1 #include "amd64_edac.h" 2 #include <asm/amd_nb.h> 3 4 static struct edac_pci_ctl_info *pci_ctl; 5 6 static int report_gart_errors; 7 module_param(report_gart_errors, int, 0644); 8 9 /* 10 * Set by command line parameter. If BIOS has enabled the ECC, this override is 11 * cleared to prevent re-enabling the hardware by this driver. 12 */ 13 static int ecc_enable_override; 14 module_param(ecc_enable_override, int, 0644); 15 16 static struct msr __percpu *msrs; 17 18 /* 19 * count successfully initialized driver instances for setup_pci_device() 20 */ 21 static atomic_t drv_instances = ATOMIC_INIT(0); 22 23 /* Per-node driver instances */ 24 static struct mem_ctl_info **mcis; 25 static struct ecc_settings **ecc_stngs; 26 27 /* 28 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing 29 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching- 30 * or higher value'. 31 * 32 *FIXME: Produce a better mapping/linearisation. 33 */ 34 static const struct scrubrate { 35 u32 scrubval; /* bit pattern for scrub rate */ 36 u32 bandwidth; /* bandwidth consumed (bytes/sec) */ 37 } scrubrates[] = { 38 { 0x01, 1600000000UL}, 39 { 0x02, 800000000UL}, 40 { 0x03, 400000000UL}, 41 { 0x04, 200000000UL}, 42 { 0x05, 100000000UL}, 43 { 0x06, 50000000UL}, 44 { 0x07, 25000000UL}, 45 { 0x08, 12284069UL}, 46 { 0x09, 6274509UL}, 47 { 0x0A, 3121951UL}, 48 { 0x0B, 1560975UL}, 49 { 0x0C, 781440UL}, 50 { 0x0D, 390720UL}, 51 { 0x0E, 195300UL}, 52 { 0x0F, 97650UL}, 53 { 0x10, 48854UL}, 54 { 0x11, 24427UL}, 55 { 0x12, 12213UL}, 56 { 0x13, 6101UL}, 57 { 0x14, 3051UL}, 58 { 0x15, 1523UL}, 59 { 0x16, 761UL}, 60 { 0x00, 0UL}, /* scrubbing off */ 61 }; 62 63 int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset, 64 u32 *val, const char *func) 65 { 66 int err = 0; 67 68 err = pci_read_config_dword(pdev, offset, val); 69 if (err) 70 amd64_warn("%s: error reading F%dx%03x.\n", 71 func, PCI_FUNC(pdev->devfn), offset); 72 73 return err; 74 } 75 76 int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset, 77 u32 val, const char *func) 78 { 79 int err = 0; 80 81 err = pci_write_config_dword(pdev, offset, val); 82 if (err) 83 amd64_warn("%s: error writing to F%dx%03x.\n", 84 func, PCI_FUNC(pdev->devfn), offset); 85 86 return err; 87 } 88 89 /* 90 * Select DCT to which PCI cfg accesses are routed 91 */ 92 static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct) 93 { 94 u32 reg = 0; 95 96 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, ®); 97 reg &= (pvt->model == 0x30) ? ~3 : ~1; 98 reg |= dct; 99 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg); 100 } 101 102 /* 103 * 104 * Depending on the family, F2 DCT reads need special handling: 105 * 106 * K8: has a single DCT only and no address offsets >= 0x100 107 * 108 * F10h: each DCT has its own set of regs 109 * DCT0 -> F2x040.. 110 * DCT1 -> F2x140.. 111 * 112 * F16h: has only 1 DCT 113 * 114 * F15h: we select which DCT we access using F1x10C[DctCfgSel] 115 */ 116 static inline int amd64_read_dct_pci_cfg(struct amd64_pvt *pvt, u8 dct, 117 int offset, u32 *val) 118 { 119 switch (pvt->fam) { 120 case 0xf: 121 if (dct || offset >= 0x100) 122 return -EINVAL; 123 break; 124 125 case 0x10: 126 if (dct) { 127 /* 128 * Note: If ganging is enabled, barring the regs 129 * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx 130 * return 0. (cf. Section 2.8.1 F10h BKDG) 131 */ 132 if (dct_ganging_enabled(pvt)) 133 return 0; 134 135 offset += 0x100; 136 } 137 break; 138 139 case 0x15: 140 /* 141 * F15h: F2x1xx addresses do not map explicitly to DCT1. 142 * We should select which DCT we access using F1x10C[DctCfgSel] 143 */ 144 dct = (dct && pvt->model == 0x30) ? 3 : dct; 145 f15h_select_dct(pvt, dct); 146 break; 147 148 case 0x16: 149 if (dct) 150 return -EINVAL; 151 break; 152 153 default: 154 break; 155 } 156 return amd64_read_pci_cfg(pvt->F2, offset, val); 157 } 158 159 /* 160 * Memory scrubber control interface. For K8, memory scrubbing is handled by 161 * hardware and can involve L2 cache, dcache as well as the main memory. With 162 * F10, this is extended to L3 cache scrubbing on CPU models sporting that 163 * functionality. 164 * 165 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks 166 * (dram) over to cache lines. This is nasty, so we will use bandwidth in 167 * bytes/sec for the setting. 168 * 169 * Currently, we only do dram scrubbing. If the scrubbing is done in software on 170 * other archs, we might not have access to the caches directly. 171 */ 172 173 /* 174 * scan the scrub rate mapping table for a close or matching bandwidth value to 175 * issue. If requested is too big, then use last maximum value found. 176 */ 177 static int __set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate) 178 { 179 u32 scrubval; 180 int i; 181 182 /* 183 * map the configured rate (new_bw) to a value specific to the AMD64 184 * memory controller and apply to register. Search for the first 185 * bandwidth entry that is greater or equal than the setting requested 186 * and program that. If at last entry, turn off DRAM scrubbing. 187 * 188 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely 189 * by falling back to the last element in scrubrates[]. 190 */ 191 for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) { 192 /* 193 * skip scrub rates which aren't recommended 194 * (see F10 BKDG, F3x58) 195 */ 196 if (scrubrates[i].scrubval < min_rate) 197 continue; 198 199 if (scrubrates[i].bandwidth <= new_bw) 200 break; 201 } 202 203 scrubval = scrubrates[i].scrubval; 204 205 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F); 206 207 if (scrubval) 208 return scrubrates[i].bandwidth; 209 210 return 0; 211 } 212 213 static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw) 214 { 215 struct amd64_pvt *pvt = mci->pvt_info; 216 u32 min_scrubrate = 0x5; 217 218 if (pvt->fam == 0xf) 219 min_scrubrate = 0x0; 220 221 /* Erratum #505 */ 222 if (pvt->fam == 0x15 && pvt->model < 0x10) 223 f15h_select_dct(pvt, 0); 224 225 return __set_scrub_rate(pvt->F3, bw, min_scrubrate); 226 } 227 228 static int get_scrub_rate(struct mem_ctl_info *mci) 229 { 230 struct amd64_pvt *pvt = mci->pvt_info; 231 u32 scrubval = 0; 232 int i, retval = -EINVAL; 233 234 /* Erratum #505 */ 235 if (pvt->fam == 0x15 && pvt->model < 0x10) 236 f15h_select_dct(pvt, 0); 237 238 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval); 239 240 scrubval = scrubval & 0x001F; 241 242 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) { 243 if (scrubrates[i].scrubval == scrubval) { 244 retval = scrubrates[i].bandwidth; 245 break; 246 } 247 } 248 return retval; 249 } 250 251 /* 252 * returns true if the SysAddr given by sys_addr matches the 253 * DRAM base/limit associated with node_id 254 */ 255 static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid) 256 { 257 u64 addr; 258 259 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be 260 * all ones if the most significant implemented address bit is 1. 261 * Here we discard bits 63-40. See section 3.4.2 of AMD publication 262 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1 263 * Application Programming. 264 */ 265 addr = sys_addr & 0x000000ffffffffffull; 266 267 return ((addr >= get_dram_base(pvt, nid)) && 268 (addr <= get_dram_limit(pvt, nid))); 269 } 270 271 /* 272 * Attempt to map a SysAddr to a node. On success, return a pointer to the 273 * mem_ctl_info structure for the node that the SysAddr maps to. 274 * 275 * On failure, return NULL. 276 */ 277 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci, 278 u64 sys_addr) 279 { 280 struct amd64_pvt *pvt; 281 u8 node_id; 282 u32 intlv_en, bits; 283 284 /* 285 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section 286 * 3.4.4.2) registers to map the SysAddr to a node ID. 287 */ 288 pvt = mci->pvt_info; 289 290 /* 291 * The value of this field should be the same for all DRAM Base 292 * registers. Therefore we arbitrarily choose to read it from the 293 * register for node 0. 294 */ 295 intlv_en = dram_intlv_en(pvt, 0); 296 297 if (intlv_en == 0) { 298 for (node_id = 0; node_id < DRAM_RANGES; node_id++) { 299 if (base_limit_match(pvt, sys_addr, node_id)) 300 goto found; 301 } 302 goto err_no_match; 303 } 304 305 if (unlikely((intlv_en != 0x01) && 306 (intlv_en != 0x03) && 307 (intlv_en != 0x07))) { 308 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en); 309 return NULL; 310 } 311 312 bits = (((u32) sys_addr) >> 12) & intlv_en; 313 314 for (node_id = 0; ; ) { 315 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits) 316 break; /* intlv_sel field matches */ 317 318 if (++node_id >= DRAM_RANGES) 319 goto err_no_match; 320 } 321 322 /* sanity test for sys_addr */ 323 if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) { 324 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address" 325 "range for node %d with node interleaving enabled.\n", 326 __func__, sys_addr, node_id); 327 return NULL; 328 } 329 330 found: 331 return edac_mc_find((int)node_id); 332 333 err_no_match: 334 edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n", 335 (unsigned long)sys_addr); 336 337 return NULL; 338 } 339 340 /* 341 * compute the CS base address of the @csrow on the DRAM controller @dct. 342 * For details see F2x[5C:40] in the processor's BKDG 343 */ 344 static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct, 345 u64 *base, u64 *mask) 346 { 347 u64 csbase, csmask, base_bits, mask_bits; 348 u8 addr_shift; 349 350 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) { 351 csbase = pvt->csels[dct].csbases[csrow]; 352 csmask = pvt->csels[dct].csmasks[csrow]; 353 base_bits = GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9); 354 mask_bits = GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9); 355 addr_shift = 4; 356 357 /* 358 * F16h and F15h, models 30h and later need two addr_shift values: 359 * 8 for high and 6 for low (cf. F16h BKDG). 