xref: /openbmc/linux/drivers/edac/amd64_edac.c (revision e190bfe5)
1 #include "amd64_edac.h"
2 #include <asm/k8.h>
3 
4 static struct edac_pci_ctl_info *amd64_ctl_pci;
5 
6 static int report_gart_errors;
7 module_param(report_gart_errors, int, 0644);
8 
9 /*
10  * Set by command line parameter. If BIOS has enabled the ECC, this override is
11  * cleared to prevent re-enabling the hardware by this driver.
12  */
13 static int ecc_enable_override;
14 module_param(ecc_enable_override, int, 0644);
15 
16 static struct msr __percpu *msrs;
17 
18 /* Lookup table for all possible MC control instances */
19 struct amd64_pvt;
20 static struct mem_ctl_info *mci_lookup[EDAC_MAX_NUMNODES];
21 static struct amd64_pvt *pvt_lookup[EDAC_MAX_NUMNODES];
22 
23 /*
24  * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
25  * later.
26  */
27 static int ddr2_dbam_revCG[] = {
28 			   [0]		= 32,
29 			   [1]		= 64,
30 			   [2]		= 128,
31 			   [3]		= 256,
32 			   [4]		= 512,
33 			   [5]		= 1024,
34 			   [6]		= 2048,
35 };
36 
37 static int ddr2_dbam_revD[] = {
38 			   [0]		= 32,
39 			   [1]		= 64,
40 			   [2 ... 3]	= 128,
41 			   [4]		= 256,
42 			   [5]		= 512,
43 			   [6]		= 256,
44 			   [7]		= 512,
45 			   [8 ... 9]	= 1024,
46 			   [10]		= 2048,
47 };
48 
49 static int ddr2_dbam[] = { [0]		= 128,
50 			   [1]		= 256,
51 			   [2 ... 4]	= 512,
52 			   [5 ... 6]	= 1024,
53 			   [7 ... 8]	= 2048,
54 			   [9 ... 10]	= 4096,
55 			   [11]		= 8192,
56 };
57 
58 static int ddr3_dbam[] = { [0]		= -1,
59 			   [1]		= 256,
60 			   [2]		= 512,
61 			   [3 ... 4]	= -1,
62 			   [5 ... 6]	= 1024,
63 			   [7 ... 8]	= 2048,
64 			   [9 ... 10]	= 4096,
65 			   [11]	= 8192,
66 };
67 
68 /*
69  * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
70  * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
71  * or higher value'.
72  *
73  *FIXME: Produce a better mapping/linearisation.
74  */
75 
76 struct scrubrate scrubrates[] = {
77 	{ 0x01, 1600000000UL},
78 	{ 0x02, 800000000UL},
79 	{ 0x03, 400000000UL},
80 	{ 0x04, 200000000UL},
81 	{ 0x05, 100000000UL},
82 	{ 0x06, 50000000UL},
83 	{ 0x07, 25000000UL},
84 	{ 0x08, 12284069UL},
85 	{ 0x09, 6274509UL},
86 	{ 0x0A, 3121951UL},
87 	{ 0x0B, 1560975UL},
88 	{ 0x0C, 781440UL},
89 	{ 0x0D, 390720UL},
90 	{ 0x0E, 195300UL},
91 	{ 0x0F, 97650UL},
92 	{ 0x10, 48854UL},
93 	{ 0x11, 24427UL},
94 	{ 0x12, 12213UL},
95 	{ 0x13, 6101UL},
96 	{ 0x14, 3051UL},
97 	{ 0x15, 1523UL},
98 	{ 0x16, 761UL},
99 	{ 0x00, 0UL},        /* scrubbing off */
100 };
101 
102 /*
103  * Memory scrubber control interface. For K8, memory scrubbing is handled by
104  * hardware and can involve L2 cache, dcache as well as the main memory. With
105  * F10, this is extended to L3 cache scrubbing on CPU models sporting that
106  * functionality.
107  *
108  * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
109  * (dram) over to cache lines. This is nasty, so we will use bandwidth in
110  * bytes/sec for the setting.
111  *
112  * Currently, we only do dram scrubbing. If the scrubbing is done in software on
113  * other archs, we might not have access to the caches directly.
114  */
115 
116 /*
117  * scan the scrub rate mapping table for a close or matching bandwidth value to
118  * issue. If requested is too big, then use last maximum value found.
119  */
120 static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
121 				       u32 min_scrubrate)
122 {
123 	u32 scrubval;
124 	int i;
125 
126 	/*
127 	 * map the configured rate (new_bw) to a value specific to the AMD64
128 	 * memory controller and apply to register. Search for the first
129 	 * bandwidth entry that is greater or equal than the setting requested
130 	 * and program that. If at last entry, turn off DRAM scrubbing.
131 	 */
132 	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
133 		/*
134 		 * skip scrub rates which aren't recommended
135 		 * (see F10 BKDG, F3x58)
136 		 */
137 		if (scrubrates[i].scrubval < min_scrubrate)
138 			continue;
139 
140 		if (scrubrates[i].bandwidth <= new_bw)
141 			break;
142 
143 		/*
144 		 * if no suitable bandwidth found, turn off DRAM scrubbing
145 		 * entirely by falling back to the last element in the
146 		 * scrubrates array.
147 		 */
148 	}
149 
150 	scrubval = scrubrates[i].scrubval;
151 	if (scrubval)
152 		edac_printk(KERN_DEBUG, EDAC_MC,
153 			    "Setting scrub rate bandwidth: %u\n",
154 			    scrubrates[i].bandwidth);
155 	else
156 		edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
157 
158 	pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
159 
160 	return 0;
161 }
162 
163 static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth)
164 {
165 	struct amd64_pvt *pvt = mci->pvt_info;
166 	u32 min_scrubrate = 0x0;
167 
168 	switch (boot_cpu_data.x86) {
169 	case 0xf:
170 		min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
171 		break;
172 	case 0x10:
173 		min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
174 		break;
175 	case 0x11:
176 		min_scrubrate = F11_MIN_SCRUB_RATE_BITS;
177 		break;
178 
179 	default:
180 		amd64_printk(KERN_ERR, "Unsupported family!\n");
181 		break;
182 	}
183 	return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth,
184 			min_scrubrate);
185 }
186 
187 static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
188 {
189 	struct amd64_pvt *pvt = mci->pvt_info;
190 	u32 scrubval = 0;
191 	int status = -1, i;
192 
193 	amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
194 
195 	scrubval = scrubval & 0x001F;
196 
197 	edac_printk(KERN_DEBUG, EDAC_MC,
198 		    "pci-read, sdram scrub control value: %d \n", scrubval);
199 
200 	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
201 		if (scrubrates[i].scrubval == scrubval) {
202 			*bw = scrubrates[i].bandwidth;
203 			status = 0;
204 			break;
205 		}
206 	}
207 
208 	return status;
209 }
210 
211 /* Map from a CSROW entry to the mask entry that operates on it */
212 static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
213 {
214 	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F)
215 		return csrow;
216 	else
217 		return csrow >> 1;
218 }
219 
220 /* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
221 static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
222 {
223 	if (dct == 0)
224 		return pvt->dcsb0[csrow];
225 	else
226 		return pvt->dcsb1[csrow];
227 }
228 
229 /*
230  * Return the 'mask' address the i'th CS entry. This function is needed because
231  * there number of DCSM registers on Rev E and prior vs Rev F and later is
232  * different.
233  */
234 static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
235 {
236 	if (dct == 0)
237 		return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
238 	else
239 		return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
240 }
241 
242 
243 /*
244  * In *base and *limit, pass back the full 40-bit base and limit physical
245  * addresses for the node given by node_id.  This information is obtained from
246  * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
247  * base and limit addresses are of type SysAddr, as defined at the start of
248  * section 3.4.4 (p. 70).  They are the lowest and highest physical addresses
249  * in the address range they represent.
250  */
251 static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
252 			       u64 *base, u64 *limit)
253 {
254 	*base = pvt->dram_base[node_id];
255 	*limit = pvt->dram_limit[node_id];
256 }
257 
258 /*
259  * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
260  * with node_id
261  */
262 static int amd64_base_limit_match(struct amd64_pvt *pvt,
263 					u64 sys_addr, int node_id)
264 {
265 	u64 base, limit, addr;
266 
267 	amd64_get_base_and_limit(pvt, node_id, &base, &limit);
268 
269 	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
270 	 * all ones if the most significant implemented address bit is 1.
271 	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
272 	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
273 	 * Application Programming.
274 	 */
275 	addr = sys_addr & 0x000000ffffffffffull;
276 
277 	return (addr >= base) && (addr <= limit);
278 }
279 
280 /*
281  * Attempt to map a SysAddr to a node. On success, return a pointer to the
282  * mem_ctl_info structure for the node that the SysAddr maps to.
283  *
284  * On failure, return NULL.
285  */
286 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
287 						u64 sys_addr)
288 {
289 	struct amd64_pvt *pvt;
290 	int node_id;
291 	u32 intlv_en, bits;
292 
293 	/*
294 	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
295 	 * 3.4.4.2) registers to map the SysAddr to a node ID.
296 	 */
297 	pvt = mci->pvt_info;
298 
299 	/*
300 	 * The value of this field should be the same for all DRAM Base
301 	 * registers.  Therefore we arbitrarily choose to read it from the
302 	 * register for node 0.
303 	 */
304 	intlv_en = pvt->dram_IntlvEn[0];
305 
306 	if (intlv_en == 0) {
307 		for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) {
308 			if (amd64_base_limit_match(pvt, sys_addr, node_id))
309 				goto found;
310 		}
311 		goto err_no_match;
312 	}
313 
314 	if (unlikely((intlv_en != 0x01) &&
315 		     (intlv_en != 0x03) &&
316 		     (intlv_en != 0x07))) {
317 		amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
318 			     "IntlvEn field of DRAM Base Register for node 0: "
319 			     "this probably indicates a BIOS bug.\n", intlv_en);
320 		return NULL;
321 	}
322 
323 	bits = (((u32) sys_addr) >> 12) & intlv_en;
324 
325 	for (node_id = 0; ; ) {
326 		if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits)
327 			break;	/* intlv_sel field matches */
328 
329 		if (++node_id >= DRAM_REG_COUNT)
330 			goto err_no_match;
331 	}
332 
333 	/* sanity test for sys_addr */
334 	if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
335 		amd64_printk(KERN_WARNING,
336 			     "%s(): sys_addr 0x%llx falls outside base/limit "
337 			     "address range for node %d with node interleaving "
338 			     "enabled.\n",
339 			     __func__, sys_addr, node_id);
340 		return NULL;
341 	}
342 
343 found:
344 	return edac_mc_find(node_id);
345 
346 err_no_match:
347 	debugf2("sys_addr 0x%lx doesn't match any node\n",
348 		(unsigned long)sys_addr);
349 
350 	return NULL;
351 }
352 
353 /*
354  * Extract the DRAM CS base address from selected csrow register.
355  */
356 static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
357 {
358 	return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
359 				pvt->dcs_shift;
360 }
361 
362 /*
363  * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
364  */
365 static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
366 {
367 	u64 dcsm_bits, other_bits;
368 	u64 mask;
369 
370 	/* Extract bits from DRAM CS Mask. */
371 	dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
372 
373 	other_bits = pvt->dcsm_mask;
374 	other_bits = ~(other_bits << pvt->dcs_shift);
375 
376 	/*
377 	 * The extracted bits from DCSM belong in the spaces represented by
378 	 * the cleared bits in other_bits.
379 	 */
380 	mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
381 
382 	return mask;
383 }
384 
385 /*
386  * @input_addr is an InputAddr associated with the node given by mci. Return the
387  * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
388  */
389 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
390 {
391 	struct amd64_pvt *pvt;
392 	int csrow;
393 	u64 base, mask;
394 
395 	pvt = mci->pvt_info;
396 
397 	/*
398 	 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
399 	 * base/mask register pair, test the condition shown near the start of
400 	 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
401 	 */
402 	for (csrow = 0; csrow < pvt->cs_count; csrow++) {
403 
404 		/* This DRAM chip select is disabled on this node */
405 		if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
406 			continue;
407 
408 		base = base_from_dct_base(pvt, csrow);
409 		mask = ~mask_from_dct_mask(pvt, csrow);
410 
411 		if ((input_addr & mask) == (base & mask)) {
412 			debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
413 				(unsigned long)input_addr, csrow,
414 				pvt->mc_node_id);
415 
416 			return csrow;
417 		}
418 	}
419 
420 	debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
421 		(unsigned long)input_addr, pvt->mc_node_id);
422 
423 	return -1;
424 }
425 
426 /*
427  * Return the base value defined by the DRAM Base register for the node
428  * represented by mci.  This function returns the full 40-bit value despite the
429  * fact that the register only stores bits 39-24 of the value. See section
430  * 3.4.4.1 (BKDG #26094, K8, revA-E)
431  */
432 static inline u64 get_dram_base(struct mem_ctl_info *mci)
433 {
434 	struct amd64_pvt *pvt = mci->pvt_info;
435 
436 	return pvt->dram_base[pvt->mc_node_id];
437 }
438 
439 /*
440  * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
441  * for the node represented by mci. Info is passed back in *hole_base,
442  * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
443  * info is invalid. Info may be invalid for either of the following reasons:
444  *
445  * - The revision of the node is not E or greater.  In this case, the DRAM Hole
446  *   Address Register does not exist.
