE_ID_AMD_17H_M60H_DF_F0, 2324 .f6_id = PCI_DEVICE_ID_AMD_17H_M60H_DF_F6, 2325 .max_mcs = 2, 2326 .ops = { 2327 .early_channel_count = f17_early_channel_count, 2328 .dbam_to_cs = f17_addr_mask_to_cs_size, 2329 } 2330 }, 2331 [F17_M70H_CPUS] = { 2332 .ctl_name = "F17h_M70h", 2333 .f0_id = PCI_DEVICE_ID_AMD_17H_M70H_DF_F0, 2334 .f6_id = PCI_DEVICE_ID_AMD_17H_M70H_DF_F6, 2335 .max_mcs = 2, 2336 .ops = { 2337 .early_channel_count = f17_early_channel_count, 2338 .dbam_to_cs = f17_addr_mask_to_cs_size, 2339 } 2340 }, 2341 [F19_CPUS] = { 2342 .ctl_name = "F19h", 2343 .f0_id = PCI_DEVICE_ID_AMD_19H_DF_F0, 2344 .f6_id = PCI_DEVICE_ID_AMD_19H_DF_F6, 2345 .max_mcs = 8, 2346 .ops = { 2347 .early_channel_count = f17_early_channel_count, 2348 .dbam_to_cs = f17_addr_mask_to_cs_size, 2349 } 2350 }, 2351 }; 2352 2353 /* 2354 * These are tables of eigenvectors (one per line) which can be used for the 2355 * construction of the syndrome tables. The modified syndrome search algorithm 2356 * uses those to find the symbol in error and thus the DIMM. 2357 * 2358 * Algorithm courtesy of Ross LaFetra from AMD. 2359 */ 2360 static const u16 x4_vectors[] = { 2361 0x2f57, 0x1afe, 0x66cc, 0xdd88, 2362 0x11eb, 0x3396, 0x7f4c, 0xeac8, 2363 0x0001, 0x0002, 0x0004, 0x0008, 2364 0x1013, 0x3032, 0x4044, 0x8088, 2365 0x106b, 0x30d6, 0x70fc, 0xe0a8, 2366 0x4857, 0xc4fe, 0x13cc, 0x3288, 2367 0x1ac5, 0x2f4a, 0x5394, 0xa1e8, 2368 0x1f39, 0x251e, 0xbd6c, 0x6bd8, 2369 0x15c1, 0x2a42, 0x89ac, 0x4758, 2370 0x2b03, 0x1602, 0x4f0c, 0xca08, 2371 0x1f07, 0x3a0e, 0x6b04, 0xbd08, 2372 0x8ba7, 0x465e, 0x244c, 0x1cc8, 2373 0x2b87, 0x164e, 0x642c, 0xdc18, 2374 0x40b9, 0x80de, 0x1094, 0x20e8, 2375 0x27db, 0x1eb6, 0x9dac, 0x7b58, 2376 0x11c1, 0x2242, 0x84ac, 0x4c58, 2377 0x1be5, 0x2d7a, 0x5e34, 0xa718, 2378 0x4b39, 0x8d1e, 0x14b4, 0x28d8, 2379 0x4c97, 0xc87e, 0x11fc, 0x33a8, 2380 0x8e97, 0x497e, 0x2ffc, 0x1aa8, 2381 0x16b3, 0x3d62, 0x4f34, 0x8518, 2382 0x1e2f, 0x391a, 0x5cac, 0xf858, 2383 0x1d9f, 0x3b7a, 0x572c, 0xfe18, 2384 0x15f5, 0x2a5a, 0x5264, 0xa3b8, 2385 0x1dbb, 0x3b66, 0x715c, 0xe3f8, 2386 0x4397, 0xc27e, 0x17fc, 0x3ea8, 2387 0x1617, 0x3d3e, 0x6464, 0xb8b8, 2388 0x23ff, 0x12aa, 0xab6c, 0x56d8, 2389 0x2dfb, 0x1ba6, 0x913c, 0x7328, 2390 0x185d, 0x2ca6, 0x7914, 0x9e28, 2391 0x171b, 0x3e36, 0x7d7c, 0xebe8, 2392 0x4199, 0x82ee, 0x19f4, 0x2e58, 2393 0x4807, 0xc40e, 0x130c, 0x3208, 2394 0x1905, 0x2e0a, 0x5804, 0xac08, 2395 0x213f, 0x132a, 0xadfc, 0x5ba8, 2396 0x19a9, 0x2efe, 0xb5cc, 0x6f88, 2397 }; 2398 2399 static const u16 x8_vectors[] = { 2400 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480, 2401 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80, 2402 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80, 2403 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80, 2404 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780, 2405 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080, 2406 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080, 2407 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080, 2408 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80, 2409 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580, 2410 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880, 2411 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280, 2412 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180, 2413 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580, 2414 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280, 2415 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180, 2416 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080, 2417 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 2418 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000, 2419 }; 2420 2421 static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs, 2422 unsigned v_dim) 2423 { 2424 unsigned int i, err_sym; 2425 2426 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) { 2427 u16 s = syndrome; 2428 unsigned v_idx = err_sym * v_dim; 2429 unsigned v_end = (err_sym + 1) * v_dim; 2430 2431 /* walk over all 16 bits of the syndrome */ 2432 for (i = 1; i < (1U << 16); i <<= 1) { 2433 2434 /* if bit is set in that eigenvector... */ 2435 if (v_idx < v_end && vectors[v_idx] & i) { 2436 u16 ev_comp = vectors[v_idx++]; 2437 2438 /* ... and bit set in the modified syndrome, */ 2439 if (s & i) { 2440 /* remove it. */ 2441 s ^= ev_comp; 2442 2443 if (!s) 2444 return err_sym; 2445 } 2446 2447 } else if (s & i) 2448 /* can't get to zero, move to next symbol */ 2449 break; 2450 } 2451 } 2452 2453 edac_dbg(0, "syndrome(%x) not found\n", syndrome); 2454 return -1; 2455 } 2456 2457 static int map_err_sym_to_channel(int err_sym, int sym_size) 2458 { 2459 if (sym_size == 4) 2460 switch (err_sym) { 2461 case 0x20: 2462 case 0x21: 2463 return 0; 2464 break; 2465 case 0x22: 2466 case 0x23: 2467 return 1; 2468 