360 */ 361 } else if (pvt->fam == 0x16 || 362 (pvt->fam == 0x15 && pvt->model >= 0x30)) { 363 csbase = pvt->csels[dct].csbases[csrow]; 364 csmask = pvt->csels[dct].csmasks[csrow >> 1]; 365 366 *base = (csbase & GENMASK_ULL(15, 5)) << 6; 367 *base |= (csbase & GENMASK_ULL(30, 19)) << 8; 368 369 *mask = ~0ULL; 370 /* poke holes for the csmask */ 371 *mask &= ~((GENMASK_ULL(15, 5) << 6) | 372 (GENMASK_ULL(30, 19) << 8)); 373 374 *mask |= (csmask & GENMASK_ULL(15, 5)) << 6; 375 *mask |= (csmask & GENMASK_ULL(30, 19)) << 8; 376 377 return; 378 } else { 379 csbase = pvt->csels[dct].csbases[csrow]; 380 csmask = pvt->csels[dct].csmasks[csrow >> 1]; 381 addr_shift = 8; 382 383 if (pvt->fam == 0x15) 384 base_bits = mask_bits = 385 GENMASK_ULL(30,19) | GENMASK_ULL(13,5); 386 else 387 base_bits = mask_bits = 388 GENMASK_ULL(28,19) | GENMASK_ULL(13,5); 389 } 390 391 *base = (csbase & base_bits) << addr_shift; 392 393 *mask = ~0ULL; 394 /* poke holes for the csmask */ 395 *mask &= ~(mask_bits << addr_shift); 396 /* OR them in */ 397 *mask |= (csmask & mask_bits) << addr_shift; 398 } 399 400 #define for_each_chip_select(i, dct, pvt) \ 401 for (i = 0; i < pvt->csels[dct].b_cnt; i++) 402 403 #define chip_select_base(i, dct, pvt) \ 404 pvt->csels[dct].csbases[i] 405 406 #define for_each_chip_select_mask(i, dct, pvt) \ 407 for (i = 0; i < pvt->csels[dct].m_cnt; i++) 408 409 /* 410 * @input_addr is an InputAddr associated with the node given by mci. Return the 411 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr). 412 */ 413 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr) 414 { 415 struct amd64_pvt *pvt; 416 int csrow; 417 u64 base, mask; 418 419 pvt = mci->pvt_info; 420 421 for_each_chip_select(csrow, 0, pvt) { 422 if (!csrow_enabled(csrow, 0, pvt)) 423 continue; 424 425 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask); 426 427 mask = ~mask; 428 429 if ((input_addr & mask) == (base & mask)) { 430 edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n", 431 (unsigned long)input_addr, csrow, 432 pvt->mc_node_id); 433 434 return csrow; 435 } 436 } 437 edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n", 438 (unsigned long)input_addr, pvt->mc_node_id); 439 440 return -1; 441 } 442 443 /* 444 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094) 445 * for the node represented by mci. Info is passed back in *hole_base, 446 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if 447 * info is invalid. Info may be invalid for either of the following reasons: 448 * 449 * - The revision of the node is not E or greater. In this case, the DRAM Hole 450 * Address Register does not exist. 451 * 452 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register, 453 * indicating that its contents are not valid. 454 * 455 * The values passed back in *hole_base, *hole_offset, and *hole_size are 456 * complete 32-bit values despite the fact that the bitfields in the DHAR 457 * only represent bits 31-24 of the base and offset values. 458 */ 459 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base, 460 u64 *hole_offset, u64 *hole_size) 461 { 462 struct amd64_pvt *pvt = mci->pvt_info; 463 464 /* only revE and later have the DRAM Hole Address Register */ 465 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) { 466 edac_dbg(1, " revision %d for node %d does not support DHAR\n", 467 pvt->ext_model, pvt->mc_node_id); 468 return 1; 469 } 470 471 /* valid for Fam10h and above */ 472 if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) { 473 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n"); 474 return 1; 475 } 476 477 if (!dhar_valid(pvt)) { 478 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n", 479 pvt->mc_node_id); 480 return 1; 481 } 482 483 /* This node has Memory Hoisting */ 484 485 /* +------------------+--------------------+--------------------+----- 486 * | memory | DRAM hole | relocated | 487 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from | 488 * | | | DRAM hole | 489 * | | | [0x100000000, | 490 * | | | (0x100000000+ | 491 * | | | (0xffffffff-x))] | 492 * +------------------+--------------------+--------------------+----- 493 * 494 * Above is a diagram of physical memory showing the DRAM hole and the 495 * relocated addresses from the DRAM hole. As shown, the DRAM hole 496 * starts at address x (the base address) and extends through address 497 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the 498 * addresses in the hole so that they start at 0x100000000. 499 */ 500 501 *hole_base = dhar_base(pvt); 502 *hole_size = (1ULL << 32) - *hole_base; 503 504 *hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt) 505 : k8_dhar_offset(pvt); 506 507 edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n", 508 pvt->mc_node_id, (unsigned long)*hole_base, 509 (unsigned long)*hole_offset, (unsigned long)*hole_size); 510 511 return 0; 512 } 513 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info); 514 515 /* 516 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is 517 * assumed that sys_addr maps to the node given by mci. 518 * 519 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section 520 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a 521 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled, 522 * then it is also involved in translating a SysAddr to a DramAddr. Sections 523 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting. 524 * These parts of the documentation are unclear. I interpret them as follows: 525 * 526 * When node n receives a SysAddr, it processes the SysAddr as follows: 527 * 528 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM 529 * Limit registers for node n. If the SysAddr is not within the range 530 * specified by the base and limit values, then node n ignores the Sysaddr 531 * (since it does not map to node n). Otherwise continue to step 2 below. 532 * 533 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is 534 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within 535 * the range of relocated addresses (starting at 0x100000000) from the DRAM 536 * hole. If not, skip to step 3 below. Else get the value of the 537 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the 538 * offset defined by this value from the SysAddr. 539 * 540 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM 541 * Base register for node n. To obtain the DramAddr, subtract the base 542 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70). 543 */ 544 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr) 545 { 546 struct amd64_pvt *pvt = mci->pvt_info; 547 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr; 548 int ret; 549 550 dram_base = get_dram_base(pvt, pvt->mc_node_id); 551 552 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset, 553 &hole_size); 554 if (!ret) { 555 if ((sys_addr >= (1ULL << 32)) && 556 (sys_addr < ((1ULL << 32) + hole_size))) { 557 /* use DHAR to translate SysAddr to DramAddr */ 558 dram_addr = sys_addr - hole_offset; 559 560 edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n", 561 (unsigned long)sys_addr, 562 (unsigned long)dram_addr); 563 564 return dram_addr; 565 } 566 } 567 568 /* 569 * Translate the SysAddr to a DramAddr as shown near the start of 570 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8 571 * only deals with 40-bit values. Therefore we discard bits 63-40 of 572 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we 573 * discard are all 1s. Otherwise the bits we discard are all 0s. See 574 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture 575 * Programmer's Manual Volume 1 Application Programming. 576 */ 577 dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base; 578 579 edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n", 580 (unsigned long)sys_addr, (unsigned long)dram_addr); 581 return dram_addr; 582 } 583 584 /* 585 * @intlv_en is the value of the IntlvEn field from a DRAM Base register 586 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used 587 * for node interleaving. 588 */ 589 static int num_node_interleave_bits(unsigned intlv_en) 590 { 591 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 }; 592 int n; 593 594 BUG_ON(intlv_en > 7); 595 n = intlv_shift_table[intlv_en]; 596 return n; 597 } 598 599 /* Translate the DramAddr given by @dram_addr to an InputAddr. */ 600 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr) 601 { 602 struct amd64_pvt *pvt; 603 int intlv_shift; 604 u64 input_addr; 605 606 pvt = mci->pvt_info; 607 608 /* 609 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E) 610 * concerning translating a DramAddr to an InputAddr. 611 */ 612 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0)); 613 input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) + 614 (dram_addr & 0xfff); 615 616 edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n", 617 intlv_shift, (unsigned long)dram_addr, 618 (unsigned long)input_addr); 619 620 return input_addr; 621 } 622 623 /* 624 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is 625 * assumed that @sys_addr maps to the node given by mci. 626 */ 627 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr) 628 { 629 u64 input_addr; 630 631 input_addr = 632 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr)); 633 634 edac_dbg(2, "SysAdddr 0x%lx translates to InputAddr 0x%lx\n", 635 (unsigned long)sys_addr, (unsigned long)input_addr); 636 637 return input_addr; 638 } 639 640 /* Map the Error address to a PAGE and PAGE OFFSET. */ 641 static inline void error_address_to_page_and_offset(u64 error_address, 642 struct err_info *err) 643 { 644 err->page = (u32) (error_address >> PAGE_SHIFT); 645 err->offset = ((u32) error_address) & ~PAGE_MASK; 646 } 647 648 /* 649 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address 650 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers 651 * of a node that detected an ECC memory error. mci represents the node that 652 * the error address maps to (possibly different from the node that detected 653 * the error). Return the number of the csrow that sys_addr maps to, or -1 on 654 * error. 