447  *
448  * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
449  *   indicating that its contents are not valid.
450  *
451  * The values passed back in *hole_base, *hole_offset, and *hole_size are
452  * complete 32-bit values despite the fact that the bitfields in the DHAR
453  * only represent bits 31-24 of the base and offset values.
454  */
455 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
456 			     u64 *hole_offset, u64 *hole_size)
457 {
458 	struct amd64_pvt *pvt = mci->pvt_info;
459 	u64 base;
460 
461 	/* only revE and later have the DRAM Hole Address Register */
462 	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
463 		debugf1("  revision %d for node %d does not support DHAR\n",
464 			pvt->ext_model, pvt->mc_node_id);
465 		return 1;
466 	}
467 
468 	/* only valid for Fam10h */
469 	if (boot_cpu_data.x86 == 0x10 &&
470 	    (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
471 		debugf1("  Dram Memory Hoisting is DISABLED on this system\n");
472 		return 1;
473 	}
474 
475 	if ((pvt->dhar & DHAR_VALID) == 0) {
476 		debugf1("  Dram Memory Hoisting is DISABLED on this node %d\n",
477 			pvt->mc_node_id);
478 		return 1;
479 	}
480 
481 	/* This node has Memory Hoisting */
482 
483 	/* +------------------+--------------------+--------------------+-----
484 	 * | memory           | DRAM hole          | relocated          |
485 	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
486 	 * |                  |                    | DRAM hole          |
487 	 * |                  |                    | [0x100000000,      |
488 	 * |                  |                    |  (0x100000000+     |
489 	 * |                  |                    |   (0xffffffff-x))] |
490 	 * +------------------+--------------------+--------------------+-----
491 	 *
492 	 * Above is a diagram of physical memory showing the DRAM hole and the
493 	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
494 	 * starts at address x (the base address) and extends through address
495 	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
496 	 * addresses in the hole so that they start at 0x100000000.
497 	 */
498 
499 	base = dhar_base(pvt->dhar);
500 
501 	*hole_base = base;
502 	*hole_size = (0x1ull << 32) - base;
503 
504 	if (boot_cpu_data.x86 > 0xf)
505 		*hole_offset = f10_dhar_offset(pvt->dhar);
506 	else
507 		*hole_offset = k8_dhar_offset(pvt->dhar);
508 
509 	debugf1("  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
510 		pvt->mc_node_id, (unsigned long)*hole_base,
511 		(unsigned long)*hole_offset, (unsigned long)*hole_size);
512 
513 	return 0;
514 }
515 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
516 
517 /*
518  * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
519  * assumed that sys_addr maps to the node given by mci.
520  *
521  * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
522  * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
523  * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
524  * then it is also involved in translating a SysAddr to a DramAddr. Sections
525  * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
526  * These parts of the documentation are unclear. I interpret them as follows:
527  *
528  * When node n receives a SysAddr, it processes the SysAddr as follows:
529  *
530  * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
531  *    Limit registers for node n. If the SysAddr is not within the range
532  *    specified by the base and limit values, then node n ignores the Sysaddr
533  *    (since it does not map to node n). Otherwise continue to step 2 below.
534  *
535  * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
536  *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
537  *    the range of relocated addresses (starting at 0x100000000) from the DRAM
538  *    hole. If not, skip to step 3 below. Else get the value of the
539  *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
540  *    offset defined by this value from the SysAddr.
541  *
542  * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
543  *    Base register for node n. To obtain the DramAddr, subtract the base
544  *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
545  */
546 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
547 {
548 	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
549 	int ret = 0;
550 
551 	dram_base = get_dram_base(mci);
552 
553 	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
554 				      &hole_size);
555 	if (!ret) {
556 		if ((sys_addr >= (1ull << 32)) &&
557 		    (sys_addr < ((1ull << 32) + hole_size))) {
558 			/* use DHAR to translate SysAddr to DramAddr */
559 			dram_addr = sys_addr - hole_offset;
560 
561 			debugf2("using DHAR to translate SysAddr 0x%lx to "
562 				"DramAddr 0x%lx\n",
563 				(unsigned long)sys_addr,
564 				(unsigned long)dram_addr);
565 
566 			return dram_addr;
567 		}
568 	}
569 
570 	/*
571 	 * Translate the SysAddr to a DramAddr as shown near the start of
572 	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
573 	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
574 	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
575 	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
576 	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
577 	 * Programmer's Manual Volume 1 Application Programming.
578 	 */
579 	dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
580 
581 	debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
582 		"DramAddr 0x%lx\n", (unsigned long)sys_addr,
583 		(unsigned long)dram_addr);
584 	return dram_addr;
585 }
586 
587 /*
588  * @intlv_en is the value of the IntlvEn field from a DRAM Base register
589  * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
590  * for node interleaving.
591  */
592 static int num_node_interleave_bits(unsigned intlv_en)
593 {
594 	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
595 	int n;
596 
597 	BUG_ON(intlv_en > 7);
598 	n = intlv_shift_table[intlv_en];
599 	return n;
600 }
601 
602 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
603 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
604 {
605 	struct amd64_pvt *pvt;
606 	int intlv_shift;
607 	u64 input_addr;
608 
609 	pvt = mci->pvt_info;
610 
611 	/*
612 	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
613 	 * concerning translating a DramAddr to an InputAddr.
614 	 */
615 	intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
616 	input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
617 	    (dram_addr & 0xfff);
618 
619 	debugf2("  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
620 		intlv_shift, (unsigned long)dram_addr,
621 		(unsigned long)input_addr);
622 
623 	return input_addr;
624 }
625 
626 /*
627  * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
628  * assumed that @sys_addr maps to the node given by mci.
629  */
630 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
631 {
632 	u64 input_addr;
633 
634 	input_addr =
635 	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
636 
637 	debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
638 		(unsigned long)sys_addr, (unsigned long)input_addr);
639 
640 	return input_addr;
641 }
642 
643 
644 /*
645  * @input_addr is an InputAddr associated with the node represented by mci.
646  * Translate @input_addr to a DramAddr and return the result.
647  */
648 static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
649 {
650 	struct amd64_pvt *pvt;
651 	int node_id, intlv_shift;
652 	u64 bits, dram_addr;
653 	u32 intlv_sel;
654 
655 	/*
656 	 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
657 	 * shows how to translate a DramAddr to an InputAddr. Here we reverse
658 	 * this procedure. When translating from a DramAddr to an InputAddr, the
659 	 * bits used for node interleaving are discarded.  Here we recover these
660 	 * bits from the IntlvSel field of the DRAM Limit register (section
661 	 * 3.4.4.2) for the node that input_addr is associated with.
662 	 */
663 	pvt = mci->pvt_info;
664 	node_id = pvt->mc_node_id;
665 	BUG_ON((node_id < 0) || (node_id > 7));
666 
667 	intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
668 
669 	if (intlv_shift == 0) {
670 		debugf1("    InputAddr 0x%lx translates to DramAddr of "
671 			"same value\n",	(unsigned long)input_addr);
672 
673 		return input_addr;
674 	}
675 
676 	bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
677 	    (input_addr & 0xfff);
678 
679 	intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
680 	dram_addr = bits + (intlv_sel << 12);
681 
682 	debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
683 		"(%d node interleave bits)\n", (unsigned long)input_addr,
684 		(unsigned long)dram_addr, intlv_shift);
685 
686 	return dram_addr;
687 }
688 
689 /*
690  * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
691  * @dram_addr to a SysAddr.
692  */
693 static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
694 {
695 	struct amd64_pvt *pvt = mci->pvt_info;
696 	u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
697 	int ret = 0;
698 
699 	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
700 				      &hole_size);
701 	if (!ret) {
702 		if ((dram_addr >= hole_base) &&
703 		    (dram_addr < (hole_base + hole_size))) {
704 			sys_addr = dram_addr + hole_offset;
705 
706 			debugf1("using DHAR to translate DramAddr 0x%lx to "
707 				"SysAddr 0x%lx\n", (unsigned long)dram_addr,
708 				(unsigned long)sys_addr);
709 
710 			return sys_addr;
711 		}
712 	}
713 
714 	amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
715 	sys_addr = dram_addr + base;
716 
717 	/*
718 	 * The sys_addr we have computed up to this point is a 40-bit value
719 	 * because the k8 deals with 40-bit values.  However, the value we are
720 	 * supposed to return is a full 64-bit physical address.  The AMD
721 	 * x86-64 architecture specifies that the most significant implemented
722 	 * address bit through bit 63 of a physical address must be either all
723 	 * 0s or all 1s.  Therefore we sign-extend the 40-bit sys_addr to a
724 	 * 64-bit value below.  See section 3.4.2 of AMD publication 24592:
725 	 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
726 	 * Programming.
727 	 */
728 	sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
729 
730 	debugf1("    Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
731 		pvt->mc_node_id, (unsigned long)dram_addr,
732 		(unsigned long)sys_addr);
733 
734 	return sys_addr;
735 }
736 
737 /*
738  * @input_addr is an InputAddr associated with the node given by mci. Translate
739  * @input_addr to a SysAddr.
740  */
741 static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
742 					 u64 input_addr)
743 {
744 	return dram_addr_to_sys_addr(mci,
745 				     input_addr_to_dram_addr(mci, input_addr));
746 }
747 
748 /*
749  * Find the minimum and maximum InputAddr values that map to the given @csrow.
750  * Pass back these values in *input_addr_min and *input_addr_max.
751  */
752 static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
753 			      u64 *input_addr_min, u64 *input_addr_max)
754 {
755 	struct amd64_pvt *pvt;
756 	u64 base, mask;
757 
758 	pvt = mci->pvt_info;
759 	BUG_ON((csrow < 0) || (csrow >= pvt->cs_count));
760 
761 	base = base_from_dct_base(pvt, csrow);
762 	mask = mask_from_dct_mask(pvt, csrow);
763 
764 	*input_addr_min = base & ~mask;
765 	*input_addr_max = base | mask | pvt->dcs_mask_notused;
766 }
767 
768 /* Map the Error address to a PAGE and PAGE OFFSET. */
769 static inline void error_address_to_page_and_offset(u64 error_address,
770 						    u32 *page, u32 *offset)
771 {
772 	*page = (u32) (error_address >> PAGE_SHIFT);
773 	*offset = ((u32) error_address) & ~PAGE_MASK;
774 }
775 
776 /*
777  * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
778  * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
779  * of a node that detected an ECC memory error.  mci represents the node that
780  * the error address maps to (possibly different from the node that detected
781  * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
782  * error.
783  */
784 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
785 {
786 	int csrow;
787 
788 	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
789 
790 	if (csrow == -1)
791 		amd64_mc_printk(mci, KERN_ERR,
792 			     "Failed to translate InputAddr to csrow for "
793 			     "address 0x%lx\n", (unsigned long)sys_addr);
794 	return csrow;
795 }
796 
797 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
798 
799 static void amd64_cpu_display_info(struct amd64_pvt *pvt)
800 {
801 	if (boot_cpu_data.x86 == 0x11)
802 		edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n");
803 	else if (boot_cpu_data.x86 == 0x10)
804 		edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
805 	else if (boot_cpu_data.x86 == 0xf)
806 		edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
807 			(pvt->ext_model >= K8_REV_F) ?
808 			"Rev F or later" : "Rev E or earlier");
809 	else
810 		/* we'll hardly ever ever get here */
811 		edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
812 }
813 
814 /*
815  * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
816  * are ECC capable.