break; 2469 default: 2470 return err_sym >> 4; 2471 break; 2472 } 2473 /* x8 symbols */ 2474 else 2475 switch (err_sym) { 2476 /* imaginary bits not in a DIMM */ 2477 case 0x10: 2478 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n", 2479 err_sym); 2480 return -1; 2481 break; 2482 2483 case 0x11: 2484 return 0; 2485 break; 2486 case 0x12: 2487 return 1; 2488 break; 2489 default: 2490 return err_sym >> 3; 2491 break; 2492 } 2493 return -1; 2494 } 2495 2496 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome) 2497 { 2498 struct amd64_pvt *pvt = mci->pvt_info; 2499 int err_sym = -1; 2500 2501 if (pvt->ecc_sym_sz == 8) 2502 err_sym = decode_syndrome(syndrome, x8_vectors, 2503 ARRAY_SIZE(x8_vectors), 2504 pvt->ecc_sym_sz); 2505 else if (pvt->ecc_sym_sz == 4) 2506 err_sym = decode_syndrome(syndrome, x4_vectors, 2507 ARRAY_SIZE(x4_vectors), 2508 pvt->ecc_sym_sz); 2509 else { 2510 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz); 2511 return err_sym; 2512 } 2513 2514 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz); 2515 } 2516 2517 static void __log_ecc_error(struct mem_ctl_info *mci, struct err_info *err, 2518 u8 ecc_type) 2519 { 2520 enum hw_event_mc_err_type err_type; 2521 const char *string; 2522 2523 if (ecc_type == 2) 2524 err_type = HW_EVENT_ERR_CORRECTED; 2525 else if (ecc_type == 1) 2526 err_type = HW_EVENT_ERR_UNCORRECTED; 2527 else if (ecc_type == 3) 2528 err_type = HW_EVENT_ERR_DEFERRED; 2529 else { 2530 WARN(1, "Something is rotten in the state of Denmark.\n"); 2531 return; 2532 } 2533 2534 switch (err->err_code) { 2535 case DECODE_OK: 2536 string = ""; 2537 break; 2538 case ERR_NODE: 2539 string = "Failed to map error addr to a node"; 2540 break; 2541 case ERR_CSROW: 2542 string = "Failed to map error addr to a csrow"; 2543 break; 2544 case ERR_CHANNEL: 2545 string = "Unknown syndrome - possible error reporting race"; 2546 break; 2547 case ERR_SYND: 2548 string = "MCA_SYND not valid - unknown syndrome and csrow"; 2549 break; 2550 case ERR_NORM_ADDR: 2551 string = "Cannot decode normalized address"; 2552 break; 2553 default: 2554 string = "WTF error"; 2555 break; 2556 } 2557 2558 edac_mc_handle_error(err_type, mci, 1, 2559 err->page, err->offset, err->syndrome, 2560 err->csrow, err->channel, -1, 2561 string, ""); 2562 } 2563 2564 static inline void decode_bus_error(int node_id, struct mce *m) 2565 { 2566 struct mem_ctl_info *mci; 2567 struct amd64_pvt *pvt; 2568 u8 ecc_type = (m->status >> 45) & 0x3; 2569 u8 xec = XEC(m->status, 0x1f); 2570 u16 ec = EC(m->status); 2571 u64 sys_addr; 2572 struct err_info err; 2573 2574 mci = edac_mc_find(node_id); 2575 if (!mci) 2576 return; 2577 2578 pvt = mci->pvt_info; 2579 2580 /* Bail out early if this was an 'observed' error */ 2581 if (PP(ec) == NBSL_PP_OBS) 2582 return; 2583 2584 /* Do only ECC errors */ 2585 if (xec && xec != F10_NBSL_EXT_ERR_ECC) 2586 return; 2587 2588 memset(&err, 0, sizeof(err)); 2589 2590 sys_addr = get_error_address(pvt, m); 2591 2592 if (ecc_type == 2) 2593 err.syndrome = extract_syndrome(m->status); 2594 2595 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err); 2596 2597 __log_ecc_error(mci, &err, ecc_type); 2598 } 2599 2600 /* 2601 * To find the UMC channel represented by this bank we need to match on its 2602 * instance_id. The instance_id of a bank is held in the lower 32 bits of its 2603 * IPID. 2604 * 2605 * Currently, we can derive the channel number by looking at the 6th nibble in 2606 * the instance_id. For example, instance_id=0xYXXXXX where Y is the channel 2607 * number. 2608 */ 2609 static int find_umc_channel(struct mce *m) 2610 { 2611 return (m->ipid & GENMASK(31, 0)) >> 20; 2612 } 2613 2614 static void decode_umc_error(int node_id, struct mce *m) 2615 { 2616 u8 ecc_type = (m->status >> 45) & 0x3; 2617 struct mem_ctl_info *mci; 2618 struct amd64_pvt *pvt; 2619 struct err_info err; 2620 u64 sys_addr; 2621 2622 mci = edac_mc_find(node_id); 2623 if (!mci) 2624 return; 2625 2626 pvt = mci->pvt_info; 2627 2628 memset(&err, 0, sizeof(err)); 2629 2630 if (m->status & MCI_STATUS_DEFERRED) 2631 ecc_type = 3; 2632 2633 err.channel = find_umc_channel(m); 2634 2635 if (!(m->status & MCI_STATUS_SYNDV)) { 2636 err.err_code = ERR_SYND; 2637 goto log_error; 2638 } 2639 2640 if (ecc_type == 2) { 2641 u8 length = (m->synd >> 18) & 0x3f; 2642 2643 if (length) 2644 err.syndrome = (m->synd >> 32) & GENMASK(length - 1, 0); 2645 else 2646 err.err_code = ERR_CHANNEL; 2647 } 2648 2649 err.csrow = m->synd & 0x7; 2650 2651 if (umc_normaddr_to_sysaddr(m->addr, pvt->mc_node_id, err.channel, &sys_addr)) { 2652 err.err_code = ERR_NORM_ADDR; 2653 goto log_error; 2654 } 2655 2656 error_address_to_page_and_offset(sys_addr, &err); 2657 2658 log_error: 2659 __log_ecc_error(mci, &err, ecc_type); 2660 } 2661 2662 /* 2663 * Use pvt->F3 which contains the F3 CPU PCI device to get the related 2664 * F1 (AddrMap) and F2 (Dct) devices. Return negative value on error. 