655 */ 656 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr) 657 { 658 int csrow; 659 660 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr)); 661 662 if (csrow == -1) 663 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for " 664 "address 0x%lx\n", (unsigned long)sys_addr); 665 return csrow; 666 } 667 668 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16); 669 670 /* 671 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs 672 * are ECC capable. 673 */ 674 static unsigned long determine_edac_cap(struct amd64_pvt *pvt) 675 { 676 u8 bit; 677 unsigned long edac_cap = EDAC_FLAG_NONE; 678 679 bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F) 680 ? 19 681 : 17; 682 683 if (pvt->dclr0 & BIT(bit)) 684 edac_cap = EDAC_FLAG_SECDED; 685 686 return edac_cap; 687 } 688 689 static void debug_display_dimm_sizes(struct amd64_pvt *, u8); 690 691 static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan) 692 { 693 edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr); 694 695 if (pvt->dram_type == MEM_LRDDR3) { 696 u32 dcsm = pvt->csels[chan].csmasks[0]; 697 /* 698 * It's assumed all LRDIMMs in a DCT are going to be of 699 * same 'type' until proven otherwise. So, use a cs 700 * value of '0' here to get dcsm value. 701 */ 702 edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm & 0x3)); 703 } 704 705 edac_dbg(1, "All DIMMs support ECC:%s\n", 706 (dclr & BIT(19)) ? "yes" : "no"); 707 708 709 edac_dbg(1, " PAR/ERR parity: %s\n", 710 (dclr & BIT(8)) ? "enabled" : "disabled"); 711 712 if (pvt->fam == 0x10) 713 edac_dbg(1, " DCT 128bit mode width: %s\n", 714 (dclr & BIT(11)) ? "128b" : "64b"); 715 716 edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n", 717 (dclr & BIT(12)) ? "yes" : "no", 718 (dclr & BIT(13)) ? "yes" : "no", 719 (dclr & BIT(14)) ? "yes" : "no", 720 (dclr & BIT(15)) ? "yes" : "no"); 721 } 722 723 /* Display and decode various NB registers for debug purposes. */ 724 static void dump_misc_regs(struct amd64_pvt *pvt) 725 { 726 edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap); 727 728 edac_dbg(1, " NB two channel DRAM capable: %s\n", 729 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no"); 730 731 edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n", 732 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no", 733 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no"); 734 735 debug_dump_dramcfg_low(pvt, pvt->dclr0, 0); 736 737 edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare); 738 739 edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n", 740 pvt->dhar, dhar_base(pvt), 741 (pvt->fam == 0xf) ? k8_dhar_offset(pvt) 742 : f10_dhar_offset(pvt)); 743 744 edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no"); 745 746 debug_display_dimm_sizes(pvt, 0); 747 748 /* everything below this point is Fam10h and above */ 749 if (pvt->fam == 0xf) 750 return; 751 752 debug_display_dimm_sizes(pvt, 1); 753 754 amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4")); 755 756 /* Only if NOT ganged does dclr1 have valid info */ 757 if (!dct_ganging_enabled(pvt)) 758 debug_dump_dramcfg_low(pvt, pvt->dclr1, 1); 759 } 760 761 /* 762 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60] 763 */ 764 static void prep_chip_selects(struct amd64_pvt *pvt) 765 { 766 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) { 767 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8; 768 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8; 769 } else if (pvt->fam == 0x15 && pvt->model == 0x30) { 770 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4; 771 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2; 772 } else { 773 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8; 774 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4; 775 } 776 } 777 778 /* 779 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers 780 */ 781 static void read_dct_base_mask(struct amd64_pvt *pvt) 782 { 783 int cs; 784 785 prep_chip_selects(pvt); 786 787 for_each_chip_select(cs, 0, pvt) { 788 int reg0 = DCSB0 + (cs * 4); 789 int reg1 = DCSB1 + (cs * 4); 790 u32 *base0 = &pvt->csels[0].csbases[cs]; 791 u32 *base1 = &pvt->csels[1].csbases[cs]; 792 793 if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, base0)) 794 edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n", 795 cs, *base0, reg0); 796 797 if (pvt->fam == 0xf) 798 continue; 799 800 if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, base1)) 801 edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n", 802 cs, *base1, (pvt->fam == 0x10) ? reg1 803 : reg0); 804 } 805 806 for_each_chip_select_mask(cs, 0, pvt) { 807 int reg0 = DCSM0 + (cs * 4); 808 int reg1 = DCSM1 + (cs * 4); 809 u32 *mask0 = &pvt->csels[0].csmasks[cs]; 810 u32 *mask1 = &pvt->csels[1].csmasks[cs]; 811 812 if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, mask0)) 813 edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n", 814 cs, *mask0, reg0); 815 816 if (pvt->fam == 0xf) 817 continue; 818 819 if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, mask1)) 820 edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n", 821 cs, *mask1, (pvt->fam == 0x10) ? reg1 822 : reg0); 823 } 824 } 825 826 static void determine_memory_type(struct amd64_pvt *pvt) 827 { 828 u32 dram_ctrl, dcsm; 829 830 switch (pvt->fam) { 831 case 0xf: 832 if (pvt->ext_model >= K8_REV_F) 833 goto ddr3; 834 835 pvt->dram_type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR; 836 return; 837 838 case 0x10: 839 if (pvt->dchr0 & DDR3_MODE) 840 goto ddr3; 841 842 pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2; 843 return; 844 845 case 0x15: 846 if (pvt->model < 0x60) 847 goto ddr3; 848 849 /* 850 * Model 0x60h needs special handling: 851 * 852 * We use a Chip Select value of '0' to obtain dcsm. 853 * Theoretically, it is possible to populate LRDIMMs of different 854 * 'Rank' value on a DCT. But this is not the common case. So, 855 * it's reasonable to assume all DIMMs are going to be of same 856 * 'type' until proven otherwise. 857 */ 858 amd64_read_dct_pci_cfg(pvt, 0, DRAM_CONTROL, &dram_ctrl); 859 dcsm = pvt->csels[0].csmasks[0]; 860 861 if (((dram_ctrl >> 8) & 0x7) == 0x2) 862 pvt->dram_type = MEM_DDR4; 863 else if (pvt->dclr0 & BIT(16)) 864 pvt->dram_type = MEM_DDR3; 865 else if (dcsm & 0x3) 866 pvt->dram_type = MEM_LRDDR3; 867 else 868 pvt->dram_type = MEM_RDDR3; 869 870 return; 871 872 case 0x16: 873 goto ddr3; 874 875 default: 876 WARN(1, KERN_ERR "%s: Family??? 0x%x\n", __func__, pvt->fam); 877 pvt->dram_type = MEM_EMPTY; 878 } 879 return; 880 881 ddr3: 882 pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3; 883 } 884 885 /* Get the number of DCT channels the memory controller is using. */ 886 static int k8_early_channel_count(struct amd64_pvt *pvt) 887 { 888 int flag; 889 890 if (pvt->ext_model >= K8_REV_F) 891 /* RevF (NPT) and later */ 892 flag = pvt->dclr0 & WIDTH_128; 893 else 894 /* RevE and earlier */ 895 flag = pvt->dclr0 & REVE_WIDTH_128; 896 897 /* not used */ 898 pvt->dclr1 = 0; 899 900 return (flag) ? 2 : 1; 901 } 902 903 /* On F10h and later ErrAddr is MC4_ADDR[47:1] */ 904 static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m) 905 { 906 u64 addr; 907 u8 start_bit = 1; 908 u8 end_bit = 47; 909 910 if (pvt->fam == 0xf) { 911 start_bit = 3; 912 end_bit = 39; 913 } 914 915 addr = m->addr & GENMASK_ULL(end_bit, start_bit); 916 917 /* 918 * Erratum 637 workaround 919 */ 920 if (pvt->fam == 0x15) { 921 struct amd64_pvt *pvt; 922 u64 cc6_base, tmp_addr; 923 u32 tmp; 924 u16 mce_nid; 925 u8 intlv_en; 926 927 if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7) 928 return addr; 929 930 mce_nid = amd_get_nb_id(m->extcpu); 931 pvt = mcis[mce_nid]->pvt_info; 932 933 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp); 934 intlv_en = tmp >> 21 & 0x7; 935 936 /* add [47:27] + 3 trailing bits */ 937 cc6_base = (tmp & GENMASK_ULL(20, 0)) << 3; 938 939 /* reverse and add DramIntlvEn */ 940 cc6_base |= intlv_en ^ 0x7; 941 942 /* pin at [47:24] */ 943 cc6_base <<= 24; 944 945 if (!intlv_en) 946 return cc6_base | (addr & GENMASK_ULL(23, 0)); 947 948 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp); 949 950 /* faster log2 */ 951 tmp_addr = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1); 952 953 /* OR DramIntlvSel into bits [14:12] */ 954 tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9; 955 956 /* add remaining [11:0] bits from original MC4_ADDR */ 957 tmp_addr |= addr & GENMASK_ULL(11, 0); 958 959 return cc6_base | tmp_addr; 960 } 961 962 return addr; 963 } 964 965 static struct pci_dev *pci_get_related_function(unsigned int vendor, 966 unsigned int device, 967 struct pci_dev *related) 968 { 969 struct pci_dev *dev = NULL; 970 971 while ((dev = pci_get_device(vendor, device, dev))) { 972 if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) && 973 (dev->bus->number == related->bus->number) && 974 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn))) 975 break; 976 } 977 978 return dev; 979 } 980 981 static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range) 982 { 983 struct amd_northbridge *nb; 984 struct pci_dev *f1 = NULL; 985 unsigned int pci_func; 986 int off = range << 3; 987 u32 llim; 988 989 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo); 990 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo); 991 992 if (pvt->fam == 0xf) 993 return; 994 995 if (!dram_rw(pvt, range)) 996 return; 997 998 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi); 999 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi); 1000 1001 /* F15h: factor in CC6 save area by reading dst node's limit reg */ 1002 if (pvt->fam != 0x15) 1003 return; 1004 1005 nb = node_to_amd_nb(dram_dst_node(pvt, range)); 1006 if (WARN_ON(!nb)) 1007 return; 1008 1009 if (pvt->model == 0x60) 1010 pci_func = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1; 1011 else if (pvt->model == 0x30) 1012 pci_func = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1; 1013 else 1014 pci_func = PCI_DEVICE_ID_AMD_15H_NB_F1; 1015 1016 f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc); 1017 if (WARN_ON(!f1)) 1018 return; 1019 1020 amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim); 1021 1022 pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0); 1023 1024 /* {[39:27],111b} */ 1025 pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16; 1026 1027 pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0); 1028 1029 /* [47:40] */ 1030 pvt->ranges[range].lim.hi |= llim >> 13; 1031 1032 pci_dev_put(f1); 1033 } 1034 1035 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr, 1036 struct err_info *err) 1037 { 1038 struct amd64_pvt *pvt = mci->pvt_info; 1039 1040 error_address_to_page_and_offset(sys_addr, err); 1041 1042 /* 1043 * Find out which node the error address belongs to. This may be 1044 * different from the node that detected the error. 