817  */
818 static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
819 {
820 	int bit;
821 	enum dev_type edac_cap = EDAC_FLAG_NONE;
822 
823 	bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
824 		? 19
825 		: 17;
826 
827 	if (pvt->dclr0 & BIT(bit))
828 		edac_cap = EDAC_FLAG_SECDED;
829 
830 	return edac_cap;
831 }
832 
833 
834 static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
835 
836 static void amd64_dump_dramcfg_low(u32 dclr, int chan)
837 {
838 	debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
839 
840 	debugf1("  DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
841 		(dclr & BIT(16)) ?  "un" : "",
842 		(dclr & BIT(19)) ? "yes" : "no");
843 
844 	debugf1("  PAR/ERR parity: %s\n",
845 		(dclr & BIT(8)) ?  "enabled" : "disabled");
846 
847 	debugf1("  DCT 128bit mode width: %s\n",
848 		(dclr & BIT(11)) ?  "128b" : "64b");
849 
850 	debugf1("  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
851 		(dclr & BIT(12)) ?  "yes" : "no",
852 		(dclr & BIT(13)) ?  "yes" : "no",
853 		(dclr & BIT(14)) ?  "yes" : "no",
854 		(dclr & BIT(15)) ?  "yes" : "no");
855 }
856 
857 /* Display and decode various NB registers for debug purposes. */
858 static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
859 {
860 	int ganged;
861 
862 	debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
863 
864 	debugf1("  NB two channel DRAM capable: %s\n",
865 		(pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no");
866 
867 	debugf1("  ECC capable: %s, ChipKill ECC capable: %s\n",
868 		(pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no",
869 		(pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no");
870 
871 	amd64_dump_dramcfg_low(pvt->dclr0, 0);
872 
873 	debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
874 
875 	debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
876 			"offset: 0x%08x\n",
877 			pvt->dhar,
878 			dhar_base(pvt->dhar),
879 			(boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt->dhar)
880 						   : f10_dhar_offset(pvt->dhar));
881 
882 	debugf1("  DramHoleValid: %s\n",
883 		(pvt->dhar & DHAR_VALID) ? "yes" : "no");
884 
885 	/* everything below this point is Fam10h and above */
886 	if (boot_cpu_data.x86 == 0xf) {
887 		amd64_debug_display_dimm_sizes(0, pvt);
888 		return;
889 	}
890 
891 	/* Only if NOT ganged does dclr1 have valid info */
892 	if (!dct_ganging_enabled(pvt))
893 		amd64_dump_dramcfg_low(pvt->dclr1, 1);
894 
895 	/*
896 	 * Determine if ganged and then dump memory sizes for first controller,
897 	 * and if NOT ganged dump info for 2nd controller.
898 	 */
899 	ganged = dct_ganging_enabled(pvt);
900 
901 	amd64_debug_display_dimm_sizes(0, pvt);
902 
903 	if (!ganged)
904 		amd64_debug_display_dimm_sizes(1, pvt);
905 }
906 
907 /* Read in both of DBAM registers */
908 static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
909 {
910 	amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM0, &pvt->dbam0);
911 
912 	if (boot_cpu_data.x86 >= 0x10)
913 		amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM1, &pvt->dbam1);
914 }
915 
916 /*
917  * NOTE: CPU Revision Dependent code: Rev E and Rev F
918  *
919  * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
920  * set the shift factor for the DCSB and DCSM values.
921  *
922  * ->dcs_mask_notused, RevE:
923  *
924  * To find the max InputAddr for the csrow, start with the base address and set
925  * all bits that are "don't care" bits in the test at the start of section
926  * 3.5.4 (p. 84).
927  *
928  * The "don't care" bits are all set bits in the mask and all bits in the gaps
929  * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
930  * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
931  * gaps.
932  *
933  * ->dcs_mask_notused, RevF and later:
934  *
935  * To find the max InputAddr for the csrow, start with the base address and set
936  * all bits that are "don't care" bits in the test at the start of NPT section
937  * 4.5.4 (p. 87).
938  *
939  * The "don't care" bits are all set bits in the mask and all bits in the gaps
940  * between bit ranges [36:27] and [21:13].
941  *
942  * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
943  * which are all bits in the above-mentioned gaps.
944  */
945 static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
946 {
947 
948 	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
949 		pvt->dcsb_base		= REV_E_DCSB_BASE_BITS;
950 		pvt->dcsm_mask		= REV_E_DCSM_MASK_BITS;
951 		pvt->dcs_mask_notused	= REV_E_DCS_NOTUSED_BITS;
952 		pvt->dcs_shift		= REV_E_DCS_SHIFT;
953 		pvt->cs_count		= 8;
954 		pvt->num_dcsm		= 8;
955 	} else {
956 		pvt->dcsb_base		= REV_F_F1Xh_DCSB_BASE_BITS;
957 		pvt->dcsm_mask		= REV_F_F1Xh_DCSM_MASK_BITS;
958 		pvt->dcs_mask_notused	= REV_F_F1Xh_DCS_NOTUSED_BITS;
959 		pvt->dcs_shift		= REV_F_F1Xh_DCS_SHIFT;
960 
961 		if (boot_cpu_data.x86 == 0x11) {
962 			pvt->cs_count = 4;
963 			pvt->num_dcsm = 2;
964 		} else {
965 			pvt->cs_count = 8;
966 			pvt->num_dcsm = 4;
967 		}
968 	}
969 }
970 
971 /*
972  * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
973  */
974 static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
975 {
976 	int cs, reg;
977 
978 	amd64_set_dct_base_and_mask(pvt);
979 
980 	for (cs = 0; cs < pvt->cs_count; cs++) {
981 		reg = K8_DCSB0 + (cs * 4);
982 		if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsb0[cs]))
983 			debugf0("  DCSB0[%d]=0x%08x reg: F2x%x\n",
984 				cs, pvt->dcsb0[cs], reg);
985 
986 		/* If DCT are NOT ganged, then read in DCT1's base */
987 		if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
988 			reg = F10_DCSB1 + (cs * 4);
989 			if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
990 						&pvt->dcsb1[cs]))
991 				debugf0("  DCSB1[%d]=0x%08x reg: F2x%x\n",
992 					cs, pvt->dcsb1[cs], reg);
993 		} else {
994 			pvt->dcsb1[cs] = 0;
995 		}
996 	}
997 
998 	for (cs = 0; cs < pvt->num_dcsm; cs++) {
999 		reg = K8_DCSM0 + (cs * 4);
1000 		if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsm0[cs]))
1001 			debugf0("    DCSM0[%d]=0x%08x reg: F2x%x\n",
1002 				cs, pvt->dcsm0[cs], reg);
1003 
1004 		/* If DCT are NOT ganged, then read in DCT1's mask */
1005 		if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
1006 			reg = F10_DCSM1 + (cs * 4);
1007 			if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
1008 						&pvt->dcsm1[cs]))
1009 				debugf0("    DCSM1[%d]=0x%08x reg: F2x%x\n",
1010 					cs, pvt->dcsm1[cs], reg);
1011 		} else {
1012 			pvt->dcsm1[cs] = 0;
1013 		}
1014 	}
1015 }
1016 
1017 static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
1018 {
1019 	enum mem_type type;
1020 
1021 	if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= K8_REV_F) {
1022 		if (pvt->dchr0 & DDR3_MODE)
1023 			type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3;
1024 		else
1025 			type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
1026 	} else {
1027 		type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
1028 	}
1029 
1030 	debugf1("  Memory type is: %s\n", edac_mem_types[type]);
1031 
1032 	return type;
1033 }
1034 
1035 /*
1036  * Read the DRAM Configuration Low register. It differs between CG, D & E revs
1037  * and the later RevF memory controllers (DDR vs DDR2)
1038  *
1039  * Return:
1040  *      number of memory channels in operation
1041  * Pass back:
1042  *      contents of the DCL0_LOW register
1043  */
1044 static int k8_early_channel_count(struct amd64_pvt *pvt)
1045 {
1046 	int flag, err = 0;
1047 
1048 	err = amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
1049 	if (err)
1050 		return err;
1051 
1052 	if ((boot_cpu_data.x86_model >> 4) >= K8_REV_F) {
1053 		/* RevF (NPT) and later */
1054 		flag = pvt->dclr0 & F10_WIDTH_128;
1055 	} else {
1056 		/* RevE and earlier */
1057 		flag = pvt->dclr0 & REVE_WIDTH_128;
1058 	}
1059 
1060 	/* not used */
1061 	pvt->dclr1 = 0;
1062 
1063 	return (flag) ? 2 : 1;
1064 }
1065 
1066 /* extract the ERROR ADDRESS for the K8 CPUs */
1067 static u64 k8_get_error_address(struct mem_ctl_info *mci,
1068 				struct err_regs *info)
1069 {
1070 	return (((u64) (info->nbeah & 0xff)) << 32) +
1071 			(info->nbeal & ~0x03);
1072 }
1073 
1074 /*
1075  * Read the Base and Limit registers for K8 based Memory controllers; extract
1076  * fields from the 'raw' reg into separate data fields
1077  *
1078  * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
1079  */
1080 static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1081 {
1082 	u32 low;
1083 	u32 off = dram << 3;	/* 8 bytes between DRAM entries */
1084 
1085 	amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_BASE_LOW + off, &low);
1086 
1087 	/* Extract parts into separate data entries */
1088 	pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
1089 	pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
1090 	pvt->dram_rw_en[dram] = (low & 0x3);
1091 
1092 	amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_LIMIT_LOW + off, &low);
1093 
1094 	/*
1095 	 * Extract parts into separate data entries. Limit is the HIGHEST memory
1096 	 * location of the region, so lower 24 bits need to be all ones
1097 	 */
1098 	pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
1099 	pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
1100 	pvt->dram_DstNode[dram] = (low & 0x7);
1101 }
1102 
1103 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1104 					struct err_regs *info,
1105 					u64 sys_addr)
1106 {
1107 	struct mem_ctl_info *src_mci;
1108 	unsigned short syndrome;
1109 	int channel, csrow;
1110 	u32 page, offset;
1111 
1112 	/* Extract the syndrome parts and form a 16-bit syndrome */
1113 	syndrome  = HIGH_SYNDROME(info->nbsl) << 8;
1114 	syndrome |= LOW_SYNDROME(info->nbsh);
1115 
1116 	/* CHIPKILL enabled */
1117 	if (info->nbcfg & K8_NBCFG_CHIPKILL) {
1118 		channel = get_channel_from_ecc_syndrome(mci, syndrome);
1119 		if (channel < 0) {
1120 			/*
1121 			 * Syndrome didn't map, so we don't know which of the
1122 			 * 2 DIMMs is in error. So we need to ID 'both' of them
1123 			 * as suspect.
1124 			 */
1125 			amd64_mc_printk(mci, KERN_WARNING,
1126 				       "unknown syndrome 0x%x - possible error "
1127 				       "reporting race\n", syndrome);
1128 			edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1129 			return;
1130 		}
1131 	} else {
1132 		/*
1133 		 * non-chipkill ecc mode
1134 		 *
1135 		 * The k8 documentation is unclear about how to determine the
1136 		 * channel number when using non-chipkill memory.  This method
1137 		 * was obtained from email communication with someone at AMD.
1138 		 * (Wish the email was placed in this comment - norsk)
1139 		 */
1140 		channel = ((sys_addr & BIT(3)) != 0);
1141 	}
1142 
1143 	/*
1144 	 * Find out which node the error address belongs to. This may be
1145 	 * different from the node that detected the error.
1146 	 */
1147 	src_mci = find_mc_by_sys_addr(mci, sys_addr);
1148 	if (!src_mci) {
1149 		amd64_mc_printk(mci, KERN_ERR,
1150 			     "failed to map error address 0x%lx to a node\n",
1151 			     (unsigned long)sys_addr);
1152 		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1153 		return;
1154 	}
1155 
1156 	/* Now map the sys_addr to a CSROW */
1157 	csrow = sys_addr_to_csrow(src_mci, sys_addr);
1158 	if (csrow < 0) {
1159 		edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1160 	} else {
1161 		error_address_to_page_and_offset(sys_addr, &page, &offset);
1162 
1163 		edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1164 				  channel, EDAC_MOD_STR);
1165 	}
1166 }
1167 
1168 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1169 {
1170 	int *dbam_map;
1171 
1172 	if (pvt->ext_model >= K8_REV_F)
1173 		dbam_map = ddr2_dbam;
1174 	else if (pvt->ext_model >= K8_REV_D)
1175 		dbam_map = ddr2_dbam_revD;
1176 	else
1177 		dbam_map = ddr2_dbam_revCG;
1178 
1179 	return dbam_map[cs_mode];
1180 }
1181 
1182 /*
1183  * Get the number of DCT channels in use.
1184  *
1185  * Return:
1186  *	number of Memory Channels in operation
1187  * Pass back:
1188  *	contents of the DCL0_LOW register
1189  */
1190 static int f10_early_channel_count(struct amd64_pvt *pvt)
1191 {
1192 	int dbams[] = { DBAM0, DBAM1 };
1193 	int i, j, channels = 0;
1194 	u32 dbam;
1195 
1196 	/* If we are in 128 bit mode, then we are using 2 channels */
1197 	if (pvt->dclr0 & F10_WIDTH_128) {
1198 		channels = 2;
1199 		return channels;
1200 	}
1201 
1202 	/*
1203 	 * Need to check if in unganged mode: In such, there are 2 channels,
1204 	 * but they are not in 128 bit mode and thus the above 'dclr0' status
1205 	 * bit will be OFF.
1206 	 *
1207 	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1208 	 * their CSEnable bit on. If so, then SINGLE DIMM case.
1209 	 */
1210 	debugf0("Data width is not 128 bits - need more decoding\n");
1211 
1212 	/*
1213 	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1214 	 * is more than just one DIMM present in unganged mode. Need to check
1215 	 * both controllers since DIMMs can be placed in either one.