2665 * Reserve F0 and F6 on systems with a UMC. 2666 */ 2667 static int 2668 reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 pci_id1, u16 pci_id2) 2669 { 2670 if (pvt->umc) { 2671 pvt->F0 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3); 2672 if (!pvt->F0) { 2673 amd64_err("F0 not found, device 0x%x (broken BIOS?)\n", pci_id1); 2674 return -ENODEV; 2675 } 2676 2677 pvt->F6 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3); 2678 if (!pvt->F6) { 2679 pci_dev_put(pvt->F0); 2680 pvt->F0 = NULL; 2681 2682 amd64_err("F6 not found: device 0x%x (broken BIOS?)\n", pci_id2); 2683 return -ENODEV; 2684 } 2685 2686 edac_dbg(1, "F0: %s\n", pci_name(pvt->F0)); 2687 edac_dbg(1, "F3: %s\n", pci_name(pvt->F3)); 2688 edac_dbg(1, "F6: %s\n", pci_name(pvt->F6)); 2689 2690 return 0; 2691 } 2692 2693 /* Reserve the ADDRESS MAP Device */ 2694 pvt->F1 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3); 2695 if (!pvt->F1) { 2696 amd64_err("F1 not found: device 0x%x (broken BIOS?)\n", pci_id1); 2697 return -ENODEV; 2698 } 2699 2700 /* Reserve the DCT Device */ 2701 pvt->F2 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3); 2702 if (!pvt->F2) { 2703 pci_dev_put(pvt->F1); 2704 pvt->F1 = NULL; 2705 2706 amd64_err("F2 not found: device 0x%x (broken BIOS?)\n", pci_id2); 2707 return -ENODEV; 2708 } 2709 2710 edac_dbg(1, "F1: %s\n", pci_name(pvt->F1)); 2711 edac_dbg(1, "F2: %s\n", pci_name(pvt->F2)); 2712 edac_dbg(1, "F3: %s\n", pci_name(pvt->F3)); 2713 2714 return 0; 2715 } 2716 2717 static void free_mc_sibling_devs(struct amd64_pvt *pvt) 2718 { 2719 if (pvt->umc) { 2720 pci_dev_put(pvt->F0); 2721 pci_dev_put(pvt->F6); 2722 } else { 2723 pci_dev_put(pvt->F1); 2724 pci_dev_put(pvt->F2); 2725 } 2726 } 2727 2728 static void determine_ecc_sym_sz(struct amd64_pvt *pvt) 2729 { 2730 pvt->ecc_sym_sz = 4; 2731 2732 if (pvt->umc) { 2733 u8 i; 2734 2735 for_each_umc(i) { 2736 /* Check enabled channels only: */ 2737 if (pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) { 2738 if (pvt->umc[i].ecc_ctrl & BIT(9)) { 2739 pvt->ecc_sym_sz = 16; 2740 return; 2741 } else if (pvt->umc[i].ecc_ctrl & BIT(7)) { 2742 pvt->ecc_sym_sz = 8; 2743 return; 2744 } 2745 } 2746 } 2747 } else if (pvt->fam >= 0x10) { 2748 u32 tmp; 2749 2750 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp); 2751 /* F16h has only DCT0, so no need to read dbam1. */ 2752 if (pvt->fam != 0x16) 2753 amd64_read_dct_pci_cfg(pvt, 1, DBAM0, &pvt->dbam1); 2754 2755 /* F10h, revD and later can do x8 ECC too. */ 2756 if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25)) 2757 pvt->ecc_sym_sz = 8; 2758 } 2759 } 2760 2761 /* 2762 * Retrieve the hardware registers of the memory controller. 2763 */ 2764 static void __read_mc_regs_df(struct amd64_pvt *pvt) 2765 { 2766 u8 nid = pvt->mc_node_id; 2767 struct amd64_umc *umc; 2768 u32 i, umc_base; 2769 2770 /* Read registers from each UMC */ 2771 for_each_umc(i) { 2772 2773 umc_base = get_umc_base(i); 2774 umc = &pvt->umc[i]; 2775 2776 amd_smn_read(nid, umc_base + UMCCH_DIMM_CFG, &umc->dimm_cfg); 2777 amd_smn_read(nid, umc_base + UMCCH_UMC_CFG, &umc->umc_cfg); 2778 amd_smn_read(nid, umc_base + UMCCH_SDP_CTRL, &umc->sdp_ctrl); 2779 amd_smn_read(nid, umc_base + UMCCH_ECC_CTRL, &umc->ecc_ctrl); 2780 amd_smn_read(nid, umc_base + UMCCH_UMC_CAP_HI, &umc->umc_cap_hi); 2781 } 2782 } 2783 2784 /* 2785 * Retrieve the hardware registers of the memory controller (this includes the 2786 * 'Address Map' and 'Misc' device regs) 2787 */ 2788 static void read_mc_regs(struct amd64_pvt *pvt) 2789 { 2790 unsigned int range; 2791 u64 msr_val; 2792 2793 /* 2794 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since 2795 * those are Read-As-Zero. 2796 */ 2797 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem); 2798 edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem); 2799 2800 /* Check first whether TOP_MEM2 is enabled: */ 2801 rdmsrl(MSR_K8_SYSCFG, msr_val); 2802 if (msr_val & BIT(21)) { 2803 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2); 2804 edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2); 2805 } else { 2806 edac_dbg(0, " TOP_MEM2 disabled\n"); 2807 } 2808 2809 if (pvt->umc) { 2810 __read_mc_regs_df(pvt); 2811 amd64_read_pci_cfg(pvt->F0, DF_DHAR, &pvt->dhar); 2812 2813 goto skip; 2814 } 2815 2816 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap); 2817 2818 read_dram_ctl_register(pvt); 2819 2820 for (range = 0; range < DRAM_RANGES; range++) { 2821 u8 rw; 2822 2823 /* read settings for this DRAM range */ 2824 read_dram_base_limit_regs(pvt, range); 2825 2826 rw = dram_rw(pvt, range); 2827 if (!rw) 2828 continue; 2829 2830 edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n", 2831 range, 2832 get_dram_base(pvt, range), 2833 get_dram_limit(pvt, range)); 2834 2835 edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n", 2836 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled", 2837 (rw & 0x1) ? "R" : "-", 2838 (rw & 0x2) ? "W" : "-", 2839 dram_intlv_sel(pvt, range), 2840 dram_dst_node(pvt, range)); 2841 } 2842 2843 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar); 2844 amd64_read_dct_pci_cfg(pvt, 0, DBAM0, &pvt->dbam0); 2845 2846 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare); 2847 2848 amd64_read_dct_pci_cfg(pvt, 0, DCLR0, &pvt->dclr0); 2849 amd64_read_dct_pci_cfg(pvt, 0, DCHR0, &pvt->dchr0); 2850 2851 if (!dct_ganging_enabled(pvt)) { 2852 amd64_read_dct_pci_cfg(pvt, 1, DCLR0, &pvt->dclr1); 2853 amd64_read_dct_pci_cfg(pvt, 1, DCHR0, &pvt->dchr1); 2854 } 2855 2856 skip: 2857 read_dct_base_mask(pvt); 2858 2859 determine_memory_type(pvt); 2860 edac_dbg(1, " DIMM type: %s\n", edac_mem_types[pvt->dram_type]); 2861 2862 determine_ecc_sym_sz(pvt); 2863 } 2864 2865 /* 2866 * NOTE: CPU Revision Dependent code 2867 * 2868 * Input: 2869 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1) 2870 * k8 private pointer to --> 2871 * DRAM Bank Address mapping register 2872 * node_id 2873 * DCL register where dual_channel_active is 2874 * 2875 * The DBAM register consists of 4 sets of 4 bits each definitions: 2876 * 2877 * Bits: CSROWs 2878 * 0-3 CSROWs 0 and 1 2879 * 4-7 CSROWs 2 and 3 2880 * 8-11 CSROWs 4 and 5 2881 * 12-15 CSROWs 6 and 7 2882 * 2883 * Values range from: 0 to 15 2884 * The meaning of the values depends on CPU revision and dual-channel state, 2885 * see relevant BKDG more info. 2886 * 2887 * The memory controller provides for total of only 8 CSROWs in its current 2888 * architecture. Each "pair" of CSROWs normally represents just one DIMM in 2889 * single channel or two (2) DIMMs in dual channel mode. 2890 * 2891 * The following code logic collapses the various tables for CSROW based on CPU 2892 * revision. 2893 * 2894 * Returns: 2895 * The number of PAGE_SIZE pages on the specified CSROW number it 2896 * encompasses 2897 * 2898 */ 2899 static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr_orig) 2900 { 2901 u32 dbam = dct ? pvt->dbam1 : pvt->dbam0; 2902 int csrow_nr = csrow_nr_orig; 2903 u32 cs_mode, nr_pages; 2904 2905 if (!pvt->umc) { 2906 csrow_nr >>= 1; 2907 cs_mode = DBAM_DIMM(csrow_nr, dbam); 2908 } else { 2909 cs_mode = f17_get_cs_mode(csrow_nr >> 1, dct, pvt); 2910 } 2911 2912 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode, csrow_nr); 2913 nr_pages <<= 20 - PAGE_SHIFT; 2914 2915 edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n", 2916 csrow_nr_orig, dct, cs_mode); 2917 edac_dbg(0, "nr_pages/channel: %u\n", nr_pages); 2918 2919 return nr_pages; 2920 } 2921 2922 static int init_csrows_df(struct mem_ctl_info *mci) 2923 { 2924 struct amd64_pvt *pvt = mci->pvt_info; 2925 enum edac_type edac_mode = EDAC_NONE; 2926 enum dev_type dev_type = DEV_UNKNOWN; 2927 struct dimm_info *dimm; 2928 int empty = 1; 2929 u8 umc, cs; 2930 2931 if (mci->edac_ctl_cap & EDAC_FLAG_S16ECD16ED) { 2932 edac_mode = EDAC_S16ECD16ED; 2933 dev_type = DEV_X16; 2934 } else if (mci->edac_ctl_cap & EDAC_FLAG_S8ECD8ED) { 2935 edac_mode = EDAC_S8ECD8ED; 2936 dev_type = DEV_X8; 2937 } else if (mci->edac_ctl_cap & EDAC_FLAG_S4ECD4ED) { 2938 edac_mode = EDAC_S4ECD4ED; 2939 dev_type = DEV_X4; 2940 } else if (mci->edac_ctl_cap & EDAC_FLAG_SECDED) { 2941 edac_mode = EDAC_SECDED; 2942 } 2943 2944 for_each_umc(umc) { 2945 for_each_chip_select(cs, umc, pvt) { 2946 if (!csrow_enabled(cs, umc, pvt)) 2947 continue; 2948 2949 empty = 0; 2950 dimm = mci->csrows[cs]->channels[umc]->dimm; 2951 2952 edac_dbg(1, "MC node: %d, csrow: %d\n", 2953 pvt->mc_node_id, cs); 2954 2955 dimm->nr_pages = get_csrow_nr_pages(pvt, umc, cs); 2956 dimm->mtype = pvt->dram_type; 2957 dimm->edac_mode = edac_mode; 2958 dimm->dtype = dev_type; 2959 dimm->grain = 64; 2960 } 2961 } 2962 2963 return empty; 2964 } 2965 2966 /* 2967 * Initialize the array of csrow attribute instances, based on the values 2968 * from pci config hardware registers. 2969 */ 2970 static int init_csrows(struct mem_ctl_info *mci) 2971 { 2972 struct amd64_pvt *pvt = mci->pvt_info; 2973 enum edac_type edac_mode = EDAC_NONE; 2974 struct csrow_info *csrow; 2975 struct dimm_info *dimm; 2976 int i, j, empty = 1; 2977 int nr_pages = 0; 2978 u32 val; 2979 2980 if (pvt->umc) 2981 return init_csrows_df(mci); 2982 2983 amd64_read_pci_cfg(pvt->F3, NBCFG, &val); 2984 2985 pvt->nbcfg = val; 2986 2987 edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n", 2988 pvt->mc_node_id, val, 2989 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE)); 2990 2991 /* 2992 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed. 2993 */ 2994 for_each_chip_select(i, 0, pvt) { 2995 bool row_dct0 = !!csrow_enabled(i, 0, pvt); 2996 bool row_dct1 = false; 2997 2998 if (pvt->fam != 0xf) 2999 row_dct1 = !!csrow_enabled(i, 