1045 */ 1046 err->src_mci = find_mc_by_sys_addr(mci, sys_addr); 1047 if (!err->src_mci) { 1048 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n", 1049 (unsigned long)sys_addr); 1050 err->err_code = ERR_NODE; 1051 return; 1052 } 1053 1054 /* Now map the sys_addr to a CSROW */ 1055 err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr); 1056 if (err->csrow < 0) { 1057 err->err_code = ERR_CSROW; 1058 return; 1059 } 1060 1061 /* CHIPKILL enabled */ 1062 if (pvt->nbcfg & NBCFG_CHIPKILL) { 1063 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome); 1064 if (err->channel < 0) { 1065 /* 1066 * Syndrome didn't map, so we don't know which of the 1067 * 2 DIMMs is in error. So we need to ID 'both' of them 1068 * as suspect. 1069 */ 1070 amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - " 1071 "possible error reporting race\n", 1072 err->syndrome); 1073 err->err_code = ERR_CHANNEL; 1074 return; 1075 } 1076 } else { 1077 /* 1078 * non-chipkill ecc mode 1079 * 1080 * The k8 documentation is unclear about how to determine the 1081 * channel number when using non-chipkill memory. This method 1082 * was obtained from email communication with someone at AMD. 1083 * (Wish the email was placed in this comment - norsk) 1084 */ 1085 err->channel = ((sys_addr & BIT(3)) != 0); 1086 } 1087 } 1088 1089 static int ddr2_cs_size(unsigned i, bool dct_width) 1090 { 1091 unsigned shift = 0; 1092 1093 if (i <= 2) 1094 shift = i; 1095 else if (!(i & 0x1)) 1096 shift = i >> 1; 1097 else 1098 shift = (i + 1) >> 1; 1099 1100 return 128 << (shift + !!dct_width); 1101 } 1102 1103 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, 1104 unsigned cs_mode, int cs_mask_nr) 1105 { 1106 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0; 1107 1108 if (pvt->ext_model >= K8_REV_F) { 1109 WARN_ON(cs_mode > 11); 1110 return ddr2_cs_size(cs_mode, dclr & WIDTH_128); 1111 } 1112 else if (pvt->ext_model >= K8_REV_D) { 1113 unsigned diff; 1114 WARN_ON(cs_mode > 10); 1115 1116 /* 1117 * the below calculation, besides trying to win an obfuscated C 1118 * contest, maps cs_mode values to DIMM chip select sizes. The 1119 * mappings are: 1120 * 1121 * cs_mode CS size (mb) 1122 * ======= ============ 1123 * 0 32 1124 * 1 64 1125 * 2 128 1126 * 3 128 1127 * 4 256 1128 * 5 512 1129 * 6 256 1130 * 7 512 1131 * 8 1024 1132 * 9 1024 1133 * 10 2048 1134 * 1135 * Basically, it calculates a value with which to shift the 1136 * smallest CS size of 32MB. 1137 * 1138 * ddr[23]_cs_size have a similar purpose. 1139 */ 1140 diff = cs_mode/3 + (unsigned)(cs_mode > 5); 1141 1142 return 32 << (cs_mode - diff); 1143 } 1144 else { 1145 WARN_ON(cs_mode > 6); 1146 return 32 << cs_mode; 1147 } 1148 } 1149 1150 /* 1151 * Get the number of DCT channels in use. 1152 * 1153 * Return: 1154 * number of Memory Channels in operation 1155 * Pass back: 1156 * contents of the DCL0_LOW register 1157 */ 1158 static int f1x_early_channel_count(struct amd64_pvt *pvt) 1159 { 1160 int i, j, channels = 0; 1161 1162 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */ 1163 if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128)) 1164 return 2; 1165 1166 /* 1167 * Need to check if in unganged mode: In such, there are 2 channels, 1168 * but they are not in 128 bit mode and thus the above 'dclr0' status 1169 * bit will be OFF. 1170 * 1171 * Need to check DCT0[0] and DCT1[0] to see if only one of them has 1172 * their CSEnable bit on. If so, then SINGLE DIMM case. 1173 */ 1174 edac_dbg(0, "Data width is not 128 bits - need more decoding\n"); 1175 1176 /* 1177 * Check DRAM Bank Address Mapping values for each DIMM to see if there 1178 * is more than just one DIMM present in unganged mode. Need to check 1179 * both controllers since DIMMs can be placed in either one. 1180 */ 1181 for (i = 0; i < 2; i++) { 1182 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0); 1183 1184 for (j = 0; j < 4; j++) { 1185 if (DBAM_DIMM(j, dbam) > 0) { 1186 channels++; 1187 break; 1188 } 1189 } 1190 } 1191 1192 if (channels > 2) 1193 channels = 2; 1194 1195 amd64_info("MCT channel count: %d\n", channels); 1196 1197 return channels; 1198 } 1199 1200 static int ddr3_cs_size(unsigned i, bool dct_width) 1201 { 1202 unsigned shift = 0; 1203 int cs_size = 0; 1204 1205 if (i == 0 || i == 3 || i == 4) 1206 cs_size = -1; 1207 else if (i <= 2) 1208 shift = i; 1209 else if (i == 12) 1210 shift = 7; 1211 else if (!(i & 0x1)) 1212 shift = i >> 1; 1213 else 1214 shift = (i + 1) >> 1; 1215 1216 if (cs_size != -1) 1217 cs_size = (128 * (1 << !!dct_width)) << shift; 1218 1219 return cs_size; 1220 } 1221 1222 static int ddr3_lrdimm_cs_size(unsigned i, unsigned rank_multiply) 1223 { 1224 unsigned shift = 0; 1225 int cs_size = 0; 1226 1227 if (i < 4 || i == 6) 1228 cs_size = -1; 1229 else if (i == 12) 1230 shift = 7; 1231 else if (!(i & 0x1)) 1232 shift = i >> 1; 1233 else 1234 shift = (i + 1) >> 1; 1235 1236 if (cs_size != -1) 1237 cs_size = rank_multiply * (128 << shift); 1238 1239 return cs_size; 1240 } 1241 1242 static int ddr4_cs_size(unsigned i) 1243 { 1244 int cs_size = 0; 1245 1246 if (i == 0) 1247 cs_size = -1; 1248 else if (i == 1) 1249 cs_size = 1024; 1250 else 1251 /* Min cs_size = 1G */ 1252 cs_size = 1024 * (1 << (i >> 1)); 1253 1254 return cs_size; 1255 } 1256 1257 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, 1258 unsigned cs_mode, int cs_mask_nr) 1259 { 1260 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0; 1261 1262 WARN_ON(cs_mode > 11); 1263 1264 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE) 1265 return ddr3_cs_size(cs_mode, dclr & WIDTH_128); 1266 else 1267 return ddr2_cs_size(cs_mode, dclr & WIDTH_128); 1268 } 1269 1270 /* 1271 * F15h supports only 64bit DCT interfaces 1272 */ 1273 static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, 1274 unsigned cs_mode, int cs_mask_nr) 1275 { 1276 WARN_ON(cs_mode > 12); 1277 1278 return ddr3_cs_size(cs_mode, false); 1279 } 1280 1281 /* F15h M60h supports DDR4 mapping as well.. */ 1282 static int f15_m60h_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, 1283 unsigned cs_mode, int cs_mask_nr) 1284 { 1285 int cs_size; 1286 u32 dcsm = pvt->csels[dct].csmasks[cs_mask_nr]; 1287 1288 WARN_ON(cs_mode > 12); 1289 1290 if (pvt->dram_type == MEM_DDR4) { 1291 if (cs_mode > 9) 1292 return -1; 1293 1294 cs_size = ddr4_cs_size(cs_mode); 1295 } else if (pvt->dram_type == MEM_LRDDR3) { 1296 unsigned rank_multiply = dcsm & 0xf; 1297 1298 if (rank_multiply == 3) 1299 rank_multiply = 4; 1300 cs_size = ddr3_lrdimm_cs_size(cs_mode, rank_multiply); 1301 } else { 1302 /* Minimum cs size is 512mb for F15hM60h*/ 1303 if (cs_mode == 0x1) 1304 return -1; 1305 1306 cs_size = ddr3_cs_size(cs_mode, false); 1307 } 1308 1309 return cs_size; 1310 } 1311 1312 /* 1313 * F16h and F15h model 30h have only limited cs_modes. 1314 */ 1315 static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, 1316 unsigned cs_mode, int cs_mask_nr) 1317 { 1318 WARN_ON(cs_mode > 12); 1319 1320 if (cs_mode == 6 || cs_mode == 8 || 1321 cs_mode == 9 || cs_mode == 12) 1322 return -1; 1323 else 1324 return ddr3_cs_size(cs_mode, false); 1325 } 1326 1327 static void read_dram_ctl_register(struct amd64_pvt *pvt) 1328 { 1329 1330 if (pvt->fam == 0xf) 1331 return; 1332 1333 if (!amd64_read_pci_cfg(pvt->F2, DCT_SEL_LO, &pvt->dct_sel_lo)) { 1334 edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n", 1335 pvt->dct_sel_lo, dct_sel_baseaddr(pvt)); 1336 1337 edac_dbg(0, " DCTs operate in %s mode\n", 1338 (dct_ganging_enabled(pvt) ? "ganged" : "unganged")); 1339 1340 if (!dct_ganging_enabled(pvt)) 1341 edac_dbg(0, " Address range split per DCT: %s\n", 1342 (dct_high_range_enabled(pvt) ? "yes" : "no")); 1343 1344 edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n", 1345 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"), 1346 (dct_memory_cleared(pvt) ? "yes" : "no")); 1347 1348 edac_dbg(0, " channel interleave: %s, " 1349 "interleave bits selector: 0x%x\n", 1350 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"), 1351 dct_sel_interleave_addr(pvt)); 1352 } 1353 1354 amd64_read_pci_cfg(pvt->F2, DCT_SEL_HI, &pvt->dct_sel_hi); 1355 } 1356 1357 /* 1358 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG, 1359 * 2.10.12 Memory Interleaving Modes). 1360 */ 1361 static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr, 1362 u8 intlv_en, int num_dcts_intlv, 1363 u32 dct_sel) 1364 { 1365 u8 channel = 0; 1366 u8 select; 1367 1368 if (!