1216 	 */
1217 	for (i = 0; i < ARRAY_SIZE(dbams); i++) {
1218 		if (amd64_read_pci_cfg(pvt->dram_f2_ctl, dbams[i], &dbam))
1219 			goto err_reg;
1220 
1221 		for (j = 0; j < 4; j++) {
1222 			if (DBAM_DIMM(j, dbam) > 0) {
1223 				channels++;
1224 				break;
1225 			}
1226 		}
1227 	}
1228 
1229 	if (channels > 2)
1230 		channels = 2;
1231 
1232 	debugf0("MCT channel count: %d\n", channels);
1233 
1234 	return channels;
1235 
1236 err_reg:
1237 	return -1;
1238 
1239 }
1240 
1241 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1242 {
1243 	int *dbam_map;
1244 
1245 	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1246 		dbam_map = ddr3_dbam;
1247 	else
1248 		dbam_map = ddr2_dbam;
1249 
1250 	return dbam_map[cs_mode];
1251 }
1252 
1253 /* Enable extended configuration access via 0xCF8 feature */
1254 static void amd64_setup(struct amd64_pvt *pvt)
1255 {
1256 	u32 reg;
1257 
1258 	amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
1259 
1260 	pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
1261 	reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1262 	pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1263 }
1264 
1265 /* Restore the extended configuration access via 0xCF8 feature */
1266 static void amd64_teardown(struct amd64_pvt *pvt)
1267 {
1268 	u32 reg;
1269 
1270 	amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
1271 
1272 	reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1273 	if (pvt->flags.cf8_extcfg)
1274 		reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1275 	pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1276 }
1277 
1278 static u64 f10_get_error_address(struct mem_ctl_info *mci,
1279 			struct err_regs *info)
1280 {
1281 	return (((u64) (info->nbeah & 0xffff)) << 32) +
1282 			(info->nbeal & ~0x01);
1283 }
1284 
1285 /*
1286  * Read the Base and Limit registers for F10 based Memory controllers. Extract
1287  * fields from the 'raw' reg into separate data fields.
1288  *
1289  * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
1290  */
1291 static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1292 {
1293 	u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
1294 
1295 	low_offset = K8_DRAM_BASE_LOW + (dram << 3);
1296 	high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
1297 
1298 	/* read the 'raw' DRAM BASE Address register */
1299 	amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_base);
1300 
1301 	/* Read from the ECS data register */
1302 	amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_base);
1303 
1304 	/* Extract parts into separate data entries */
1305 	pvt->dram_rw_en[dram] = (low_base & 0x3);
1306 
1307 	if (pvt->dram_rw_en[dram] == 0)
1308 		return;
1309 
1310 	pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
1311 
1312 	pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) |
1313 			       (((u64)low_base  & 0xFFFF0000) << 8);
1314 
1315 	low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
1316 	high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
1317 
1318 	/* read the 'raw' LIMIT registers */
1319 	amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_limit);
1320 
1321 	/* Read from the ECS data register for the HIGH portion */
1322 	amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_limit);
1323 
1324 	pvt->dram_DstNode[dram] = (low_limit & 0x7);
1325 	pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
1326 
1327 	/*
1328 	 * Extract address values and form a LIMIT address. Limit is the HIGHEST
1329 	 * memory location of the region, so low 24 bits need to be all ones.
1330 	 */
1331 	pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) |
1332 				(((u64) low_limit & 0xFFFF0000) << 8) |
1333 				0x00FFFFFF;
1334 }
1335 
1336 static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
1337 {
1338 
1339 	if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW,
1340 				&pvt->dram_ctl_select_low)) {
1341 		debugf0("F2x110 (DCTL Sel. Low): 0x%08x, "
1342 			"High range addresses at: 0x%x\n",
1343 			pvt->dram_ctl_select_low,
1344 			dct_sel_baseaddr(pvt));
1345 
1346 		debugf0("  DCT mode: %s, All DCTs on: %s\n",
1347 			(dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
1348 			(dct_dram_enabled(pvt) ? "yes"   : "no"));
1349 
1350 		if (!dct_ganging_enabled(pvt))
1351 			debugf0("  Address range split per DCT: %s\n",
1352 				(dct_high_range_enabled(pvt) ? "yes" : "no"));
1353 
1354 		debugf0("  DCT data interleave for ECC: %s, "
1355 			"DRAM cleared since last warm reset: %s\n",
1356 			(dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1357 			(dct_memory_cleared(pvt) ? "yes" : "no"));
1358 
1359 		debugf0("  DCT channel interleave: %s, "
1360 			"DCT interleave bits selector: 0x%x\n",
1361 			(dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1362 			dct_sel_interleave_addr(pvt));
1363 	}
1364 
1365 	amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH,
1366 			   &pvt->dram_ctl_select_high);
1367 }
1368 
1369 /*
1370  * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1371  * Interleaving Modes.
1372  */
1373 static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1374 				int hi_range_sel, u32 intlv_en)
1375 {
1376 	u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
1377 
1378 	if (dct_ganging_enabled(pvt))
1379 		cs = 0;
1380 	else if (hi_range_sel)
1381 		cs = dct_sel_high;
1382 	else if (dct_interleave_enabled(pvt)) {
1383 		/*
1384 		 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1385 		 */
1386 		if (dct_sel_interleave_addr(pvt) == 0)
1387 			cs = sys_addr >> 6 & 1;
1388 		else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
1389 			temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1390 
1391 			if (dct_sel_interleave_addr(pvt) & 1)
1392 				cs = (sys_addr >> 9 & 1) ^ temp;
1393 			else
1394 				cs = (sys_addr >> 6 & 1) ^ temp;
1395 		} else if (intlv_en & 4)
1396 			cs = sys_addr >> 15 & 1;
1397 		else if (intlv_en & 2)
1398 			cs = sys_addr >> 14 & 1;
1399 		else if (intlv_en & 1)
1400 			cs = sys_addr >> 13 & 1;
1401 		else
1402 			cs = sys_addr >> 12 & 1;
1403 	} else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
1404 		cs = ~dct_sel_high & 1;
1405 	else
1406 		cs = 0;
1407 
1408 	return cs;
1409 }
1410 
1411 static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
1412 {
1413 	if (intlv_en == 1)
1414 		return 1;
1415 	else if (intlv_en == 3)
1416 		return 2;
1417 	else if (intlv_en == 7)
1418 		return 3;
1419 
1420 	return 0;
1421 }
1422 
1423 /* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
1424 static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
1425 						 u32 dct_sel_base_addr,
1426 						 u64 dct_sel_base_off,
1427 						 u32 hole_valid, u32 hole_off,
1428 						 u64 dram_base)
1429 {
1430 	u64 chan_off;
1431 
1432 	if (hi_range_sel) {
1433 		if (!(dct_sel_base_addr & 0xFFFFF800) &&
1434 		   hole_valid && (sys_addr >= 0x100000000ULL))
1435 			chan_off = hole_off << 16;
1436 		else
1437 			chan_off = dct_sel_base_off;
1438 	} else {
1439 		if (hole_valid && (sys_addr >= 0x100000000ULL))
1440 			chan_off = hole_off << 16;
1441 		else
1442 			chan_off = dram_base & 0xFFFFF8000000ULL;
1443 	}
1444 
1445 	return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
1446 			(chan_off & 0x0000FFFFFF800000ULL);
1447 }
1448 
1449 /* Hack for the time being - Can we get this from BIOS?? */
1450 #define	CH0SPARE_RANK	0
1451 #define	CH1SPARE_RANK	1
1452 
1453 /*
1454  * checks if the csrow passed in is marked as SPARED, if so returns the new
1455  * spare row
1456  */
1457 static inline int f10_process_possible_spare(int csrow,
1458 				u32 cs, struct amd64_pvt *pvt)
1459 {
1460 	u32 swap_done;
1461 	u32 bad_dram_cs;
1462 
1463 	/* Depending on channel, isolate respective SPARING info */
1464 	if (cs) {
1465 		swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
1466 		bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
1467 		if (swap_done && (csrow == bad_dram_cs))
1468 			csrow = CH1SPARE_RANK;
1469 	} else {
1470 		swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
1471 		bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
1472 		if (swap_done && (csrow == bad_dram_cs))
1473 			csrow = CH0SPARE_RANK;
1474 	}
1475 	return csrow;
1476 }
1477 
1478 /*
1479  * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1480  * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1481  *
1482  * Return:
1483  *	-EINVAL:  NOT FOUND
1484  *	0..csrow = Chip-Select Row
1485  */
1486 static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
1487 {
1488 	struct mem_ctl_info *mci;
1489 	struct amd64_pvt *pvt;
1490 	u32 cs_base, cs_mask;
1491 	int cs_found = -EINVAL;
1492 	int csrow;
1493 
1494 	mci = mci_lookup[nid];
1495 	if (!mci)
1496 		return cs_found;
1497 
1498 	pvt = mci->pvt_info;
1499 
1500 	debugf1("InputAddr=0x%x  channelselect=%d\n", in_addr, cs);
1501 
1502 	for (csrow = 0; csrow < pvt->cs_count; csrow++) {
1503 
1504 		cs_base = amd64_get_dct_base(pvt, cs, csrow);
1505 		if (!(cs_base & K8_DCSB_CS_ENABLE))
1506 			continue;
1507 
1508 		/*
1509 		 * We have an ENABLED CSROW, Isolate just the MASK bits of the
1510 		 * target: [28:19] and [13:5], which map to [36:27] and [21:13]
1511 		 * of the actual address.
1512 		 */
1513 		cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
1514 
1515 		/*
1516 		 * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
1517 		 * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
1518 		 */
1519 		cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
1520 
1521 		debugf1("    CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
1522 				csrow, cs_base, cs_mask);
1523 
1524 		cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
1525 
1526 		debugf1("              Final CSMask=0x%x\n", cs_mask);
1527 		debugf1("    (InputAddr & ~CSMask)=0x%x "
1528 				"(CSBase & ~CSMask)=0x%x\n",
1529 				(in_addr & ~cs_mask), (cs_base & ~cs_mask));
1530 
1531 		if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
1532 			cs_found = f10_process_possible_spare(csrow, cs, pvt);
1533 
1534 			debugf1(" MATCH csrow=%d\n", cs_found);
1535 			break;
1536 		}
1537 	}
1538 	return cs_found;
1539 }
1540 
1541 /* For a given @dram_range, check if @sys_addr falls within it. */
1542 static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
1543 				  u64 sys_addr, int *nid, int *chan_sel)
1544 {
1545 	int node_id, cs_found = -EINVAL, high_range = 0;
1546 	u32 intlv_en, intlv_sel, intlv_shift, hole_off;
1547 	u32 hole_valid, tmp, dct_sel_base, channel;
1548 	u64 dram_base, chan_addr, dct_sel_base_off;
1549 
1550 	dram_base = pvt->dram_base[dram_range];
1551 	intlv_en = pvt->dram_IntlvEn[dram_range];
1552 
1553 	node_id = pvt->dram_DstNode[dram_range];
1554 	intlv_sel = pvt->dram_IntlvSel[dram_range];
1555 
1556 	debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
1557 		dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
1558 
1559 	/*
1560 	 * This assumes that one node's DHAR is the same as all the other
1561 	 * nodes' DHAR.
1562 	 */
1563 	hole_off = (pvt->dhar & 0x0000FF80);
1564 	hole_valid = (pvt->dhar & 0x1);
1565 	dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
1566 
1567 	debugf1("   HoleOffset=0x%x  HoleValid=0x%x IntlvSel=0x%x\n",
1568 			hole_off, hole_valid, intlv_sel);
1569 
1570 	if (intlv_en ||
1571 	    (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1572 		return -EINVAL;
1573 
1574 	dct_sel_base = dct_sel_baseaddr(pvt);
1575 
1576 	/*
1577 	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1578 	 * select between DCT0 and DCT1.
1579 	 */
1580 	if (dct_high_range_enabled(pvt) &&
1581 	   !dct_ganging_enabled(pvt) &&
1582 	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1583 		high_range = 1;
1584 
1585 	channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
1586 
1587 	chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
1588 					     dct_sel_base_off, hole_valid,
1589 					     hole_off, dram_base);
1590 
1591 	intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
1592 
1593 	/* remove Node ID (in case of memory interleaving) */
1594 	tmp = chan_addr & 0xFC0;
1595 
1596 	chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
1597 
1598 	/* remove channel interleave and hash */
1599 	if (dct_interleave_enabled(pvt) &&
1600 	   !dct_high_range_enabled(pvt) &&
1601 	   !dct_ganging_enabled(pvt)) {
1602 		if (dct_sel_interleave_addr(pvt) != 1)
1603 			chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
1604 		else {
1605 			tmp = chan_addr & 0xFC0;
1606 			chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
1607 					| tmp;
1608 		}
1609 	}
1610 
1611 	debugf1("   (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
1612 		chan_addr, (u32)(chan_addr >> 8));
1613 
1614 	cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
1615 
1616 	if (cs_found >= 0) {
1617 		*nid = node_id;
1618 		*chan_sel = channel;
1619 	}
1620 	return cs_found;
1621 }
1622 
1623 static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1624 				       int *node, int *chan_sel)
1625 {
1626 	int dram_range, cs_found = -EINVAL;
1627 	u64 dram_base, dram_limit;
1628 
1629 	for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
1630 
1631 		if (!pvt->dram_rw_en[dram_range])
1632 			continue;
1633 
1634 		dram_base = pvt->dram_base[dram_range];
1635 		dram_limit = pvt->dram_limit[dram_range];
1636 
1637 		if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
1638 
1639 			cs_found = f10_match_to_this_node(pvt, dram_range,
1640 							  sys_addr, node,
1641 							  chan_sel);
1642 			if (cs_found >= 0)
1643 				break;
1644 		}
1645 	}
1646 	return cs_found;
1647 }
1648 
1649 /*
1650  * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1651  * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1652  *
1653  * The @sys_addr is usually an error address received from the hardware
1654  * (MCX_ADDR).