1, pvt); 3000 3001 if (!row_dct0 && !row_dct1) 3002 continue; 3003 3004 csrow = mci->csrows[i]; 3005 empty = 0; 3006 3007 edac_dbg(1, "MC node: %d, csrow: %d\n", 3008 pvt->mc_node_id, i); 3009 3010 if (row_dct0) { 3011 nr_pages = get_csrow_nr_pages(pvt, 0, i); 3012 csrow->channels[0]->dimm->nr_pages = nr_pages; 3013 } 3014 3015 /* K8 has only one DCT */ 3016 if (pvt->fam != 0xf && row_dct1) { 3017 int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i); 3018 3019 csrow->channels[1]->dimm->nr_pages = row_dct1_pages; 3020 nr_pages += row_dct1_pages; 3021 } 3022 3023 edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages); 3024 3025 /* Determine DIMM ECC mode: */ 3026 if (pvt->nbcfg & NBCFG_ECC_ENABLE) { 3027 edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) 3028 ? EDAC_S4ECD4ED 3029 : EDAC_SECDED; 3030 } 3031 3032 for (j = 0; j < pvt->channel_count; j++) { 3033 dimm = csrow->channels[j]->dimm; 3034 dimm->mtype = pvt->dram_type; 3035 dimm->edac_mode = edac_mode; 3036 dimm->grain = 64; 3037 } 3038 } 3039 3040 return empty; 3041 } 3042 3043 /* get all cores on this DCT */ 3044 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid) 3045 { 3046 int cpu; 3047 3048 for_each_online_cpu(cpu) 3049 if (amd_get_nb_id(cpu) == nid) 3050 cpumask_set_cpu(cpu, mask); 3051 } 3052 3053 /* check MCG_CTL on all the cpus on this node */ 3054 static bool nb_mce_bank_enabled_on_node(u16 nid) 3055 { 3056 cpumask_var_t mask; 3057 int cpu, nbe; 3058 bool ret = false; 3059 3060 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) { 3061 amd64_warn("%s: Error allocating mask\n", __func__); 3062 return false; 3063 } 3064 3065 get_cpus_on_this_dct_cpumask(mask, nid); 3066 3067 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs); 3068 3069 for_each_cpu(cpu, mask) { 3070 struct msr *reg = per_cpu_ptr(msrs, cpu); 3071 nbe = reg->l & MSR_MCGCTL_NBE; 3072 3073 edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n", 3074 cpu, reg->q, 3075 (nbe ? "enabled" : "disabled")); 3076 3077 if (!nbe) 3078 goto out; 3079 } 3080 ret = true; 3081 3082 out: 3083 free_cpumask_var(mask); 3084 return ret; 3085 } 3086 3087 static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on) 3088 { 3089 cpumask_var_t cmask; 3090 int cpu; 3091 3092 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) { 3093 amd64_warn("%s: error allocating mask\n", __func__); 3094 return -ENOMEM; 3095 } 3096 3097 get_cpus_on_this_dct_cpumask(cmask, nid); 3098 3099 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs); 3100 3101 for_each_cpu(cpu, cmask) { 3102 3103 struct msr *reg = per_cpu_ptr(msrs, cpu); 3104 3105 if (on) { 3106 if (reg->l & MSR_MCGCTL_NBE) 3107 s->flags.nb_mce_enable = 1; 3108 3109 reg->l |= MSR_MCGCTL_NBE; 3110 } else { 3111 /* 3112 * Turn off NB MCE reporting only when it was off before 3113 */ 3114 if (!s->flags.nb_mce_enable) 3115 reg->l &= ~MSR_MCGCTL_NBE; 3116 } 3117 } 3118 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs); 3119 3120 free_cpumask_var(cmask); 3121 3122 return 0; 3123 } 3124 3125 static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid, 3126 struct pci_dev *F3) 3127 { 3128 bool ret = true; 3129 u32 value, mask = 0x3; /* UECC/CECC enable */ 3130 3131 if (toggle_ecc_err_reporting(s, nid, ON)) { 3132 amd64_warn("Error enabling ECC reporting over MCGCTL!\n"); 3133 return false; 3134 } 3135 3136 amd64_read_pci_cfg(F3, NBCTL, &value); 3137 3138 s->old_nbctl = value & mask; 3139 s->nbctl_valid = true; 3140 3141 value |= mask; 3142 amd64_write_pci_cfg(F3, NBCTL, value); 3143 3144 amd64_read_pci_cfg(F3, NBCFG, &value); 3145 3146 edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n", 3147 nid, value, !!(value & NBCFG_ECC_ENABLE)); 3148 3149 if (!(value & NBCFG_ECC_ENABLE)) { 3150 amd64_warn("DRAM ECC disabled on this node, enabling...\n"); 3151 3152 s->flags.nb_ecc_prev = 0; 3153 3154 /* Attempt to turn on DRAM ECC Enable */ 3155 value |= NBCFG_ECC_ENABLE; 3156 amd64_write_pci_cfg(F3, NBCFG, value); 3157 3158 amd64_read_pci_cfg(F3, NBCFG, &value); 3159 3160 if (!(value & NBCFG_ECC_ENABLE)) { 3161 amd64_warn("Hardware rejected DRAM ECC enable," 3162 "check memory DIMM configuration.\n"); 3163 ret = false; 3164 } else { 3165 amd64_info("Hardware accepted DRAM ECC Enable\n"); 3166 } 3167 } else { 3168 s->flags.nb_ecc_prev = 1; 3169 } 3170 3171 edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n", 3172 nid, value, !!(value & NBCFG_ECC_ENABLE)); 3173 3174 return ret; 3175 } 3176 3177 static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid, 3178 struct pci_dev *F3) 3179 { 3180 u32 value, mask = 0x3; /* UECC/CECC enable */ 3181 3182 if (!s->nbctl_valid) 3183 return; 3184 3185 amd64_read_pci_cfg(F3, NBCTL, &value); 3186 value &= ~mask; 3187 value |= s->old_nbctl; 3188 3189 amd64_write_pci_cfg(F3, NBCTL, value); 3190 3191 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */ 3192 if (!s->flags.nb_ecc_prev) { 3193 amd64_read_pci_cfg(F3, NBCFG, &value); 3194 value &= ~NBCFG_ECC_ENABLE; 3195 amd64_write_pci_cfg(F3, NBCFG, value); 3196 } 3197 3198 /* restore the NB Enable MCGCTL bit */ 3199 if (toggle_ecc_err_reporting(s, nid, OFF)) 3200 amd64_warn("Error restoring NB MCGCTL settings!