(intlv_en)) 1369 return (u8)(dct_sel); 1370 1371 if (num_dcts_intlv == 2) { 1372 select = (sys_addr >> 8) & 0x3; 1373 channel = select ? 0x3 : 0; 1374 } else if (num_dcts_intlv == 4) { 1375 u8 intlv_addr = dct_sel_interleave_addr(pvt); 1376 switch (intlv_addr) { 1377 case 0x4: 1378 channel = (sys_addr >> 8) & 0x3; 1379 break; 1380 case 0x5: 1381 channel = (sys_addr >> 9) & 0x3; 1382 break; 1383 } 1384 } 1385 return channel; 1386 } 1387 1388 /* 1389 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory 1390 * Interleaving Modes. 1391 */ 1392 static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr, 1393 bool hi_range_sel, u8 intlv_en) 1394 { 1395 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1; 1396 1397 if (dct_ganging_enabled(pvt)) 1398 return 0; 1399 1400 if (hi_range_sel) 1401 return dct_sel_high; 1402 1403 /* 1404 * see F2x110[DctSelIntLvAddr] - channel interleave mode 1405 */ 1406 if (dct_interleave_enabled(pvt)) { 1407 u8 intlv_addr = dct_sel_interleave_addr(pvt); 1408 1409 /* return DCT select function: 0=DCT0, 1=DCT1 */ 1410 if (!intlv_addr) 1411 return sys_addr >> 6 & 1; 1412 1413 if (intlv_addr & 0x2) { 1414 u8 shift = intlv_addr & 0x1 ? 9 : 6; 1415 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2; 1416 1417 return ((sys_addr >> shift) & 1) ^ temp; 1418 } 1419 1420 return (sys_addr >> (12 + hweight8(intlv_en))) & 1; 1421 } 1422 1423 if (dct_high_range_enabled(pvt)) 1424 return ~dct_sel_high & 1; 1425 1426 return 0; 1427 } 1428 1429 /* Convert the sys_addr to the normalized DCT address */ 1430 static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range, 1431 u64 sys_addr, bool hi_rng, 1432 u32 dct_sel_base_addr) 1433 { 1434 u64 chan_off; 1435 u64 dram_base = get_dram_base(pvt, range); 1436 u64 hole_off = f10_dhar_offset(pvt); 1437 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16; 1438 1439 if (hi_rng) { 1440 /* 1441 * if 1442 * base address of high range is below 4Gb 1443 * (bits [47:27] at [31:11]) 1444 * DRAM address space on this DCT is hoisted above 4Gb && 1445 * sys_addr > 4Gb 1446 * 1447 * remove hole offset from sys_addr 1448 * else 1449 * remove high range offset from sys_addr 1450 */ 1451 if ((!(dct_sel_base_addr >> 16) || 1452 dct_sel_base_addr < dhar_base(pvt)) && 1453 dhar_valid(pvt) && 1454 (sys_addr >= BIT_64(32))) 1455 chan_off = hole_off; 1456 else 1457 chan_off = dct_sel_base_off; 1458 } else { 1459 /* 1460 * if 1461 * we have a valid hole && 1462 * sys_addr > 4Gb 1463 * 1464 * remove hole 1465 * else 1466 * remove dram base to normalize to DCT address 1467 */ 1468 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32))) 1469 chan_off = hole_off; 1470 else 1471 chan_off = dram_base; 1472 } 1473 1474 return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23)); 1475 } 1476 1477 /* 1478 * checks if the csrow passed in is marked as SPARED, if so returns the new 1479 * spare row 1480 */ 1481 static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow) 1482 { 1483 int tmp_cs; 1484 1485 if (online_spare_swap_done(pvt, dct) && 1486 csrow == online_spare_bad_dramcs(pvt, dct)) { 1487 1488 for_each_chip_select(tmp_cs, dct, pvt) { 1489 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) { 1490 csrow = tmp_cs; 1491 break; 1492 } 1493 } 1494 } 1495 return csrow; 1496 } 1497 1498 /* 1499 * Iterate over the DRAM DCT "base" and "mask" registers looking for a 1500 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID' 1501 * 1502 * Return: 1503 * -EINVAL: NOT FOUND 1504 * 0..csrow = Chip-Select Row 1505 */ 1506 static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct) 1507 { 1508 struct mem_ctl_info *mci; 1509 struct amd64_pvt *pvt; 1510 u64 cs_base, cs_mask; 1511 int cs_found = -EINVAL; 1512 int csrow; 1513 1514 mci = mcis[nid]; 1515 if (!mci) 1516 return cs_found; 1517 1518 pvt = mci->pvt_info; 1519 1520 edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct); 1521 1522 for_each_chip_select(csrow, dct, pvt) { 1523 if (!csrow_enabled(csrow, dct, pvt)) 1524 continue; 1525 1526 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask); 1527 1528 edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n", 1529 csrow, cs_base, cs_mask); 1530 1531 cs_mask = ~cs_mask; 1532 1533 edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n", 1534 (in_addr & cs_mask), (cs_base & cs_mask)); 1535 1536 if ((in_addr & cs_mask) == (cs_base & cs_mask)) { 1537 if (pvt->fam == 0x15 && pvt->model >= 0x30) { 1538 cs_found = csrow; 1539 break; 1540 } 1541 cs_found = f10_process_possible_spare(pvt, dct, csrow); 1542 1543 edac_dbg(1, " MATCH csrow=%d\n", cs_found); 1544 break; 1545 } 1546 } 1547 return cs_found; 1548 } 1549 1550 /* 1551 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is 1552 * swapped with a region located at the bottom of memory so that the GPU can use 1553 * the interleaved region and thus two channels. 1554 */ 1555 static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr) 1556 { 1557 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr; 1558 1559 if (pvt->fam == 0x10) { 1560 /* only revC3 and revE have that feature */ 1561 if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3)) 1562 return sys_addr; 1563 } 1564 1565 amd64_read_pci_cfg(pvt->F2, SWAP_INTLV_REG, &swap_reg); 1566 1567 if (!(swap_reg & 0x1)) 1568 return sys_addr; 1569 1570 swap_base = (swap_reg >> 3) & 0x7f; 1571 swap_limit = (swap_reg >> 11) & 0x7f; 1572 rgn_size = (swap_reg >> 20) & 0x7f; 1573 tmp_addr = sys_addr >> 27; 1574 1575 if (!(sys_addr >> 34) && 1576 (((tmp_addr >= swap_base) && 1577 (tmp_addr <= swap_limit)) || 1578 (tmp_addr < rgn_size))) 1579 return sys_addr ^ (u64)swap_base << 27; 1580 1581 return sys_addr; 1582 } 1583 1584 /* For a given @dram_range, check if @sys_addr falls within it. */ 1585 static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range, 1586 u64 sys_addr, int *chan_sel) 1587 { 1588 int cs_found = -EINVAL; 1589 u64 chan_addr; 1590 u32 dct_sel_base; 1591 u8 channel; 1592 bool high_range = false; 1593 1594 u8 node_id = dram_dst_node(pvt, range); 1595 u8 intlv_en = dram_intlv_en(pvt, range); 1596 u32 intlv_sel = dram_intlv_sel(pvt, range); 1597 1598 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n", 1599 range, sys_addr, get_dram_limit(pvt, range)); 1600 1601 if (dhar_valid(pvt) && 1602 dhar_base(pvt) <= sys_addr && 1603 sys_addr < BIT_64(32)) { 1604 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n", 1605 sys_addr); 1606 return -EINVAL; 1607 } 1608 1609 if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en))) 1610 return -EINVAL; 1611 1612 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr); 1613 1614 dct_sel_base = dct_sel_baseaddr(pvt); 1615 1616 /* 1617 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to 1618 * select between DCT0 and DCT1. 1619 */ 1620 if (dct_high_range_enabled(pvt) && 1621 !dct_ganging_enabled(pvt) && 1622 ((sys_addr >> 27) >= (dct_sel_base >> 11))) 1623 high_range = true; 1624 1625 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en); 1626 1627 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr, 1628 high_range, dct_sel_base); 1629 1630 /* Remove node interleaving, see F1x120 */ 1631 if (intlv_en) 1632 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) | 1633 (chan_addr & 0xfff); 1634 1635 /* remove channel interleave */ 1636 if (dct_interleave_enabled(pvt) && 1637 !dct_high_range_enabled(pvt) && 1638 !dct_ganging_enabled(pvt)) { 1639 1640 if (dct_sel_interleave_addr(pvt) != 1) { 1641 if (dct_sel_interleave_addr(pvt) == 0x3) 1642 /* hash 9 */ 1643 chan_addr = ((chan_addr >> 10) << 9) | 1644 (chan_addr & 0x1ff); 1645 else 1646 /* A[6] or hash 6 */ 1647 chan_addr = ((chan_addr >> 7) << 6) | 1648 (chan_addr & 0x3f); 1649 } else 1650 /* A[12] */ 1651 chan_addr = ((chan_addr >> 13) << 12) | 1652 (chan_addr & 0xfff); 1653 } 1654 1655 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr); 1656 1657 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel); 1658 1659 if (cs_found >= 0) 1660 *chan_sel = channel; 1661 1662 return cs_found; 1663 } 1664 1665 static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range, 1666 u64 sys_addr, int *chan_sel) 1667 { 1668 int cs_found = -EINVAL; 1669 int num_dcts_intlv = 0; 1670 u64 chan_addr, chan_offset; 1671 u64 dct_base, dct_limit; 1672 u32 dct_cont_base_reg, dct_cont_limit_reg, tmp; 1673 u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en; 1674 1675 u64 dhar_offset = f10_dhar_offset(pvt); 1676 u8 intlv_addr = dct_sel_interleave_addr(pvt); 1677 u8 node_id = dram_dst_node(pvt, range); 1678 u8 intlv_en = dram_intlv_en(pvt, range); 1679 1680 amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg); 1681 amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg); 1682 1683 dct_offset_en = (u8) ((dct_cont_base_reg >> 3) & BIT(0)); 1684 dct_sel = (u8) ((dct_cont_base_reg >> 4) & 0x7); 1685 1686 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n", 1687 range, sys_addr, get_dram_limit(pvt, range)); 1688 1689 if (!(get_dram_base(pvt, range) <= sys_addr) && 1690 !(get_dram_limit(pvt, range) >= sys_addr)) 1691 return -EINVAL; 1692 1693 if (dhar_valid(pvt) && 1694 dhar_base(pvt) <= sys_addr && 1695 sys_addr < BIT_64(32)) { 1696 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n", 1697 sys_addr); 1698 return -EINVAL; 1699 } 1700 1701 /* Verify sys_addr is within DCT Range. */ 1702 dct_base = (u64) dct_sel_baseaddr(pvt); 1703 dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF; 1704 1705 if (!(dct_cont_base_reg & BIT(0)) && 1706 !