1655  */
1656 static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1657 				     struct err_regs *info,
1658 				     u64 sys_addr)
1659 {
1660 	struct amd64_pvt *pvt = mci->pvt_info;
1661 	u32 page, offset;
1662 	unsigned short syndrome;
1663 	int nid, csrow, chan = 0;
1664 
1665 	csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1666 
1667 	if (csrow < 0) {
1668 		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1669 		return;
1670 	}
1671 
1672 	error_address_to_page_and_offset(sys_addr, &page, &offset);
1673 
1674 	syndrome  = HIGH_SYNDROME(info->nbsl) << 8;
1675 	syndrome |= LOW_SYNDROME(info->nbsh);
1676 
1677 	/*
1678 	 * We need the syndromes for channel detection only when we're
1679 	 * ganged. Otherwise @chan should already contain the channel at
1680 	 * this point.
1681 	 */
1682 	if (dct_ganging_enabled(pvt) && pvt->nbcfg & K8_NBCFG_CHIPKILL)
1683 		chan = get_channel_from_ecc_syndrome(mci, syndrome);
1684 
1685 	if (chan >= 0)
1686 		edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1687 				  EDAC_MOD_STR);
1688 	else
1689 		/*
1690 		 * Channel unknown, report all channels on this CSROW as failed.
1691 		 */
1692 		for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
1693 			edac_mc_handle_ce(mci, page, offset, syndrome,
1694 					  csrow, chan, EDAC_MOD_STR);
1695 }
1696 
1697 /*
1698  * debug routine to display the memory sizes of all logical DIMMs and its
1699  * CSROWs as well
1700  */
1701 static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
1702 {
1703 	int dimm, size0, size1, factor = 0;
1704 	u32 dbam;
1705 	u32 *dcsb;
1706 
1707 	if (boot_cpu_data.x86 == 0xf) {
1708 		if (pvt->dclr0 & F10_WIDTH_128)
1709 			factor = 1;
1710 
1711 		/* K8 families < revF not supported yet */
1712 	       if (pvt->ext_model < K8_REV_F)
1713 			return;
1714 	       else
1715 		       WARN_ON(ctrl != 0);
1716 	}
1717 
1718 	debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
1719 		ctrl, ctrl ? pvt->dbam1 : pvt->dbam0);
1720 
1721 	dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1722 	dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
1723 
1724 	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1725 
1726 	/* Dump memory sizes for DIMM and its CSROWs */
1727 	for (dimm = 0; dimm < 4; dimm++) {
1728 
1729 		size0 = 0;
1730 		if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
1731 			size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
1732 
1733 		size1 = 0;
1734 		if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
1735 			size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
1736 
1737 		edac_printk(KERN_DEBUG, EDAC_MC, " %d: %5dMB %d: %5dMB\n",
1738 			    dimm * 2,     size0 << factor,
1739 			    dimm * 2 + 1, size1 << factor);
1740 	}
1741 }
1742 
1743 /*
1744  * There currently are 3 types type of MC devices for AMD Athlon/Opterons
1745  * (as per PCI DEVICE_IDs):
1746  *
1747  * Family K8: That is the Athlon64 and Opteron CPUs. They all have the same PCI
1748  * DEVICE ID, even though there is differences between the different Revisions
1749  * (CG,D,E,F).
1750  *
1751  * Family F10h and F11h.
1752  *
1753  */
1754 static struct amd64_family_type amd64_family_types[] = {
1755 	[K8_CPUS] = {
1756 		.ctl_name = "RevF",
1757 		.addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1758 		.misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1759 		.ops = {
1760 			.early_channel_count	= k8_early_channel_count,
1761 			.get_error_address	= k8_get_error_address,
1762 			.read_dram_base_limit	= k8_read_dram_base_limit,
1763 			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
1764 			.dbam_to_cs		= k8_dbam_to_chip_select,
1765 		}
1766 	},
1767 	[F10_CPUS] = {
1768 		.ctl_name = "Family 10h",
1769 		.addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1770 		.misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1771 		.ops = {
1772 			.early_channel_count	= f10_early_channel_count,
1773 			.get_error_address	= f10_get_error_address,
1774 			.read_dram_base_limit	= f10_read_dram_base_limit,
1775 			.read_dram_ctl_register	= f10_read_dram_ctl_register,
1776 			.map_sysaddr_to_csrow	= f10_map_sysaddr_to_csrow,
1777 			.dbam_to_cs		= f10_dbam_to_chip_select,
1778 		}
1779 	},
1780 	[F11_CPUS] = {
1781 		.ctl_name = "Family 11h",
1782 		.addr_f1_ctl = PCI_DEVICE_ID_AMD_11H_NB_MAP,
1783 		.misc_f3_ctl = PCI_DEVICE_ID_AMD_11H_NB_MISC,
1784 		.ops = {
1785 			.early_channel_count	= f10_early_channel_count,
1786 			.get_error_address	= f10_get_error_address,
1787 			.read_dram_base_limit	= f10_read_dram_base_limit,
1788 			.read_dram_ctl_register	= f10_read_dram_ctl_register,
1789 			.map_sysaddr_to_csrow	= f10_map_sysaddr_to_csrow,
1790 			.dbam_to_cs		= f10_dbam_to_chip_select,
1791 		}
1792 	},
1793 };
1794 
1795 static struct pci_dev *pci_get_related_function(unsigned int vendor,
1796 						unsigned int device,
1797 						struct pci_dev *related)
1798 {
1799 	struct pci_dev *dev = NULL;
1800 
1801 	dev = pci_get_device(vendor, device, dev);
1802 	while (dev) {
1803 		if ((dev->bus->number == related->bus->number) &&
1804 		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1805 			break;
1806 		dev = pci_get_device(vendor, device, dev);
1807 	}
1808 
1809 	return dev;
1810 }
1811 
1812 /*
1813  * These are tables of eigenvectors (one per line) which can be used for the
1814  * construction of the syndrome tables. The modified syndrome search algorithm
1815  * uses those to find the symbol in error and thus the DIMM.
1816  *
1817  * Algorithm courtesy of Ross LaFetra from AMD.
1818  */
1819 static u16 x4_vectors[] = {
1820 	0x2f57, 0x1afe, 0x66cc, 0xdd88,
1821 	0x11eb, 0x3396, 0x7f4c, 0xeac8,
1822 	0x0001, 0x0002, 0x0004, 0x0008,
1823 	0x1013, 0x3032, 0x4044, 0x8088,
1824 	0x106b, 0x30d6, 0x70fc, 0xe0a8,
1825 	0x4857, 0xc4fe, 0x13cc, 0x3288,
1826 	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1827 	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1828 	0x15c1, 0x2a42, 0x89ac, 0x4758,
1829 	0x2b03, 0x1602, 0x4f0c, 0xca08,
1830 	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1831 	0x8ba7, 0x465e, 0x244c, 0x1cc8,
1832 	0x2b87, 0x164e, 0x642c, 0xdc18,
1833 	0x40b9, 0x80de, 0x1094, 0x20e8,
1834 	0x27db, 0x1eb6, 0x9dac, 0x7b58,
1835 	0x11c1, 0x2242, 0x84ac, 0x4c58,
1836 	0x1be5, 0x2d7a, 0x5e34, 0xa718,
1837 	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1838 	0x4c97, 0xc87e, 0x11fc, 0x33a8,
1839 	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1840 	0x16b3, 0x3d62, 0x4f34, 0x8518,
1841 	0x1e2f, 0x391a, 0x5cac, 0xf858,
1842 	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1843 	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1844 	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1845 	0x4397, 0xc27e, 0x17fc, 0x3ea8,
1846 	0x1617, 0x3d3e, 0x6464, 0xb8b8,
1847 	0x23ff, 0x12aa, 0xab6c, 0x56d8,
1848 	0x2dfb, 0x1ba6, 0x913c, 0x7328,
1849 	0x185d, 0x2ca6, 0x7914, 0x9e28,
1850 	0x171b, 0x3e36, 0x7d7c, 0xebe8,
1851 	0x4199, 0x82ee, 0x19f4, 0x2e58,
1852 	0x4807, 0xc40e, 0x130c, 0x3208,
1853 	0x1905, 0x2e0a, 0x5804, 0xac08,
1854 	0x213f, 0x132a, 0xadfc, 0x5ba8,
1855 	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1856 };
1857 
1858 static u16 x8_vectors[] = {
1859 	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1860 	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1861 	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1862 	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1863 	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1864 	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1865 	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1866 	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1867 	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1868 	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1869 	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1870 	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1871 	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1872 	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1873 	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1874 	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1875 	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1876 	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1877 	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1878 };
1879 
1880 static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
1881 				 int v_dim)
1882 {
1883 	unsigned int i, err_sym;
1884 
1885 	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1886 		u16 s = syndrome;
1887 		int v_idx =  err_sym * v_dim;
1888 		int v_end = (err_sym + 1) * v_dim;
1889 
1890 		/* walk over all 16 bits of the syndrome */
1891 		for (i = 1; i < (1U << 16); i <<= 1) {
1892 
1893 			/* if bit is set in that eigenvector... */
1894 			if (v_idx < v_end && vectors[v_idx] & i) {
1895 				u16 ev_comp = vectors[v_idx++];
1896 
1897 				/* ... and bit set in the modified syndrome, */
1898 				if (s & i) {
1899 					/* remove it. */
1900 					s ^= ev_comp;
1901 
1902 					if (!s)
1903 						return err_sym;
1904 				}
1905 
1906 			} else if (s & i)
1907 				/* can't get to zero, move to next symbol */
1908 				break;
1909 		}
1910 	}
1911 
1912 	debugf0("syndrome(%x) not found\n", syndrome);
1913 	return -1;
1914 }
1915 
1916 static int map_err_sym_to_channel(int err_sym, int sym_size)
1917 {
1918 	if (sym_size == 4)
1919 		switch (err_sym) {
1920 		case 0x20:
1921 		case 0x21:
1922 			return 0;
1923 			break;
1924 		case 0x22:
1925 		case 0x23:
1926 			return 1;
1927 			break;
1928 		default:
1929 			return err_sym >> 4;
1930 			break;
1931 		}
1932 	/* x8 symbols */
1933 	else
1934 		switch (err_sym) {
1935 		/* imaginary bits not in a DIMM */
1936 		case 0x10:
1937 			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1938 					  err_sym);
1939 			return -1;
1940 			break;
1941 
1942 		case 0x11:
1943 			return 0;
1944 			break;
1945 		case 0x12:
1946 			return 1;
1947 			break;
1948 		default:
1949 			return err_sym >> 3;
1950 			break;
1951 		}
1952 	return -1;
1953 }
1954 
1955 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1956 {
1957 	struct amd64_pvt *pvt = mci->pvt_info;
1958 	u32 value = 0;
1959 	int err_sym = 0;
1960 
1961 	if (boot_cpu_data.x86 == 0x10) {
1962 
1963 		amd64_read_pci_cfg(pvt->misc_f3_ctl, 0x180, &value);
1964 
1965 		/* F3x180[EccSymbolSize]=1 => x8 symbols */
1966 		if (boot_cpu_data.x86_model > 7 &&
1967 		    value & BIT(25)) {
1968 			err_sym = decode_syndrome(syndrome, x8_vectors,
1969 						  ARRAY_SIZE(x8_vectors), 8);
1970 			return map_err_sym_to_channel(err_sym, 8);
1971 		}
1972 	}
1973 	err_sym = decode_syndrome(syndrome, x4_vectors, ARRAY_SIZE(x4_vectors), 4);
1974 	return map_err_sym_to_channel(err_sym, 4);
1975 }
1976 
1977 /*
1978  * Check for valid error in the NB Status High register. If so, proceed to read
1979  * NB Status Low, NB Address Low and NB Address High registers and store data
1980  * into error structure.