\n"); 3201 } 3202 3203 static bool ecc_enabled(struct amd64_pvt *pvt) 3204 { 3205 u16 nid = pvt->mc_node_id; 3206 bool nb_mce_en = false; 3207 u8 ecc_en = 0, i; 3208 u32 value; 3209 3210 if (boot_cpu_data.x86 >= 0x17) { 3211 u8 umc_en_mask = 0, ecc_en_mask = 0; 3212 struct amd64_umc *umc; 3213 3214 for_each_umc(i) { 3215 umc = &pvt->umc[i]; 3216 3217 /* Only check enabled UMCs. */ 3218 if (!(umc->sdp_ctrl & UMC_SDP_INIT)) 3219 continue; 3220 3221 umc_en_mask |= BIT(i); 3222 3223 if (umc->umc_cap_hi & UMC_ECC_ENABLED) 3224 ecc_en_mask |= BIT(i); 3225 } 3226 3227 /* Check whether at least one UMC is enabled: */ 3228 if (umc_en_mask) 3229 ecc_en = umc_en_mask == ecc_en_mask; 3230 else 3231 edac_dbg(0, "Node %d: No enabled UMCs.\n", nid); 3232 3233 /* Assume UMC MCA banks are enabled. */ 3234 nb_mce_en = true; 3235 } else { 3236 amd64_read_pci_cfg(pvt->F3, NBCFG, &value); 3237 3238 ecc_en = !!(value & NBCFG_ECC_ENABLE); 3239 3240 nb_mce_en = nb_mce_bank_enabled_on_node(nid); 3241 if (!nb_mce_en) 3242 edac_dbg(0, "NB MCE bank disabled, set MSR 0x%08x[4] on node %d to enable.\n", 3243 MSR_IA32_MCG_CTL, nid); 3244 } 3245 3246 amd64_info("Node %d: DRAM ECC %s.\n", 3247 nid, (ecc_en ? "enabled" : "disabled")); 3248 3249 if (!ecc_en || !nb_mce_en) 3250 return false; 3251 else 3252 return true; 3253 } 3254 3255 static inline void 3256 f17h_determine_edac_ctl_cap(struct mem_ctl_info *mci, struct amd64_pvt *pvt) 3257 { 3258 u8 i, ecc_en = 1, cpk_en = 1, dev_x4 = 1, dev_x16 = 1; 3259 3260 for_each_umc(i) { 3261 if (pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) { 3262 ecc_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_ENABLED); 3263 cpk_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_CHIPKILL_CAP); 3264 3265 dev_x4 &= !!(pvt->umc[i].dimm_cfg & BIT(6)); 3266 dev_x16 &= !!(pvt->umc[i].dimm_cfg & BIT(7)); 3267 } 3268 } 3269 3270 /* Set chipkill only if ECC is enabled: */ 3271 if (ecc_en) { 3272 mci->edac_ctl_cap |= EDAC_FLAG_SECDED; 3273 3274 if (!cpk_en) 3275 return; 3276 3277 if (dev_x4) 3278 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED; 3279 else if (dev_x16) 3280 mci->edac_ctl_cap |= EDAC_FLAG_S16ECD16ED; 3281 else 3282 mci->edac_ctl_cap |= EDAC_FLAG_S8ECD8ED; 3283 } 3284 } 3285 3286 static void setup_mci_misc_attrs(struct mem_ctl_info *mci) 3287 { 3288 struct amd64_pvt *pvt = mci->pvt_info; 3289 3290 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2; 3291 mci->edac_ctl_cap = EDAC_FLAG_NONE; 3292 3293 if (pvt->umc) { 3294 f17h_determine_edac_ctl_cap(mci, pvt); 3295 } else { 3296 if (pvt->nbcap & NBCAP_SECDED) 3297 mci->edac_ctl_cap |= EDAC_FLAG_SECDED; 3298 3299 if (pvt->nbcap & NBCAP_CHIPKILL) 3300 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED; 3301 } 3302 3303 mci->edac_cap = determine_edac_cap(pvt); 3304 mci->mod_name = EDAC_MOD_STR; 3305 mci->ctl_name = fam_type->ctl_name; 3306 mci->dev_name = pci_name(pvt->F3); 3307 mci->ctl_page_to_phys = NULL; 3308 3309 /* memory scrubber interface */ 3310 mci->set_sdram_scrub_rate = set_scrub_rate; 3311 mci->get_sdram_scrub_rate = get_scrub_rate; 3312 } 3313 3314 /* 3315 * returns a pointer to the family descriptor on success, NULL otherwise. 3316 */ 3317 static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt) 3318 { 3319 pvt->ext_model = boot_cpu_data.x86_model >> 4; 3320 pvt->stepping = boot_cpu_data.x86_stepping; 3321 pvt->model = boot_cpu_data.x86_model; 3322 pvt->fam = boot_cpu_data.x86; 3323 3324 switch (pvt->fam) { 3325 case 0xf: 3326 fam_type = &family_types[K8_CPUS]; 3327 pvt->ops = &family_types[K8_CPUS].ops; 3328 break; 3329 3330 case 0x10: 3331 fam_type = &family_types[F10_CPUS]; 3332 pvt->ops = &family_types[F10_CPUS].ops; 3333 break; 3334 3335 case 0x15: 3336 if (pvt->model == 0x30) { 3337 fam_type = &family_types[F15_M30H_CPUS]; 3338 pvt->ops = &family_types[F15_M30H_CPUS].ops; 3339 break; 3340 } else if (pvt->model == 0x60) { 3341 fam_type = &family_types[F15_M60H_CPUS]; 3342 pvt->ops = &family_types[F15_M60H_CPUS].ops; 3343 break; 3344 } 3345 3346 fam_type = &family_types[F15_CPUS]; 3347 pvt->ops = &family_types[F15_CPUS].ops; 3348 break; 3349 3350 case 0x16: 3351 if (pvt->model == 0x30) { 3352 fam_type = &family_types[F16_M30H_CPUS]; 3353 pvt->ops = &family_types[F16_M30H_CPUS].ops; 3354 break; 3355 } 3356 fam_type = &family_types[F16_CPUS]; 3357 pvt->ops = &family_types[F16_CPUS].ops; 3358 break; 3359 3360 case 0x17: 3361 if (pvt->model >= 0x10 && pvt->model <= 0x2f) { 3362 fam_type = &family_types[F17_M10H_CPUS]; 3363 pvt->ops = &family_types[F17_M10H_CPUS].ops; 