(dct_base <= (sys_addr >> 27) && 1707 dct_limit >= (sys_addr >> 27))) 1708 return -EINVAL; 1709 1710 /* Verify number of dct's that participate in channel interleaving. */ 1711 num_dcts_intlv = (int) hweight8(intlv_en); 1712 1713 if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4)) 1714 return -EINVAL; 1715 1716 channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en, 1717 num_dcts_intlv, dct_sel); 1718 1719 /* Verify we stay within the MAX number of channels allowed */ 1720 if (channel > 3) 1721 return -EINVAL; 1722 1723 leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0)); 1724 1725 /* Get normalized DCT addr */ 1726 if (leg_mmio_hole && (sys_addr >= BIT_64(32))) 1727 chan_offset = dhar_offset; 1728 else 1729 chan_offset = dct_base << 27; 1730 1731 chan_addr = sys_addr - chan_offset; 1732 1733 /* remove channel interleave */ 1734 if (num_dcts_intlv == 2) { 1735 if (intlv_addr == 0x4) 1736 chan_addr = ((chan_addr >> 9) << 8) | 1737 (chan_addr & 0xff); 1738 else if (intlv_addr == 0x5) 1739 chan_addr = ((chan_addr >> 10) << 9) | 1740 (chan_addr & 0x1ff); 1741 else 1742 return -EINVAL; 1743 1744 } else if (num_dcts_intlv == 4) { 1745 if (intlv_addr == 0x4) 1746 chan_addr = ((chan_addr >> 10) << 8) | 1747 (chan_addr & 0xff); 1748 else if (intlv_addr == 0x5) 1749 chan_addr = ((chan_addr >> 11) << 9) | 1750 (chan_addr & 0x1ff); 1751 else 1752 return -EINVAL; 1753 } 1754 1755 if (dct_offset_en) { 1756 amd64_read_pci_cfg(pvt->F1, 1757 DRAM_CONT_HIGH_OFF + (int) channel * 4, 1758 &tmp); 1759 chan_addr += (u64) ((tmp >> 11) & 0xfff) << 27; 1760 } 1761 1762 f15h_select_dct(pvt, channel); 1763 1764 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr); 1765 1766 /* 1767 * Find Chip select: 1768 * if channel = 3, then alias it to 1. This is because, in F15 M30h, 1769 * there is support for 4 DCT's, but only 2 are currently functional. 1770 * They are DCT0 and DCT3. But we have read all registers of DCT3 into 1771 * pvt->csels[1]. So we need to use '1' here to get correct info. 1772 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications. 1773 */ 1774 alias_channel = (channel == 3) ? 1 : channel; 1775 1776 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel); 1777 1778 if (cs_found >= 0) 1779 *chan_sel = alias_channel; 1780 1781 return cs_found; 1782 } 1783 1784 static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, 1785 u64 sys_addr, 1786 int *chan_sel) 1787 { 1788 int cs_found = -EINVAL; 1789 unsigned range; 1790 1791 for (range = 0; range < DRAM_RANGES; range++) { 1792 if (!dram_rw(pvt, range)) 1793 continue; 1794 1795 if (pvt->fam == 0x15 && pvt->model >= 0x30) 1796 cs_found = f15_m30h_match_to_this_node(pvt, range, 1797 sys_addr, 1798 chan_sel); 1799 1800 else if ((get_dram_base(pvt, range) <= sys_addr) && 1801 (get_dram_limit(pvt, range) >= sys_addr)) { 1802 cs_found = f1x_match_to_this_node(pvt, range, 1803 sys_addr, chan_sel); 1804 if (cs_found >= 0) 1805 break; 1806 } 1807 } 1808 return cs_found; 1809 } 1810 1811 /* 1812 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps 1813 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW). 1814 * 1815 * The @sys_addr is usually an error address received from the hardware 1816 * (MCX_ADDR). 1817 */ 1818 static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr, 1819 struct err_info *err) 1820 { 1821 struct amd64_pvt *pvt = mci->pvt_info; 1822 1823 error_address_to_page_and_offset(sys_addr, err); 1824 1825 err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel); 1826 if (err->csrow < 0) { 1827 err->err_code = ERR_CSROW; 1828 return; 1829 } 1830 1831 /* 1832 * We need the syndromes for channel detection only when we're 1833 * ganged. Otherwise @chan should already contain the channel at 1834 * this point. 1835 */ 1836 if (dct_ganging_enabled(pvt)) 1837 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome); 1838 } 1839 1840 /* 1841 * debug routine to display the memory sizes of all logical DIMMs and its 1842 * CSROWs 1843 */ 1844 static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl) 1845 { 1846 int dimm, size0, size1; 1847 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases; 1848 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0; 1849 1850 if (pvt->fam == 0xf) { 1851 /* K8 families < revF not supported yet */ 1852 if (pvt->ext_model < K8_REV_F) 1853 return; 1854 else 1855 WARN_ON(ctrl != 0); 1856 } 1857 1858 if (pvt->fam == 0x10) { 1859 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 1860 : pvt->dbam0; 1861 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? 1862 pvt->csels[1].csbases : 1863 pvt->csels[0].csbases; 1864 } else if (ctrl) { 1865 dbam = pvt->dbam0; 1866 dcsb = pvt->csels[1].csbases; 1867 } 1868 edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", 1869 ctrl, dbam); 1870 1871 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl); 1872 1873 /* Dump memory sizes for DIMM and its CSROWs */ 1874 for (dimm = 0; dimm < 4; dimm++) { 1875 1876 size0 = 0; 1877 if (dcsb[dimm*2] & DCSB_CS_ENABLE) 1878 /* For f15m60h, need multiplier for LRDIMM cs_size 1879 * calculation. We pass 'dimm' value to the dbam_to_cs 1880 * mapper so we can find the multiplier from the 1881 * corresponding DCSM. 1882 */ 1883 size0 = pvt->ops->dbam_to_cs(pvt, ctrl, 1884 DBAM_DIMM(dimm, dbam), 1885 dimm); 1886 1887 size1 = 0; 1888 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE) 1889 size1 = pvt->ops->dbam_to_cs(pvt, ctrl, 1890 DBAM_DIMM(dimm, dbam), 1891 dimm); 1892 1893 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n", 1894 dimm * 2, size0, 1895 dimm * 2 + 1, size1); 1896 } 1897 } 1898 1899 static struct amd64_family_type family_types[] = { 1900 [K8_CPUS] = { 1901 .ctl_name = "K8", 1902 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP, 1903 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC, 1904 .ops = { 1905 .early_channel_count = k8_early_channel_count, 1906 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow, 1907 .dbam_to_cs = k8_dbam_to_chip_select, 1908 } 1909 }, 1910 [F10_CPUS] = { 1911 .ctl_name = "F10h", 1912 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP, 1913 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC, 1914 .ops = { 1915 .early_channel_count = f1x_early_channel_count, 1916 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, 1917 .dbam_to_cs = f10_dbam_to_chip_select, 1918 } 1919 }, 1920 [F15_CPUS] = { 1921 .ctl_name = "F15h", 1922 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1, 1923 .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3, 1924 .ops = { 1925 .early_channel_count = f1x_early_channel_count, 1926 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, 1927 .dbam_to_cs = f15_dbam_to_chip_select, 1928 } 1929 }, 1930 [F15_M30H_CPUS] = { 1931 .ctl_name = "F15h_M30h", 1932 .f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1, 1933 .f3_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F3, 1934 .ops = { 1935 .early_channel_count = f1x_early_channel_count, 1936 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, 1937 .dbam_to_cs = f16_dbam_to_chip_select, 1938 } 1939 }, 1940 [F15_M60H_CPUS] = { 1941 .ctl_name = "F15h_M60h", 1942 .f1_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1, 1943 .f3_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F3, 1944 .ops = { 1945 .early_channel_count = f1x_early_channel_count, 1946 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, 1947 .dbam_to_cs = f15_m60h_dbam_to_chip_select, 1948 } 1949 }, 1950 [F16_CPUS] = { 1951 .ctl_name = "F16h", 1952 .f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1, 1953 .f3_id = PCI_DEVICE_ID_AMD_16H_NB_F3, 1954 .ops = { 1955 .early_channel_count = f1x_early_channel_count, 1956 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, 1957 .dbam_to_cs = f16_dbam_to_chip_select, 1958 } 1959 }, 1960 [F16_M30H_CPUS] = { 1961 .ctl_name = "F16h_M30h", 1962 .f1_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F1, 1963 .f3_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F3, 1964 .ops = { 1965 .early_channel_count = f1x_early_channel_count, 1966 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, 1967 .dbam_to_cs = f16_dbam_to_chip_select, 1968 } 1969 }, 1970 }; 1971 1972 /* 1973 * These are tables of eigenvectors (one per line) which can be used for the 1974 * construction of the syndrome tables. The modified syndrome search algorithm 1975 * uses those to find the symbol in error and thus the DIMM. 1976 * 1977 * Algorithm courtesy of Ross LaFetra from AMD. 1978 */ 1979 static const u16 x4_vectors[] = { 1980 0x2f57, 0x1afe, 0x66cc, 0xdd88, 1981 0x11eb, 0x3396, 0x7f4c, 0xeac8, 1982 0x0001, 0x0002, 0x0004, 0x0008, 1983 0x1013, 0x3032, 0x4044, 0x8088, 1984 0x106b, 0x30d6, 0x70fc, 0xe0a8, 1985 0x4857, 0xc4fe, 0x13cc, 0x3288, 1986 0x1ac5, 0x2f4a, 0x5394, 0xa1e8, 1987 0x1f39, 0x251e, 0xbd6c, 0x6bd8, 1988 0x15c1, 0x2a42, 0x89ac, 0x4758, 1989 0x2b03, 0x1602, 0x4f0c, 0xca08, 1990 0x1f07, 0x3a0e, 0x6b04, 0xbd08, 1991 0x8ba7, 0x465e, 0x244c, 0x1cc8, 1992 0x2b87, 0x164e, 0x642c, 0xdc18, 1993 0x40b9, 0x80de, 0x1094, 0x20e8, 1994 0x27db, 0x1eb6, 0x9dac, 0x7b58, 1995 0x11c1, 0x2242, 0x84ac, 0x4c58, 1996 0x1be5, 0x2d7a, 0x5e34, 0xa718, 1997 0x4b39, 0x8d1e, 0x14b4, 0x28d8, 1998 0x4c97, 0xc87e, 0x11fc, 0x33a8, 1999 0x8e97, 0x497e, 0x2ffc, 0x1aa8, 2000 0x16b3, 0x3d62, 0x4f34, 0x8518, 2001 0x1e2f, 0x391a, 0x5cac, 0xf858, 2002 0x1d9f, 0x3b7a, 0x572c, 0xfe18, 2003 0x15f5, 0x2a5a, 0x5264, 0xa3b8, 2004 0x1dbb, 0x3b66, 0x715c, 0xe3f8, 2005 0x4397, 0xc27e, 0x17fc, 0x3ea8, 2006 0x1617, 0x3d3e, 0x6464, 0xb8b8, 2007 0x23ff, 0x12aa, 0xab6c, 0x56d8, 2008 0x2dfb, 0x1ba6, 0x913c, 0x7328, 2009 0x185d, 0x2ca6, 0x7914, 0x9e28, 2010 0x171b, 0x3e36, 0x7d7c, 0xebe8, 2011 0x4199, 0x82ee, 0x19f4, 0x2e58, 2012 0x4807, 0xc40e, 0x130c, 0x3208, 2013 0x1905, 0x2e0a, 0x5804, 0xac08, 2014 0x213f, 0x132a, 0xadfc, 0x5ba8, 2015 0x19a9, 0x2efe, 0xb5cc, 0x6f88, 2016 }; 2017 2018 static const u16 x8_vectors[] = { 2019 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480, 2020 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80, 2021 