1981  *
1982  * Returns:
1983  *	- 1: if hardware regs contains valid error info
1984  *	- 0: if no valid error is indicated
1985  */
1986 static int amd64_get_error_info_regs(struct mem_ctl_info *mci,
1987 				     struct err_regs *regs)
1988 {
1989 	struct amd64_pvt *pvt;
1990 	struct pci_dev *misc_f3_ctl;
1991 
1992 	pvt = mci->pvt_info;
1993 	misc_f3_ctl = pvt->misc_f3_ctl;
1994 
1995 	if (amd64_read_pci_cfg(misc_f3_ctl, K8_NBSH, &regs->nbsh))
1996 		return 0;
1997 
1998 	if (!(regs->nbsh & K8_NBSH_VALID_BIT))
1999 		return 0;
2000 
2001 	/* valid error, read remaining error information registers */
2002 	if (amd64_read_pci_cfg(misc_f3_ctl, K8_NBSL, &regs->nbsl) ||
2003 	    amd64_read_pci_cfg(misc_f3_ctl, K8_NBEAL, &regs->nbeal) ||
2004 	    amd64_read_pci_cfg(misc_f3_ctl, K8_NBEAH, &regs->nbeah) ||
2005 	    amd64_read_pci_cfg(misc_f3_ctl, K8_NBCFG, &regs->nbcfg))
2006 		return 0;
2007 
2008 	return 1;
2009 }
2010 
2011 /*
2012  * This function is called to retrieve the error data from hardware and store it
2013  * in the info structure.
2014  *
2015  * Returns:
2016  *	- 1: if a valid error is found
2017  *	- 0: if no error is found
2018  */
2019 static int amd64_get_error_info(struct mem_ctl_info *mci,
2020 				struct err_regs *info)
2021 {
2022 	struct amd64_pvt *pvt;
2023 	struct err_regs regs;
2024 
2025 	pvt = mci->pvt_info;
2026 
2027 	if (!amd64_get_error_info_regs(mci, info))
2028 		return 0;
2029 
2030 	/*
2031 	 * Here's the problem with the K8's EDAC reporting: There are four
2032 	 * registers which report pieces of error information. They are shared
2033 	 * between CEs and UEs. Furthermore, contrary to what is stated in the
2034 	 * BKDG, the overflow bit is never used! Every error always updates the
2035 	 * reporting registers.
2036 	 *
2037 	 * Can you see the race condition? All four error reporting registers
2038 	 * must be read before a new error updates them! There is no way to read
2039 	 * all four registers atomically. The best than can be done is to detect
2040 	 * that a race has occured and then report the error without any kind of
2041 	 * precision.
2042 	 *
2043 	 * What is still positive is that errors are still reported and thus
2044 	 * problems can still be detected - just not localized because the
2045 	 * syndrome and address are spread out across registers.
2046 	 *
2047 	 * Grrrrr!!!!!  Here's hoping that AMD fixes this in some future K8 rev.
2048 	 * UEs and CEs should have separate register sets with proper overflow
2049 	 * bits that are used! At very least the problem can be fixed by
2050 	 * honoring the ErrValid bit in 'nbsh' and not updating registers - just
2051 	 * set the overflow bit - unless the current error is CE and the new
2052 	 * error is UE which would be the only situation for overwriting the
2053 	 * current values.
2054 	 */
2055 
2056 	regs = *info;
2057 
2058 	/* Use info from the second read - most current */
2059 	if (unlikely(!amd64_get_error_info_regs(mci, info)))
2060 		return 0;
2061 
2062 	/* clear the error bits in hardware */
2063 	pci_write_bits32(pvt->misc_f3_ctl, K8_NBSH, 0, K8_NBSH_VALID_BIT);
2064 
2065 	/* Check for the possible race condition */
2066 	if ((regs.nbsh != info->nbsh) ||
2067 	     (regs.nbsl != info->nbsl) ||
2068 	     (regs.nbeah != info->nbeah) ||
2069 	     (regs.nbeal != info->nbeal)) {
2070 		amd64_mc_printk(mci, KERN_WARNING,
2071 				"hardware STATUS read access race condition "
2072 				"detected!\n");
2073 		return 0;
2074 	}
2075 	return 1;
2076 }
2077 
2078 /*
2079  * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
2080  * ADDRESS and process.
2081  */
2082 static void amd64_handle_ce(struct mem_ctl_info *mci,
2083 			    struct err_regs *info)
2084 {
2085 	struct amd64_pvt *pvt = mci->pvt_info;
2086 	u64 sys_addr;
2087 
2088 	/* Ensure that the Error Address is VALID */
2089 	if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
2090 		amd64_mc_printk(mci, KERN_ERR,
2091 			"HW has no ERROR_ADDRESS available\n");
2092 		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
2093 		return;
2094 	}
2095 
2096 	sys_addr = pvt->ops->get_error_address(mci, info);
2097 
2098 	amd64_mc_printk(mci, KERN_ERR,
2099 		"CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
2100 
2101 	pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr);
2102 }
2103 
2104 /* Handle any Un-correctable Errors (UEs) */
2105 static void amd64_handle_ue(struct mem_ctl_info *mci,
2106 			    struct err_regs *info)
2107 {
2108 	struct amd64_pvt *pvt = mci->pvt_info;
2109 	struct mem_ctl_info *log_mci, *src_mci = NULL;
2110 	int csrow;
2111 	u64 sys_addr;
2112 	u32 page, offset;
2113 
2114 	log_mci = mci;
2115 
2116 	if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
2117 		amd64_mc_printk(mci, KERN_CRIT,
2118 			"HW has no ERROR_ADDRESS available\n");
2119 		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2120 		return;
2121 	}
2122 
2123 	sys_addr = pvt->ops->get_error_address(mci, info);
2124 
2125 	/*
2126 	 * Find out which node the error address belongs to. This may be
2127 	 * different from the node that detected the error.
2128 	 */
2129 	src_mci = find_mc_by_sys_addr(mci, sys_addr);
2130 	if (!src_mci) {
2131 		amd64_mc_printk(mci, KERN_CRIT,
2132 			"ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n",
2133 			(unsigned long)sys_addr);
2134 		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2135 		return;
2136 	}
2137 
2138 	log_mci = src_mci;
2139 
2140 	csrow = sys_addr_to_csrow(log_mci, sys_addr);
2141 	if (csrow < 0) {
2142 		amd64_mc_printk(mci, KERN_CRIT,
2143 			"ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n",
2144 			(unsigned long)sys_addr);
2145 		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2146 	} else {
2147 		error_address_to_page_and_offset(sys_addr, &page, &offset);
2148 		edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
2149 	}
2150 }
2151 
2152 static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
2153 					    struct err_regs *info)
2154 {
2155 	u32 ec  = ERROR_CODE(info->nbsl);
2156 	u32 xec = EXT_ERROR_CODE(info->nbsl);
2157 	int ecc_type = (info->nbsh >> 13) & 0x3;
2158 
2159 	/* Bail early out if this was an 'observed' error */
2160 	if (PP(ec) == K8_NBSL_PP_OBS)
2161 		return;
2162 
2163 	/* Do only ECC errors */
2164 	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
2165 		return;
2166 
2167 	if (ecc_type == 2)
2168 		amd64_handle_ce(mci, info);
2169 	else if (ecc_type == 1)
2170 		amd64_handle_ue(mci, info);
2171 
2172 	/*
2173 	 * If main error is CE then overflow must be CE.  If main error is UE
2174 	 * then overflow is unknown.  We'll call the overflow a CE - if
2175 	 * panic_on_ue is set then we're already panic'ed and won't arrive
2176 	 * here. Else, then apparently someone doesn't think that UE's are
2177 	 * catastrophic.
2178 	 */
2179 	if (info->nbsh & K8_NBSH_OVERFLOW)
2180 		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR "Error Overflow");
2181 }
2182 
2183 void amd64_decode_bus_error(int node_id, struct err_regs *regs)
2184 {
2185 	struct mem_ctl_info *mci = mci_lookup[node_id];
2186 
2187 	__amd64_decode_bus_error(mci, regs);
2188 
2189 	/*
2190 	 * Check the UE bit of the NB status high register, if set generate some
2191 	 * logs. If NOT a GART error, then process the event as a NO-INFO event.
2192 	 * If it was a GART error, skip that process.
2193 	 *
2194 	 * FIXME: this should go somewhere else, if at all.
2195 	 */
2196 	if (regs->nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
2197 		edac_mc_handle_ue_no_info(mci, "UE bit is set");
2198 
2199 }
2200 
2201 /*
2202  * The main polling 'check' function, called FROM the edac core to perform the
2203  * error checking and if an error is encountered, error processing.
2204  */
2205 static void amd64_check(struct mem_ctl_info *mci)
2206 {
2207 	struct err_regs regs;
2208 
2209 	if (amd64_get_error_info(mci, &regs)) {
2210 		struct amd64_pvt *pvt = mci->pvt_info;
2211 		amd_decode_nb_mce(pvt->mc_node_id, &regs, 1);
2212 	}
2213 }
2214 
2215 /*
2216  * Input:
2217  *	1) struct amd64_pvt which contains pvt->dram_f2_ctl pointer
2218  *	2) AMD Family index value
2219  *
2220  * Ouput:
2221  *	Upon return of 0, the following filled in:
2222  *
2223  *		struct pvt->addr_f1_ctl
2224  *		struct pvt->misc_f3_ctl
2225  *
2226  *	Filled in with related device funcitions of 'dram_f2_ctl'
2227  *	These devices are "reserved" via the pci_get_device()
2228  *
2229  *	Upon return of 1 (error status):
2230  *
2231  *		Nothing reserved
2232  */
2233 static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, int mc_idx)
2234 {
2235 	const struct amd64_family_type *amd64_dev = &amd64_family_types[mc_idx];
2236 
2237 	/* Reserve the ADDRESS MAP Device */
2238 	pvt->addr_f1_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
2239 						    amd64_dev->addr_f1_ctl,
2240 						    pvt->dram_f2_ctl);
2241 
2242 	if (!pvt->addr_f1_ctl) {
2243 		amd64_printk(KERN_ERR, "error address map device not found: "
2244 			     "vendor %x device 0x%x (broken BIOS?)\n",
2245 			     PCI_VENDOR_ID_AMD, amd64_dev->addr_f1_ctl);
2246 		return 1;
2247 	}
2248 
2249 	/* Reserve the MISC Device */
2250 	pvt->misc_f3_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
2251 						    amd64_dev->misc_f3_ctl,
2252 						    pvt->dram_f2_ctl);
2253 
2254 	if (!pvt->misc_f3_ctl) {
2255 		pci_dev_put(pvt->addr_f1_ctl);
2256 		pvt->addr_f1_ctl = NULL;
2257 
2258 		amd64_printk(KERN_ERR, "error miscellaneous device not found: "
2259 			     "vendor %x device 0x%x (broken BIOS?)\n",
2260 			     PCI_VENDOR_ID_AMD, amd64_dev->misc_f3_ctl);
2261 		return 1;
2262 	}
2263 
2264 	debugf1("    Addr Map device PCI Bus ID:\t%s\n",
2265 		pci_name(pvt->addr_f1_ctl));
2266 	debugf1("    DRAM MEM-CTL PCI Bus ID:\t%s\n",
2267 		pci_name(pvt->dram_f2_ctl));
2268 	debugf1("    Misc device PCI Bus ID:\t%s\n",
2269 		pci_name(pvt->misc_f3_ctl));
2270 
2271 	return 0;
2272 }
2273 
2274 static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
2275 {
2276 	pci_dev_put(pvt->addr_f1_ctl);
2277 	pci_dev_put(pvt->misc_f3_ctl);
2278 }
2279 
2280 /*
2281  * Retrieve the hardware registers of the memory controller (this includes the
2282  * 'Address Map' and 'Misc' device regs)
2283  */
2284 static void amd64_read_mc_registers(struct amd64_pvt *pvt)
2285 {
2286 	u64 msr_val;
2287 	int dram;
2288 
2289 	/*
2290 	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2291 	 * those are Read-As-Zero
2292 	 */
2293 	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2294 	debugf0("  TOP_MEM:  0x%016llx\n", pvt->top_mem);
2295 
2296 	/* check first whether TOP_MEM2 is enabled */
2297 	rdmsrl(MSR_K8_SYSCFG, msr_val);
2298 	if (msr_val & (1U << 21)) {
2299 		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2300 		debugf0("  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2301 	} else
2302 		debugf0("  TOP_MEM2 disabled.\n");
2303 
2304 	amd64_cpu_display_info(pvt);
2305 
2306 	amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap);
2307 
2308 	if (pvt->ops->read_dram_ctl_register)
2309 		pvt->ops->read_dram_ctl_register(pvt);
2310 
2311 	for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
2312 		/*
2313 		 * Call CPU specific READ function to get the DRAM Base and
2314 		 * Limit values from the DCT.
2315 		 */
2316 		pvt->ops->read_dram_base_limit(pvt, dram);
2317 
2318 		/*
2319 		 * Only print out debug info on rows with both R and W Enabled.
2320 		 * Normal processing, compiler should optimize this whole 'if'
2321 		 * debug output block away.
2322 		 */
2323 		if (pvt->dram_rw_en[dram] != 0) {
2324 			debugf1("  DRAM-BASE[%d]: 0x%016llx "
2325 				"DRAM-LIMIT:  0x%016llx\n",
2326 				dram,
2327 				pvt->dram_base[dram],
2328 				pvt->dram_limit[dram]);
2329 
2330 			debugf1("        IntlvEn=%s %s %s "
2331 				"IntlvSel=%d DstNode=%d\n",
2332 				pvt->dram_IntlvEn[dram] ?