3364 break; 3365 } else if (pvt->model >= 0x30 && pvt->model <= 0x3f) { 3366 fam_type = &family_types[F17_M30H_CPUS]; 3367 pvt->ops = &family_types[F17_M30H_CPUS].ops; 3368 break; 3369 } else if (pvt->model >= 0x60 && pvt->model <= 0x6f) { 3370 fam_type = &family_types[F17_M60H_CPUS]; 3371 pvt->ops = &family_types[F17_M60H_CPUS].ops; 3372 break; 3373 } else if (pvt->model >= 0x70 && pvt->model <= 0x7f) { 3374 fam_type = &family_types[F17_M70H_CPUS]; 3375 pvt->ops = &family_types[F17_M70H_CPUS].ops; 3376 break; 3377 } 3378 fallthrough; 3379 case 0x18: 3380 fam_type = &family_types[F17_CPUS]; 3381 pvt->ops = &family_types[F17_CPUS].ops; 3382 3383 if (pvt->fam == 0x18) 3384 family_types[F17_CPUS].ctl_name = "F18h"; 3385 break; 3386 3387 case 0x19: 3388 fam_type = &family_types[F19_CPUS]; 3389 pvt->ops = &family_types[F19_CPUS].ops; 3390 family_types[F19_CPUS].ctl_name = "F19h"; 3391 break; 3392 3393 default: 3394 amd64_err("Unsupported family!\n"); 3395 return NULL; 3396 } 3397 3398 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name, 3399 (pvt->fam == 0xf ? 3400 (pvt->ext_model >= K8_REV_F ? "revF or later " 3401 : "revE or earlier ") 3402 : ""), pvt->mc_node_id); 3403 return fam_type; 3404 } 3405 3406 static const struct attribute_group *amd64_edac_attr_groups[] = { 3407 #ifdef CONFIG_EDAC_DEBUG 3408 &amd64_edac_dbg_group, 3409 #endif 3410 #ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION 3411 &amd64_edac_inj_group, 3412 #endif 3413 NULL 3414 }; 3415 3416 static int hw_info_get(struct amd64_pvt *pvt) 3417 { 3418 u16 pci_id1, pci_id2; 3419 int ret; 3420 3421 if (pvt->fam >= 0x17) { 3422 pvt->umc = kcalloc(fam_type->max_mcs, sizeof(struct amd64_umc), GFP_KERNEL); 3423 if (!pvt->umc) 3424 return -ENOMEM; 3425 3426 pci_id1 = fam_type->f0_id; 3427 pci_id2 = fam_type->f6_id; 3428 } else { 3429 pci_id1 = fam_type->f1_id; 3430 pci_id2 = fam_type->f2_id; 3431 } 3432 3433 ret = reserve_mc_sibling_devs(pvt, pci_id1, pci_id2); 3434 if (ret) 3435 return ret; 3436 3437 read_mc_regs(pvt); 3438 3439 return 0; 3440 } 3441 3442 static void hw_info_put(struct amd64_pvt *pvt) 3443 { 3444 if (pvt->F0 || pvt->F1) 3445 free_mc_sibling_devs(pvt); 3446 3447 kfree(pvt->umc); 3448 } 3449 3450 static int init_one_instance(struct amd64_pvt *pvt) 3451 { 3452 struct mem_ctl_info *mci = NULL; 3453 struct edac_mc_layer layers[2]; 3454 int ret = -EINVAL; 3455 3456 /* 3457 * We need to determine how many memory channels there are. Then use 3458 * that information for calculating the size of the dynamic instance 3459 * tables in the 'mci' structure. 3460 */ 3461 pvt->channel_count = pvt->ops->early_channel_count(pvt); 3462 if (pvt->channel_count < 0) 3463 return ret; 3464 3465 ret = -ENOMEM; 3466 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; 3467 layers[0].size = pvt->csels[0].b_cnt; 3468 layers[0].is_virt_csrow = true; 3469 layers[1].type = EDAC_MC_LAYER_CHANNEL; 3470 3471 /* 3472 * Always allocate two channels since we can have setups with DIMMs on 3473 * only one channel. Also, this simplifies handling later for the price 3474 * of a couple of KBs tops. 3475 */ 3476 layers[1].size = fam_type->max_mcs; 3477 layers[1].is_virt_csrow = false; 3478 3479 mci = edac_mc_alloc(pvt->mc_node_id, ARRAY_SIZE(layers), layers, 0); 3480 if (!mci) 3481 return ret; 3482 3483 mci->pvt_info = pvt; 3484 mci->pdev = &pvt->F3->dev; 3485 3486 setup_mci_misc_attrs(mci); 3487 3488 if (init_csrows(mci)) 3489 mci->edac_cap = EDAC_FLAG_NONE; 3490 3491 ret = -ENODEV; 3492 if (edac_mc_add_mc_with_groups(mci, amd64_edac_attr_groups)) { 3493 edac_dbg(1, "failed edac_mc_add_mc()\n"); 3494 edac_mc_free(mci); 3495 return ret; 3496 } 3497 3498 return 0; 3499 } 3500 3501 static bool instance_has_memory(struct amd64_pvt *pvt) 3502 { 3503 bool cs_enabled = false; 3504 int cs = 0, dct = 0; 3505 3506 for (dct = 0; dct < fam_type->max_mcs; dct++) { 3507 for_each_chip_select(cs, dct, pvt) 3508 cs_enabled |= csrow_enabled(cs, dct, pvt); 3509 } 3510 3511 return cs_enabled; 3512 } 3513 3514 static int probe_one_instance(unsigned int nid) 3515 { 3516 struct pci_dev *F3 = node_to_amd_nb(nid)->misc; 3517 struct amd64_pvt *pvt = NULL; 3518 struct ecc_settings *s; 3519 int ret; 3520 3521 ret = -ENOMEM; 3522 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL); 3523 if (!s) 3524 goto err_out; 3525 3526 ecc_stngs[nid] = s; 3527 3528 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL); 3529 if (!pvt) 3530 goto err_settings; 3531 3532 pvt->mc_node_id = nid; 3533 pvt->F3 = F3; 3534 3535 fam_type = per_family_init(pvt); 3536 if (!fam_type) 3537 goto err_enable; 3538 3539 ret = hw_info_get(pvt); 3540 if (ret < 0) 3541 goto err_enable; 3542 3543 ret = 0; 3544 if (!instance_has_memory(pvt)) { 3545 amd64_info("Node %d: No DIMMs detected.