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80, 2022 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80, 2023 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780, 2024 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080, 2025 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080, 2026 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080, 2027 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80, 2028 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580, 2029 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880, 2030 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280, 2031 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180, 2032 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580, 2033 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280, 2034 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180, 2035 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080, 2036 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 2037 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000, 2038 }; 2039 2040 static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs, 2041 unsigned v_dim) 2042 { 2043 unsigned int i, err_sym; 2044 2045 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) { 2046 u16 s = syndrome; 2047 unsigned v_idx = err_sym * v_dim; 2048 unsigned v_end = (err_sym + 1) * v_dim; 2049 2050 /* walk over all 16 bits of the syndrome */ 2051 for (i = 1; i < (1U << 16); i <<= 1) { 2052 2053 /* if bit is set in that eigenvector... */ 2054 if (v_idx < v_end && vectors[v_idx] & i) { 2055 u16 ev_comp = vectors[v_idx++]; 2056 2057 /* ... and bit set in the modified syndrome, */ 2058 if (s & i) { 2059 /* remove it. */ 2060 s ^= ev_comp; 2061 2062 if (!s) 2063 return err_sym; 2064 } 2065 2066 } else if (s & i) 2067 /* can't get to zero, move to next symbol */ 2068 break; 2069 } 2070 } 2071 2072 edac_dbg(0, "syndrome(%x) not found\n", syndrome); 2073 return -1; 2074 } 2075 2076 static int map_err_sym_to_channel(int err_sym, int sym_size) 2077 { 2078 if (sym_size == 4) 2079 switch (err_sym) { 2080 case 0x20: 2081 case 0x21: 2082 return 0; 2083 break; 2084 case 0x22: 2085 case 0x23: 2086 return 1; 2087 break; 2088 default: 2089 return err_sym >> 4; 2090 break; 2091 } 2092 /* x8 symbols */ 2093 else 2094 switch (err_sym) { 2095 /* imaginary bits not in a DIMM */ 2096 case 0x10: 2097 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n", 2098 err_sym); 2099 return -1; 2100 break; 2101 2102 case 0x11: 2103 return 0; 2104 break; 2105 case 0x12: 2106 return 1; 2107 break; 2108 default: 2109 return err_sym >> 3; 2110 break; 2111 } 2112 return -1; 2113 } 2114 2115 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome) 2116 { 2117 struct amd64_pvt *pvt = mci->pvt_info; 2118 int err_sym = -1; 2119 2120 if (pvt->ecc_sym_sz == 8) 2121 err_sym = decode_syndrome(syndrome, x8_vectors, 2122 ARRAY_SIZE(x8_vectors), 2123 pvt->ecc_sym_sz); 2124 else if (pvt->ecc_sym_sz == 4) 2125 err_sym = decode_syndrome(syndrome, x4_vectors, 2126 ARRAY_SIZE(x4_vectors), 2127 pvt->ecc_sym_sz); 2128 else { 2129 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz); 2130 return err_sym; 2131 } 2132 2133 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz); 2134 } 2135 2136 static void __log_bus_error(struct mem_ctl_info *mci, struct err_info *err, 2137 u8 ecc_type) 2138 { 2139 enum hw_event_mc_err_type err_type; 2140 const char *string; 2141 2142 if (ecc_type == 2) 2143 err_type = HW_EVENT_ERR_CORRECTED; 2144 else if (ecc_type == 1) 2145 err_type = HW_EVENT_ERR_UNCORRECTED; 2146 else { 2147 WARN(1, "Something is rotten in the state of Denmark.\n"); 2148 return; 2149 } 2150 2151 switch (err->err_code) { 2152 case DECODE_OK: 2153 string = ""; 2154 break; 2155 case ERR_NODE: 2156 string = "Failed to map error addr to a node"; 2157 break; 2158 case ERR_CSROW: 2159 string = "Failed to map error addr to a csrow"; 2160 break; 2161 case ERR_CHANNEL: 2162 string = "unknown syndrome - possible error reporting race"; 2163 break; 2164 default: 2165 string = "WTF error"; 2166 break; 2167 } 2168 2169 edac_mc_handle_error(err_type, mci, 1, 2170 err->page, err->offset, err->syndrome, 2171 err->csrow, err->channel, -1, 2172 string, ""); 2173 } 2174 2175 static inline void decode_bus_error(int node_id, struct mce *m) 2176 { 2177 struct mem_ctl_info *mci = mcis[node_id]; 2178 struct amd64_pvt *pvt = mci->pvt_info; 2179 u8 ecc_type = (m->status >> 45) & 0x3; 2180 u8 xec = XEC(m->status, 0x1f); 2181 u16 ec = EC(m->status); 2182 u64 sys_addr; 2183 struct err_info err; 2184 2185 /* Bail out early if this was an 'observed' error */ 2186 if (PP(ec) == NBSL_PP_OBS) 2187 return; 2188 2189 /* Do only ECC errors */ 2190 if (xec && xec != F10_NBSL_EXT_ERR_ECC) 2191 return; 2192 2193 memset(&err, 0, sizeof(err)); 2194 2195 sys_addr = get_error_address(pvt, m); 2196 2197 if (ecc_type == 2) 2198 err.syndrome = extract_syndrome(m->status); 2199 2200 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err); 2201 2202 __log_bus_error(mci, &err, ecc_type); 2203 } 2204 2205 /* 2206 * Use pvt->F2 which contains the F2 CPU PCI device to get the related 2207 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error. 2208 */ 2209 static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id) 2210 { 2211 /* Reserve the ADDRESS MAP Device */ 2212 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2); 2213 if (!pvt->F1) { 2214 amd64_err("error address map device not found: " 2215 "vendor %x device 0x%x (broken BIOS?)\n", 2216 PCI_VENDOR_ID_AMD, f1_id); 2217 return -ENODEV; 2218 } 2219 2220 /* Reserve the MISC Device */ 2221 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2); 2222 if (!pvt->F3) { 2223 pci_dev_put(pvt->F1); 2224 pvt->F1 = NULL; 2225 2226 amd64_err("error F3 device not found: " 2227 "vendor %x device 0x%x (broken BIOS?)\n", 2228 PCI_VENDOR_ID_AMD, f3_id); 2229 2230 return -ENODEV; 2231 } 2232 edac_dbg(1, "F1: %s\n", pci_name(pvt->F1)); 2233 edac_dbg(1, "F2: %s\n", pci_name(pvt->F2)); 2234 edac_dbg(1, "F3: %s\n", pci_name(pvt->F3)); 2235 2236 return 0; 2237 } 2238 2239 static void free_mc_sibling_devs(struct amd64_pvt *pvt) 2240 { 2241 pci_dev_put(pvt->F1); 2242 pci_dev_put(pvt->F3); 2243 } 2244 2245 /* 2246 * Retrieve the hardware registers of the memory controller (this includes the 2247 * 'Address Map' and 'Misc' device regs) 2248 */ 2249 static void read_mc_regs(struct amd64_pvt *pvt) 2250 { 2251 unsigned range; 2252 u64 msr_val; 2253 u32 tmp; 2254 2255 /* 2256 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since 2257 * those are Read-As-Zero 2258 */ 2259 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem); 2260 edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem); 2261 2262 /* check first whether TOP_MEM2 is enabled */ 2263 rdmsrl(MSR_K8_SYSCFG, msr_val); 2264 if (msr_val & (1U << 21)) { 2265 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2); 2266 edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2); 2267 } else 2268 edac_dbg(0, " TOP_MEM2 disabled\n"); 2269 2270 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap); 2271 2272 read_dram_ctl_register(pvt); 2273 2274 for (range = 0; range < DRAM_RANGES; range++) { 2275 u8 rw; 2276 2277 /* read settings for this DRAM range */ 2278 read_dram_base_limit_regs(pvt, range); 2279 2280 rw = dram_rw(pvt, range); 2281 if (!rw) 2282 continue; 2283 2284 edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n", 2285 range, 2286 get_dram_base(pvt, range), 2287 get_dram_limit(pvt, range)); 2288 2289 edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n", 2290 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled", 2291 (rw & 0x1) ? "R" : "-", 2292 (rw & 0x2) ? "W" : "-", 2293 dram_intlv_sel(pvt, range), 2294 dram_dst_node(pvt, range)); 2295 } 2296 2297 read_dct_base_mask(pvt); 2298 2299 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar); 2300 amd64_read_dct_pci_cfg(pvt, 0, DBAM0, &pvt->dbam0); 2301 2302 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare); 2303 2304 amd64_read_dct_pci_cfg(pvt, 0, DCLR0, &pvt->dclr0); 2305 amd64_read_dct_pci_cfg(pvt, 0, DCHR0, &pvt->dchr0); 2306 2307 if (!dct_ganging_enabled(pvt)) { 2308 amd64_read_dct_pci_cfg(pvt, 1, DCLR0, &pvt->dclr1); 2309 amd64_read_dct_pci_cfg(pvt, 1, DCHR0, &pvt->dchr1); 2310 } 2311 2312 pvt->ecc_sym_sz = 4; 2313 determine_memory_type(pvt); 2314 edac_dbg(1, " DIMM type: %s\n", edac_mem_types[pvt->dram_type]); 2315 2316 if (pvt->fam >= 0x10) { 2317 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp); 2318 /* F16h has only DCT0, so no need to read dbam1 */ 2319 if (pvt->fam != 0x16) 2320 amd64_read_dct_pci_cfg(pvt, 1, DBAM0, &pvt->dbam1); 2321 2322 /* F10h, revD and later can do x8 ECC too */ 2323 if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25)) 2324 pvt->ecc_sym_sz = 8; 2325 } 2326 dump_misc_regs(pvt); 2327 } 2328 2329 /* 2330 * NOTE: CPU Revision Dependent code 2331 * 2332 * Input: 2333 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1) 2334 * k8 private pointer to --> 2335 * DRAM Bank Address mapping register 2336 * node_id 2337 * DCL register where dual_channel_active is 2338 * 2339 * The DBAM register consists of 4 sets of 4 bits each definitions: 2340 * 2341 * Bits: CSROWs 2342 * 0-3 CSROWs 0 and 1 2343 * 4-7 CSROWs 2 and 3 2344 * 8-11 CSROWs 4 and 5 2345 * 12-15 CSROWs 6 and 7 2346 * 2347 * Values range from: 0 to 15 2348 * The meaning of the values depends on CPU revision and dual-channel state, 2349 * see relevant BKDG more info. 2350 * 2351 * The memory controller provides for total of only 8 CSROWs in its current 2352 * architecture. Each "pair" of CSROWs normally represents just one DIMM in 2353 * single channel or two (2) DIMMs in dual channel mode. 2354 * 2355 * The following code logic collapses the various tables for CSROW based on CPU 2356 * revision. 