2333 					"Enabled" : "Disabled",
2334 				(pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
2335 				(pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
2336 				pvt->dram_IntlvSel[dram],
2337 				pvt->dram_DstNode[dram]);
2338 		}
2339 	}
2340 
2341 	amd64_read_dct_base_mask(pvt);
2342 
2343 	amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar);
2344 	amd64_read_dbam_reg(pvt);
2345 
2346 	amd64_read_pci_cfg(pvt->misc_f3_ctl,
2347 			   F10_ONLINE_SPARE, &pvt->online_spare);
2348 
2349 	amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
2350 	amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0);
2351 
2352 	if (!dct_ganging_enabled(pvt) && boot_cpu_data.x86 >= 0x10) {
2353 		amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
2354 		amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_1, &pvt->dchr1);
2355 	}
2356 	amd64_dump_misc_regs(pvt);
2357 }
2358 
2359 /*
2360  * NOTE: CPU Revision Dependent code
2361  *
2362  * Input:
2363  *	@csrow_nr ChipSelect Row Number (0..pvt->cs_count-1)
2364  *	k8 private pointer to -->
2365  *			DRAM Bank Address mapping register
2366  *			node_id
2367  *			DCL register where dual_channel_active is
2368  *
2369  * The DBAM register consists of 4 sets of 4 bits each definitions:
2370  *
2371  * Bits:	CSROWs
2372  * 0-3		CSROWs 0 and 1
2373  * 4-7		CSROWs 2 and 3
2374  * 8-11		CSROWs 4 and 5
2375  * 12-15	CSROWs 6 and 7
2376  *
2377  * Values range from: 0 to 15
2378  * The meaning of the values depends on CPU revision and dual-channel state,
2379  * see relevant BKDG more info.
2380  *
2381  * The memory controller provides for total of only 8 CSROWs in its current
2382  * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2383  * single channel or two (2) DIMMs in dual channel mode.
2384  *
2385  * The following code logic collapses the various tables for CSROW based on CPU
2386  * revision.
2387  *
2388  * Returns:
2389  *	The number of PAGE_SIZE pages on the specified CSROW number it
2390  *	encompasses
2391  *
2392  */
2393 static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
2394 {
2395 	u32 cs_mode, nr_pages;
2396 
2397 	/*
2398 	 * The math on this doesn't look right on the surface because x/2*4 can
2399 	 * be simplified to x*2 but this expression makes use of the fact that
2400 	 * it is integral math where 1/2=0. This intermediate value becomes the
2401 	 * number of bits to shift the DBAM register to extract the proper CSROW
2402 	 * field.
2403 	 */
2404 	cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
2405 
2406 	nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
2407 
2408 	/*
2409 	 * If dual channel then double the memory size of single channel.
2410 	 * Channel count is 1 or 2
2411 	 */
2412 	nr_pages <<= (pvt->channel_count - 1);
2413 
2414 	debugf0("  (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
2415 	debugf0("    nr_pages= %u  channel-count = %d\n",
2416 		nr_pages, pvt->channel_count);
2417 
2418 	return nr_pages;
2419 }
2420 
2421 /*
2422  * Initialize the array of csrow attribute instances, based on the values
2423  * from pci config hardware registers.
2424  */
2425 static int amd64_init_csrows(struct mem_ctl_info *mci)
2426 {
2427 	struct csrow_info *csrow;
2428 	struct amd64_pvt *pvt;
2429 	u64 input_addr_min, input_addr_max, sys_addr;
2430 	int i, empty = 1;
2431 
2432 	pvt = mci->pvt_info;
2433 
2434 	amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg);
2435 
2436 	debugf0("NBCFG= 0x%x  CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
2437 		(pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2438 		(pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"
2439 		);
2440 
2441 	for (i = 0; i < pvt->cs_count; i++) {
2442 		csrow = &mci->csrows[i];
2443 
2444 		if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
2445 			debugf1("----CSROW %d EMPTY for node %d\n", i,
2446 				pvt->mc_node_id);
2447 			continue;
2448 		}
2449 
2450 		debugf1("----CSROW %d VALID for MC node %d\n",
2451 			i, pvt->mc_node_id);
2452 
2453 		empty = 0;
2454 		csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
2455 		find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2456 		sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2457 		csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2458 		sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2459 		csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2460 		csrow->page_mask = ~mask_from_dct_mask(pvt, i);
2461 		/* 8 bytes of resolution */
2462 
2463 		csrow->mtype = amd64_determine_memory_type(pvt);
2464 
2465 		debugf1("  for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2466 		debugf1("    input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2467 			(unsigned long)input_addr_min,
2468 			(unsigned long)input_addr_max);
2469 		debugf1("    sys_addr: 0x%lx  page_mask: 0x%lx\n",
2470 			(unsigned long)sys_addr, csrow->page_mask);
2471 		debugf1("    nr_pages: %u  first_page: 0x%lx "
2472 			"last_page: 0x%lx\n",
2473 			(unsigned)csrow->nr_pages,
2474 			csrow->first_page, csrow->last_page);
2475 
2476 		/*
2477 		 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2478 		 */
2479 		if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
2480 			csrow->edac_mode =
2481 			    (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
2482 			    EDAC_S4ECD4ED : EDAC_SECDED;
2483 		else
2484 			csrow->edac_mode = EDAC_NONE;
2485 	}
2486 
2487 	return empty;
2488 }
2489 
2490 /* get all cores on this DCT */
2491 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
2492 {
2493 	int cpu;
2494 
2495 	for_each_online_cpu(cpu)
2496 		if (amd_get_nb_id(cpu) == nid)
2497 			cpumask_set_cpu(cpu, mask);
2498 }
2499 
2500 /* check MCG_CTL on all the cpus on this node */
2501 static bool amd64_nb_mce_bank_enabled_on_node(int nid)
2502 {
2503 	cpumask_var_t mask;
2504 	int cpu, nbe;
2505 	bool ret = false;
2506 
2507 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2508 		amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
2509 			     __func__);
2510 		return false;
2511 	}
2512 
2513 	get_cpus_on_this_dct_cpumask(mask, nid);
2514 
2515 	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2516 
2517 	for_each_cpu(cpu, mask) {
2518 		struct msr *reg = per_cpu_ptr(msrs, cpu);
2519 		nbe = reg->l & K8_MSR_MCGCTL_NBE;
2520 
2521 		debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2522 			cpu, reg->q,
2523 			(nbe ? "enabled" : "disabled"));
2524 
2525 		if (!nbe)
2526 			goto out;
2527 	}
2528 	ret = true;
2529 
2530 out:
2531 	free_cpumask_var(mask);
2532 	return ret;
2533 }
2534 
2535 static int amd64_toggle_ecc_err_reporting(struct amd64_pvt *pvt, bool on)
2536 {
2537 	cpumask_var_t cmask;
2538 	int cpu;
2539 
2540 	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2541 		amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
2542 			     __func__);
2543 		return false;
2544 	}
2545 
2546 	get_cpus_on_this_dct_cpumask(cmask, pvt->mc_node_id);
2547 
2548 	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2549 
2550 	for_each_cpu(cpu, cmask) {
2551 
2552 		struct msr *reg = per_cpu_ptr(msrs, cpu);
2553 
2554 		if (on) {
2555 			if (reg->l & K8_MSR_MCGCTL_NBE)
2556 				pvt->flags.nb_mce_enable = 1;
2557 
2558 			reg->l |= K8_MSR_MCGCTL_NBE;
2559 		} else {
2560 			/*
2561 			 * Turn off NB MCE reporting only when it was off before
2562 			 */
2563 			if (!pvt->flags.nb_mce_enable)
2564 				reg->l &= ~K8_MSR_MCGCTL_NBE;
2565 		}
2566 	}
2567 	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2568 
2569 	free_cpumask_var(cmask);
2570 
2571 	return 0;
2572 }
2573 
2574 static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
2575 {
2576 	struct amd64_pvt *pvt = mci->pvt_info;
2577 	u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2578 
2579 	amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
2580 
2581 	/* turn on UECCn and CECCEn bits */
2582 	pvt->old_nbctl = value & mask;
2583 	pvt->nbctl_mcgctl_saved = 1;
2584 
2585 	value |= mask;
2586 	pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
2587 
2588 	if (amd64_toggle_ecc_err_reporting(pvt, ON))
2589 		amd64_printk(KERN_WARNING, "Error enabling ECC reporting over "
2590 					   "MCGCTL!\n");
2591 
2592 	amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
2593 
2594 	debugf0("NBCFG(1)= 0x%x  CHIPKILL= %s ECC_ENABLE= %s\n", value,
2595 		(value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2596 		(value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2597 
2598 	if (!(value & K8_NBCFG_ECC_ENABLE)) {
2599 		amd64_printk(KERN_WARNING,
2600 			"This node reports that DRAM ECC is "
2601 			"currently Disabled; ENABLING now\n");
2602 
2603 		pvt->flags.nb_ecc_prev = 0;
2604 
2605 		/* Attempt to turn on DRAM ECC Enable */
2606 		value |= K8_NBCFG_ECC_ENABLE;
2607 		pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
2608 
2609 		amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
2610 
2611 		if (!(value & K8_NBCFG_ECC_ENABLE)) {
2612 			amd64_printk(KERN_WARNING,
2613 				"Hardware rejects Enabling DRAM ECC checking\n"
2614 				"Check memory DIMM configuration\n");
2615 		} else {
2616 			amd64_printk(KERN_DEBUG,
2617 				"Hardware accepted DRAM ECC Enable\n");
2618 		}
2619 	} else {
2620 		pvt->flags.nb_ecc_prev = 1;
2621 	}
2622 
2623 	debugf0("NBCFG(2)= 0x%x  CHIPKILL= %s ECC_ENABLE= %s\n", value,
2624 		(value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2625 		(value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2626 
2627 	pvt->ctl_error_info.nbcfg = value;
2628 }
2629 
2630 static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
2631 {
2632 	u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2633 
2634 	if (!pvt->nbctl_mcgctl_saved)
2635 		return;
2636 
2637 	amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
2638 	value &= ~mask;
2639 	value |= pvt->old_nbctl;
2640 
2641 	pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
2642 
2643 	/* restore previous BIOS DRAM ECC "off" setting which we force-enabled */
2644 	if (!pvt->flags.nb_ecc_prev) {
2645 		amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
2646 		value &= ~K8_NBCFG_ECC_ENABLE;
2647 		pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
2648 	}
2649 
2650 	/* restore the NB Enable MCGCTL bit */
2651 	if (amd64_toggle_ecc_err_reporting(pvt, OFF))
2652 		amd64_printk(KERN_WARNING, "Error restoring NB MCGCTL settings!\n");
2653 }
2654 
2655 /*
2656  * EDAC requires that the BIOS have ECC enabled before taking over the
2657  * processing of ECC errors. This is because the BIOS can properly initialize
2658  * the memory system completely. A command line option allows to force-enable
2659  * hardware ECC later in amd64_enable_ecc_error_reporting().
2660  */
2661 static const char *ecc_msg =
2662 	"ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2663 	" Either enable ECC checking or force module loading by setting "
2664 	"'ecc_enable_override'.\n"
2665 	" (Note that use of the override may cause unknown side effects.)\n";
2666 
2667 static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
2668 {
2669 	u32 value;
2670 	u8 ecc_enabled = 0;
2671 	bool nb_mce_en = false;
2672 
2673 	amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
2674 
2675 	ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
2676 	if (!ecc_enabled)
2677 		amd64_printk(KERN_NOTICE, "This node reports that Memory ECC "
2678 			     "is currently disabled, set F3x%x[22] (%s).\n",
2679 			     K8_NBCFG, pci_name(pvt->misc_f3_ctl));
2680 	else
2681 		amd64_printk(KERN_INFO, "ECC is enabled by BIOS.\n");
2682 
2683 	nb_mce_en = amd64_nb_mce_bank_enabled_on_node(pvt->mc_node_id);
2684 	if (!nb_mce_en)
2685 		amd64_printk(KERN_NOTICE, "NB MCE bank disabled, set MSR "
2686 			     "0x%08x[4] on node %d to enable.\n",
2687 			     MSR_IA32_MCG_CTL, pvt->mc_node_id);
2688 
2689 	if (!ecc_enabled || !nb_mce_en) {
2690 		if (!ecc_enable_override) {
2691 			amd64_printk(KERN_NOTICE, "%s", ecc_msg);
2692 			return -ENODEV;
2693 		} else {
2694 			amd64_printk(KERN_WARNING, "Forcing ECC checking on!\n");
2695 		}
2696 	}
2697 
2698 	return 0;
2699 }
2700 
2701 struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2702 					  ARRAY_SIZE(amd64_inj_attrs) +
2703 					  1];
2704 
2705 struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2706 
2707 static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
2708 {
2709 	unsigned int i = 0, j = 0;
2710 
2711 	for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2712 		sysfs_attrs[i] = amd64_dbg_attrs[i];
2713 
2714 	for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2715 		sysfs_attrs[i] = amd64_inj_attrs[j];
2716 
2717 	sysfs_attrs[i] = terminator;
2718 
2719 	mci->mc_driver_sysfs_attributes = sysfs_attrs;
2720 }
2721 
2722 static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
2723 {
2724 	struct amd64_pvt *pvt = mci->pvt_info;
2725 
2726 	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2727 	mci->edac_ctl_cap	= EDAC_FLAG_NONE;
2728 
2729 	if (pvt->nbcap & K8_NBCAP_SECDED)
2730 		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2731 
2732 	if (pvt->nbcap & K8_NBCAP_CHIPKILL)
2733 		mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2734 
2735 	mci->edac_cap		= amd64_determine_edac_cap(pvt);
2736 	mci->mod_name		= EDAC_MOD_STR;
2737 	mci->mod_ver		= EDAC_AMD64_VERSION;
2738 	mci->ctl_name		= get_amd_family_name(pvt->mc_type_index);
2739 	mci->dev_name		= pci_name(pvt->dram_f2_ctl);
2740 	mci->ctl_page_to_phys	= NULL;
2741 
2742 	/* IMPORTANT: Set the polling 'check' function in this module */
2743 	mci->edac_check		= amd64_check;
2744 
2745 	/* memory scrubber interface */
2746 	mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2747 	mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2748 }
2749 
2750 /*
2751  * Init stuff for this DRAM Controller device.