\n", nid); 3546 goto err_enable; 3547 } 3548 3549 if (!ecc_enabled(pvt)) { 3550 ret = -ENODEV; 3551 3552 if (!ecc_enable_override) 3553 goto err_enable; 3554 3555 if (boot_cpu_data.x86 >= 0x17) { 3556 amd64_warn("Forcing ECC on is not recommended on newer systems. Please enable ECC in BIOS."); 3557 goto err_enable; 3558 } else 3559 amd64_warn("Forcing ECC on!\n"); 3560 3561 if (!enable_ecc_error_reporting(s, nid, F3)) 3562 goto err_enable; 3563 } 3564 3565 ret = init_one_instance(pvt); 3566 if (ret < 0) { 3567 amd64_err("Error probing instance: %d\n", nid); 3568 3569 if (boot_cpu_data.x86 < 0x17) 3570 restore_ecc_error_reporting(s, nid, F3); 3571 3572 goto err_enable; 3573 } 3574 3575 dump_misc_regs(pvt); 3576 3577 return ret; 3578 3579 err_enable: 3580 hw_info_put(pvt); 3581 kfree(pvt); 3582 3583 err_settings: 3584 kfree(s); 3585 ecc_stngs[nid] = NULL; 3586 3587 err_out: 3588 return ret; 3589 } 3590 3591 static void remove_one_instance(unsigned int nid) 3592 { 3593 struct pci_dev *F3 = node_to_amd_nb(nid)->misc; 3594 struct ecc_settings *s = ecc_stngs[nid]; 3595 struct mem_ctl_info *mci; 3596 struct amd64_pvt *pvt; 3597 3598 /* Remove from EDAC CORE tracking list */ 3599 mci = edac_mc_del_mc(&F3->dev); 3600 if (!mci) 3601 return; 3602 3603 pvt = mci->pvt_info; 3604 3605 restore_ecc_error_reporting(s, nid, F3); 3606 3607 kfree(ecc_stngs[nid]); 3608 ecc_stngs[nid] = NULL; 3609 3610 /* Free the EDAC CORE resources */ 3611 mci->pvt_info = NULL; 3612 3613 hw_info_put(pvt); 3614 kfree(pvt); 3615 edac_mc_free(mci); 3616 } 3617 3618 static void setup_pci_device(void) 3619 { 3620 struct mem_ctl_info *mci; 3621 struct amd64_pvt *pvt; 3622 3623 if (pci_ctl) 3624 return; 3625 3626 mci = edac_mc_find(0); 3627 if (!mci) 3628 return; 3629 3630 pvt = mci->pvt_info; 3631 if (pvt->umc) 3632 pci_ctl = edac_pci_create_generic_ctl(&pvt->F0->dev, EDAC_MOD_STR); 3633 else 3634 pci_ctl = edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR); 3635 if (!pci_ctl) { 3636 pr_warn("%s(): Unable to create PCI control\n", __func__); 3637 pr_warn("%s(): PCI error report via EDAC not set\n", __func__); 3638 } 3639 } 3640 3641 static const struct x86_cpu_id amd64_cpuids[] = { 3642 X86_MATCH_VENDOR_FAM(AMD, 0x0F, NULL), 3643 X86_MATCH_VENDOR_FAM(AMD, 0x10, NULL), 3644 X86_MATCH_VENDOR_FAM(AMD, 0x15, NULL), 3645 X86_MATCH_VENDOR_FAM(AMD, 0x16, NULL), 3646 X86_MATCH_VENDOR_FAM(AMD, 0x17, NULL), 3647 X86_MATCH_VENDOR_FAM(HYGON, 0x18, NULL), 3648 X86_MATCH_VENDOR_FAM(AMD, 0x19, NULL), 3649 { } 3650 }; 3651 MODULE_DEVICE_TABLE(x86cpu, amd64_cpuids); 3652 3653 static int __init amd64_edac_init(void) 3654 { 3655 const char *owner; 3656 int err = -ENODEV; 3657 int i; 3658 3659 owner = edac_get_owner(); 3660 if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR))) 3661 return -EBUSY; 3662 3663 if (!x86_match_cpu(amd64_cpuids)) 3664 return -ENODEV; 3665 3666 if (amd_cache_northbridges() < 0) 3667 return -ENODEV; 3668 3669 opstate_init(); 3670 3671 err = -ENOMEM; 3672 ecc_stngs = kcalloc(amd_nb_num(), sizeof(ecc_stngs[0]), GFP_KERNEL); 3673 if (!ecc_stngs) 3674 goto err_free; 3675 3676 msrs = msrs_alloc(); 3677 if (!msrs) 3678 goto err_free; 3679 3680 for (i = 0; i < amd_nb_num(); i++) { 3681 err = probe_one_instance(i); 3682 if (err) { 3683 /* unwind properly */ 3684 while (--i >= 0) 3685 remove_one_instance(i); 3686 3687 goto err_pci; 3688 } 3689 } 3690 3691 if (!edac_has_mcs()) { 3692 err = -ENODEV; 3693 goto err_pci; 3694 } 3695 3696 /* register stuff with EDAC MCE */ 3697 if (boot_cpu_data.x86 >= 0x17) 3698 amd_register_ecc_decoder(decode_umc_error); 3699 else 3700 amd_register_ecc_decoder(decode_bus_error); 3701 3702 setup_pci_device(); 3703 3704 #ifdef CONFIG_X86_32 3705 amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR); 3706 #endif 3707 3708 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION); 3709 3710 return 0; 3711 3712 err_pci: 3713 msrs_free(msrs); 3714 msrs = NULL; 3715 3716 err_free: 3717 kfree(ecc_stngs); 3718 ecc_stngs = NULL; 3719 3720 return err; 3721 } 3722 3723 static void __exit amd64_edac_exit(void) 3724 { 3725 int i; 3726 3727 if (pci_ctl) 3728 edac_pci_release_generic_ctl(pci_ctl); 3729 3730 /* unregister from EDAC MCE */ 3731 if (boot_cpu_data.x86 >= 0x17) 3732 amd_unregister_ecc_decoder(decode_umc_error); 3733 else 3734 amd_unregister_ecc_decoder(decode_bus_error); 3735 3736 for (i = 0; i < amd_nb_num(); i++) 3737 remove_one_instance(i); 3738 3739 kfree(ecc_stngs); 3740 ecc_stngs = NULL; 3741 3742 msrs_free(msrs); 3743 msrs = NULL; 3744 } 3745 3746 module_init(amd64_edac_init); 3747 module_exit(amd64_edac_exit); 3748 3749 MODULE_LICENSE("GPL"); 3750 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, " 3751 "Dave Peterson, Thayne Harbaugh"); 3752 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - " 3753 EDAC_AMD64_VERSION); 3754 3755 module_param(edac_op_state, int, 0444); 3756 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); 3757