2752  *
2753  * Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration
2754  * Space feature MUST be enabled on ALL Processors prior to actually reading
2755  * from the ECS registers. Since the loading of the module can occur on any
2756  * 'core', and cores don't 'see' all the other processors ECS data when the
2757  * others are NOT enabled. Our solution is to first enable ECS access in this
2758  * routine on all processors, gather some data in a amd64_pvt structure and
2759  * later come back in a finish-setup function to perform that final
2760  * initialization. See also amd64_init_2nd_stage() for that.
2761  */
2762 static int amd64_probe_one_instance(struct pci_dev *dram_f2_ctl,
2763 				    int mc_type_index)
2764 {
2765 	struct amd64_pvt *pvt = NULL;
2766 	int err = 0, ret;
2767 
2768 	ret = -ENOMEM;
2769 	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2770 	if (!pvt)
2771 		goto err_exit;
2772 
2773 	pvt->mc_node_id = get_node_id(dram_f2_ctl);
2774 
2775 	pvt->dram_f2_ctl	= dram_f2_ctl;
2776 	pvt->ext_model		= boot_cpu_data.x86_model >> 4;
2777 	pvt->mc_type_index	= mc_type_index;
2778 	pvt->ops		= family_ops(mc_type_index);
2779 
2780 	/*
2781 	 * We have the dram_f2_ctl device as an argument, now go reserve its
2782 	 * sibling devices from the PCI system.
2783 	 */
2784 	ret = -ENODEV;
2785 	err = amd64_reserve_mc_sibling_devices(pvt, mc_type_index);
2786 	if (err)
2787 		goto err_free;
2788 
2789 	ret = -EINVAL;
2790 	err = amd64_check_ecc_enabled(pvt);
2791 	if (err)
2792 		goto err_put;
2793 
2794 	/*
2795 	 * Key operation here: setup of HW prior to performing ops on it. Some
2796 	 * setup is required to access ECS data. After this is performed, the
2797 	 * 'teardown' function must be called upon error and normal exit paths.
2798 	 */
2799 	if (boot_cpu_data.x86 >= 0x10)
2800 		amd64_setup(pvt);
2801 
2802 	/*
2803 	 * Save the pointer to the private data for use in 2nd initialization
2804 	 * stage
2805 	 */
2806 	pvt_lookup[pvt->mc_node_id] = pvt;
2807 
2808 	return 0;
2809 
2810 err_put:
2811 	amd64_free_mc_sibling_devices(pvt);
2812 
2813 err_free:
2814 	kfree(pvt);
2815 
2816 err_exit:
2817 	return ret;
2818 }
2819 
2820 /*
2821  * This is the finishing stage of the init code. Needs to be performed after all
2822  * MCs' hardware have been prepped for accessing extended config space.
2823  */
2824 static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
2825 {
2826 	int node_id = pvt->mc_node_id;
2827 	struct mem_ctl_info *mci;
2828 	int ret = -ENODEV;
2829 
2830 	amd64_read_mc_registers(pvt);
2831 
2832 	/*
2833 	 * We need to determine how many memory channels there are. Then use
2834 	 * that information for calculating the size of the dynamic instance
2835 	 * tables in the 'mci' structure
2836 	 */
2837 	pvt->channel_count = pvt->ops->early_channel_count(pvt);
2838 	if (pvt->channel_count < 0)
2839 		goto err_exit;
2840 
2841 	ret = -ENOMEM;
2842 	mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, node_id);
2843 	if (!mci)
2844 		goto err_exit;
2845 
2846 	mci->pvt_info = pvt;
2847 
2848 	mci->dev = &pvt->dram_f2_ctl->dev;
2849 	amd64_setup_mci_misc_attributes(mci);
2850 
2851 	if (amd64_init_csrows(mci))
2852 		mci->edac_cap = EDAC_FLAG_NONE;
2853 
2854 	amd64_enable_ecc_error_reporting(mci);
2855 	amd64_set_mc_sysfs_attributes(mci);
2856 
2857 	ret = -ENODEV;
2858 	if (edac_mc_add_mc(mci)) {
2859 		debugf1("failed edac_mc_add_mc()\n");
2860 		goto err_add_mc;
2861 	}
2862 
2863 	mci_lookup[node_id] = mci;
2864 	pvt_lookup[node_id] = NULL;
2865 
2866 	/* register stuff with EDAC MCE */
2867 	if (report_gart_errors)
2868 		amd_report_gart_errors(true);
2869 
2870 	amd_register_ecc_decoder(amd64_decode_bus_error);
2871 
2872 	return 0;
2873 
2874 err_add_mc:
2875 	edac_mc_free(mci);
2876 
2877 err_exit:
2878 	debugf0("failure to init 2nd stage: ret=%d\n", ret);
2879 
2880 	amd64_restore_ecc_error_reporting(pvt);
2881 
2882 	if (boot_cpu_data.x86 > 0xf)
2883 		amd64_teardown(pvt);
2884 
2885 	amd64_free_mc_sibling_devices(pvt);
2886 
2887 	kfree(pvt_lookup[pvt->mc_node_id]);
2888 	pvt_lookup[node_id] = NULL;
2889 
2890 	return ret;
2891 }
2892 
2893 
2894 static int __devinit amd64_init_one_instance(struct pci_dev *pdev,
2895 				 const struct pci_device_id *mc_type)
2896 {
2897 	int ret = 0;
2898 
2899 	debugf0("(MC node=%d,mc_type='%s')\n", get_node_id(pdev),
2900 		get_amd_family_name(mc_type->driver_data));
2901 
2902 	ret = pci_enable_device(pdev);
2903 	if (ret < 0)
2904 		ret = -EIO;
2905 	else
2906 		ret = amd64_probe_one_instance(pdev, mc_type->driver_data);
2907 
2908 	if (ret < 0)
2909 		debugf0("ret=%d\n", ret);
2910 
2911 	return ret;
2912 }
2913 
2914 static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2915 {
2916 	struct mem_ctl_info *mci;
2917 	struct amd64_pvt *pvt;
2918 
2919 	/* Remove from EDAC CORE tracking list */
2920 	mci = edac_mc_del_mc(&pdev->dev);
2921 	if (!mci)
2922 		return;
2923 
2924 	pvt = mci->pvt_info;
2925 
2926 	amd64_restore_ecc_error_reporting(pvt);
2927 
2928 	if (boot_cpu_data.x86 > 0xf)
2929 		amd64_teardown(pvt);
2930 
2931 	amd64_free_mc_sibling_devices(pvt);
2932 
2933 	/* unregister from EDAC MCE */
2934 	amd_report_gart_errors(false);
2935 	amd_unregister_ecc_decoder(amd64_decode_bus_error);
2936 
2937 	/* Free the EDAC CORE resources */
2938 	mci->pvt_info = NULL;
2939 	mci_lookup[pvt->mc_node_id] = NULL;
2940 
2941 	kfree(pvt);
2942 	edac_mc_free(mci);
2943 }
2944 
2945 /*
2946  * This table is part of the interface for loading drivers for PCI devices. The
2947  * PCI core identifies what devices are on a system during boot, and then
2948  * inquiry this table to see if this driver is for a given device found.
2949  */
2950 static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2951 	{
2952 		.vendor		= PCI_VENDOR_ID_AMD,
2953 		.device		= PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2954 		.subvendor	= PCI_ANY_ID,
2955 		.subdevice	= PCI_ANY_ID,
2956 		.class		= 0,
2957 		.class_mask	= 0,
2958 		.driver_data	= K8_CPUS
2959 	},
2960 	{
2961 		.vendor		= PCI_VENDOR_ID_AMD,
2962 		.device		= PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2963 		.subvendor	= PCI_ANY_ID,
2964 		.subdevice	= PCI_ANY_ID,
2965 		.class		= 0,
2966 		.class_mask	= 0,
2967 		.driver_data	= F10_CPUS
2968 	},
2969 	{
2970 		.vendor		= PCI_VENDOR_ID_AMD,
2971 		.device		= PCI_DEVICE_ID_AMD_11H_NB_DRAM,
2972 		.subvendor	= PCI_ANY_ID,
2973 		.subdevice	= PCI_ANY_ID,
2974 		.class		= 0,
2975 		.class_mask	= 0,
2976 		.driver_data	= F11_CPUS
2977 	},
2978 	{0, }
2979 };
2980 MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2981 
2982 static struct pci_driver amd64_pci_driver = {
2983 	.name		= EDAC_MOD_STR,
2984 	.probe		= amd64_init_one_instance,
2985 	.remove		= __devexit_p(amd64_remove_one_instance),
2986 	.id_table	= amd64_pci_table,
2987 };
2988 
2989 static void amd64_setup_pci_device(void)
2990 {
2991 	struct mem_ctl_info *mci;
2992 	struct amd64_pvt *pvt;
2993 
2994 	if (amd64_ctl_pci)
2995 		return;
2996 
2997 	mci = mci_lookup[0];
2998 	if (mci) {
2999 
3000 		pvt = mci->pvt_info;
3001 		amd64_ctl_pci =
3002 			edac_pci_create_generic_ctl(&pvt->dram_f2_ctl->dev,
3003 						    EDAC_MOD_STR);
3004 
3005 		if (!amd64_ctl_pci) {
3006 			pr_warning("%s(): Unable to create PCI control\n",
3007 				   __func__);
3008 
3009 			pr_warning("%s(): PCI error report via EDAC not set\n",
3010 				   __func__);
3011 			}
3012 	}
3013 }
3014 
3015 static int __init amd64_edac_init(void)
3016 {
3017 	int nb, err = -ENODEV;
3018 	bool load_ok = false;
3019 
3020 	edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
3021 
3022 	opstate_init();
3023 
3024 	if (cache_k8_northbridges() < 0)
3025 		goto err_ret;
3026 
3027 	msrs = msrs_alloc();
3028 	if (!msrs)
3029 		goto err_ret;
3030 
3031 	err = pci_register_driver(&amd64_pci_driver);
3032 	if (err)
3033 		goto err_pci;
3034 
3035 	/*
3036 	 * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd
3037 	 * amd64_pvt structs. These will be used in the 2nd stage init function
3038 	 * to finish initialization of the MC instances.
3039 	 */
3040 	err = -ENODEV;
3041 	for (nb = 0; nb < num_k8_northbridges; nb++) {
3042 		if (!pvt_lookup[nb])
3043 			continue;
3044 
3045 		err = amd64_init_2nd_stage(pvt_lookup[nb]);
3046 		if (err)
3047 			goto err_2nd_stage;
3048 
3049 		load_ok = true;
3050 	}
3051 
3052 	if (load_ok) {
3053 		amd64_setup_pci_device();
3054 		return 0;
3055 	}
3056 
3057 err_2nd_stage:
3058 	pci_unregister_driver(&amd64_pci_driver);
3059 err_pci:
3060 	msrs_free(msrs);
3061 	msrs = NULL;
3062 err_ret:
3063 	return err;
3064 }
3065 
3066 static void __exit amd64_edac_exit(void)
3067 {
3068 	if (amd64_ctl_pci)
3069 		edac_pci_release_generic_ctl(amd64_ctl_pci);
3070 
3071 	pci_unregister_driver(&amd64_pci_driver);
3072 
3073 	msrs_free(msrs);
3074 	msrs = NULL;
3075 }
3076 
3077 module_init(amd64_edac_init);
3078 module_exit(amd64_edac_exit);
3079 
3080 MODULE_LICENSE("GPL");
3081 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
3082 		"Dave Peterson, Thayne Harbaugh");
3083 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
3084 		EDAC_AMD64_VERSION);
3085 
3086 module_param(edac_op_state, int, 0444);
3087 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
3088