2357 * 2358 * Returns: 2359 * The number of PAGE_SIZE pages on the specified CSROW number it 2360 * encompasses 2361 * 2362 */ 2363 static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr) 2364 { 2365 u32 cs_mode, nr_pages; 2366 u32 dbam = dct ? pvt->dbam1 : pvt->dbam0; 2367 2368 2369 /* 2370 * The math on this doesn't look right on the surface because x/2*4 can 2371 * be simplified to x*2 but this expression makes use of the fact that 2372 * it is integral math where 1/2=0. This intermediate value becomes the 2373 * number of bits to shift the DBAM register to extract the proper CSROW 2374 * field. 2375 */ 2376 cs_mode = DBAM_DIMM(csrow_nr / 2, dbam); 2377 2378 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode, (csrow_nr / 2)) 2379 << (20 - PAGE_SHIFT); 2380 2381 edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n", 2382 csrow_nr, dct, cs_mode); 2383 edac_dbg(0, "nr_pages/channel: %u\n", nr_pages); 2384 2385 return nr_pages; 2386 } 2387 2388 /* 2389 * Initialize the array of csrow attribute instances, based on the values 2390 * from pci config hardware registers. 2391 */ 2392 static int init_csrows(struct mem_ctl_info *mci) 2393 { 2394 struct amd64_pvt *pvt = mci->pvt_info; 2395 struct csrow_info *csrow; 2396 struct dimm_info *dimm; 2397 enum edac_type edac_mode; 2398 int i, j, empty = 1; 2399 int nr_pages = 0; 2400 u32 val; 2401 2402 amd64_read_pci_cfg(pvt->F3, NBCFG, &val); 2403 2404 pvt->nbcfg = val; 2405 2406 edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n", 2407 pvt->mc_node_id, val, 2408 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE)); 2409 2410 /* 2411 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed. 2412 */ 2413 for_each_chip_select(i, 0, pvt) { 2414 bool row_dct0 = !!csrow_enabled(i, 0, pvt); 2415 bool row_dct1 = false; 2416 2417 if (pvt->fam != 0xf) 2418 row_dct1 = !!csrow_enabled(i, 1, pvt); 2419 2420 if (!row_dct0 && !row_dct1) 2421 continue; 2422 2423 csrow = mci->csrows[i]; 2424 empty = 0; 2425 2426 edac_dbg(1, "MC node: %d, csrow: %d\n", 2427 pvt->mc_node_id, i); 2428 2429 if (row_dct0) { 2430 nr_pages = get_csrow_nr_pages(pvt, 0, i); 2431 csrow->channels[0]->dimm->nr_pages = nr_pages; 2432 } 2433 2434 /* K8 has only one DCT */ 2435 if (pvt->fam != 0xf && row_dct1) { 2436 int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i); 2437 2438 csrow->channels[1]->dimm->nr_pages = row_dct1_pages; 2439 nr_pages += row_dct1_pages; 2440 } 2441 2442 edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages); 2443 2444 /* 2445 * determine whether CHIPKILL or JUST ECC or NO ECC is operating 2446 */ 2447 if (pvt->nbcfg & NBCFG_ECC_ENABLE) 2448 edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ? 2449 EDAC_S4ECD4ED : EDAC_SECDED; 2450 else 2451 edac_mode = EDAC_NONE; 2452 2453 for (j = 0; j < pvt->channel_count; j++) { 2454 dimm = csrow->channels[j]->dimm; 2455 dimm->mtype = pvt->dram_type; 2456 dimm->edac_mode = edac_mode; 2457 } 2458 } 2459 2460 return empty; 2461 } 2462 2463 /* get all cores on this DCT */ 2464 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid) 2465 { 2466 int cpu; 2467 2468 for_each_online_cpu(cpu) 2469 if (amd_get_nb_id(cpu) == nid) 2470 cpumask_set_cpu(cpu, mask); 2471 } 2472 2473 /* check MCG_CTL on all the cpus on this node */ 2474 static bool nb_mce_bank_enabled_on_node(u16 nid) 2475 { 2476 cpumask_var_t mask; 2477 int cpu, nbe; 2478 bool ret = false; 2479 2480 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) { 2481 amd64_warn("%s: Error allocating mask\n", __func__); 2482 return false; 2483 } 2484 2485 get_cpus_on_this_dct_cpumask(mask, nid); 2486 2487 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs); 2488 2489 for_each_cpu(cpu, mask) { 2490 struct msr *reg = per_cpu_ptr(msrs, cpu); 2491 nbe = reg->l & MSR_MCGCTL_NBE; 2492 2493 edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n", 2494 cpu, reg->q, 2495 (nbe ? "enabled" : "disabled")); 2496 2497 if (!nbe) 2498 goto out; 2499 } 2500 ret = true; 2501 2502 out: 2503 free_cpumask_var(mask); 2504 return ret; 2505 } 2506 2507 static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on) 2508 { 2509 cpumask_var_t cmask; 2510 int cpu; 2511 2512 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) { 2513 amd64_warn("%s: error allocating mask\n", __func__); 2514 return false; 2515 } 2516 2517 get_cpus_on_this_dct_cpumask(cmask, nid); 2518 2519 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs); 2520 2521 for_each_cpu(cpu, cmask) { 2522 2523 struct msr *reg = per_cpu_ptr(msrs, cpu); 2524 2525 if (on) { 2526 if (reg->l & MSR_MCGCTL_NBE) 2527 s->flags.nb_mce_enable = 1; 2528 2529 reg->l |= MSR_MCGCTL_NBE; 2530 } else { 2531 /* 2532 * Turn off NB MCE reporting only when it was off before 2533 */ 2534 if (!s->flags.nb_mce_enable) 2535 reg->l &= ~MSR_MCGCTL_NBE; 2536 } 2537 } 2538 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs); 2539 2540 free_cpumask_var(cmask); 2541 2542 return 0; 2543 } 2544 2545 static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid, 2546 struct pci_dev *F3) 2547 { 2548 bool ret = true; 2549 u32 value, mask = 0x3; /* UECC/CECC enable */ 2550 2551 if (toggle_ecc_err_reporting(s, nid, ON)) { 2552 amd64_warn("Error enabling ECC reporting over MCGCTL!\n"); 2553 return false; 2554 } 2555 2556 amd64_read_pci_cfg(F3, NBCTL, &value); 2557 2558 s->old_nbctl = value & mask; 2559 s->nbctl_valid = true; 2560 2561 value |= mask; 2562 amd64_write_pci_cfg(F3, NBCTL, value); 2563 2564 amd64_read_pci_cfg(F3, NBCFG, &value); 2565 2566 edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n", 2567 nid, value, !!(value & NBCFG_ECC_ENABLE)); 2568 2569 if (!(value & NBCFG_ECC_ENABLE)) { 2570 amd64_warn("DRAM ECC disabled on this node, enabling...\n"); 2571 2572 s->flags.nb_ecc_prev = 0; 2573 2574 /* Attempt to turn on DRAM ECC Enable */ 2575 value |= NBCFG_ECC_ENABLE; 2576 amd64_write_pci_cfg(F3, NBCFG, value); 2577 2578 amd64_read_pci_cfg(F3, NBCFG, &value); 2579 2580 if (!(value & NBCFG_ECC_ENABLE)) { 2581 amd64_warn("Hardware rejected DRAM ECC enable," 2582 "check memory DIMM configuration.\n"); 2583 ret = false; 2584 } else { 2585 amd64_info("Hardware accepted DRAM ECC Enable\n"); 2586 } 2587 } else { 2588 s->flags.nb_ecc_prev = 1; 2589 } 2590 2591 edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n", 2592 nid, value, !!(value & NBCFG_ECC_ENABLE)); 2593 2594 return ret; 2595 } 2596 2597 static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid, 2598 struct pci_dev *F3) 2599 { 2600 u32 value, mask = 0x3; /* UECC/CECC enable */ 2601 2602 2603 if (!s->nbctl_valid) 2604 return; 2605 2606 amd64_read_pci_cfg(F3, NBCTL, &value); 2607 value &= ~mask; 2608 value |= s->old_nbctl; 2609 2610 amd64_write_pci_cfg(F3, NBCTL, value); 2611 2612 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */ 2613 if (!s->flags.nb_ecc_prev) { 2614 amd64_read_pci_cfg(F3, NBCFG, &value); 2615 value &= ~NBCFG_ECC_ENABLE; 2616 amd64_write_pci_cfg(F3, NBCFG, value); 2617 } 2618 2619 /* restore the NB Enable MCGCTL bit */ 2620 if (toggle_ecc_err_reporting(s, nid, OFF)) 2621 amd64_warn("Error restoring NB MCGCTL settings!\n"); 2622 } 2623 2624 /* 2625 * EDAC requires that the BIOS have ECC enabled before 2626 * taking over the processing of ECC errors. A command line 2627 * option allows to force-enable hardware ECC later in 2628 * enable_ecc_error_reporting(). 2629 */ 2630 static const char *ecc_msg = 2631 "ECC disabled in the BIOS or no ECC capability, module will not load.\n" 2632 " Either enable ECC checking or force module loading by setting " 2633 "'ecc_enable_override'.\n" 2634 " (Note that use of the override may cause unknown side effects.)\n"; 2635 2636 static bool ecc_enabled(struct pci_dev *F3, u16 nid) 2637 { 2638 u32 value; 2639 u8 ecc_en = 0; 2640 bool nb_mce_en = false; 2641 2642 amd64_read_pci_cfg(F3, NBCFG, &value); 2643 2644 ecc_en = !!(value & NBCFG_ECC_ENABLE); 2645 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled")); 2646 2647 nb_mce_en = nb_mce_bank_enabled_on_node(nid); 2648 if (!nb_mce_en) 2649 amd64_notice("NB MCE bank disabled, set MSR " 2650 "0x%08x[4] on node %d to enable.\n", 2651 MSR_IA32_MCG_CTL, nid); 2652 2653 if (!ecc_en || !nb_mce_en) { 2654 amd64_notice("%s", ecc_msg); 2655 return false; 2656 } 2657 return true; 2658 } 2659 2660 static int set_mc_sysfs_attrs(struct mem_ctl_info *mci) 2661 { 2662 struct amd64_pvt *pvt = mci->pvt_info; 2663 int rc; 2664 2665 rc = amd64_create_sysfs_dbg_files(mci); 2666 if (rc < 0) 2667 return rc; 2668 2669 if (pvt->fam >= 0x10) { 2670 rc = amd64_create_sysfs_inject_files(mci); 2671 if (rc < 0) 2672 return rc; 2673 } 2674 2675 return 0; 2676 } 2677 2678 static void del_mc_sysfs_attrs(struct mem_ctl_info *mci) 2679 { 2680 struct amd64_pvt *pvt = mci->pvt_info; 2681 2682 amd64_remove_sysfs_dbg_files(mci); 2683 2684 if (pvt->fam >= 0x10) 2685 amd64_remove_sysfs_inject_files(mci); 2686 } 2687 2688 static void setup_mci_misc_attrs(struct mem_ctl_info *mci, 2689 struct amd64_family_type *fam) 2690 { 2691 struct amd64_pvt *pvt = mci->pvt_info; 2692 2693 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2; 2694 mci->edac_ctl_cap = EDAC_FLAG_NONE; 2695 2696 if (pvt->nbcap & NBCAP_SECDED) 2697 mci->edac_ctl_cap |= EDAC_FLAG_SECDED; 2698 2699 if (pvt->nbcap & NBCAP_CHIPKILL) 2700 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED; 2701 2702 mci->edac_cap = determine_edac_cap(pvt); 2703 mci->mod_name = EDAC_MOD_STR; 2704 mci->mod_ver = EDAC_AMD64_VERSION; 2705 mci->ctl_name = fam->ctl_name; 2706 mci->dev_name = pci_name(pvt->F2); 2707 mci->ctl_page_to_phys = NULL; 2708 2709 /* memory scrubber interface */ 2710 mci->set_sdram_scrub_rate = set_scrub_rate; 2711 mci->get_sdram_scrub_rate = get_scrub_rate; 2712 } 2713 2714 /* 2715 * returns a pointer to the family descriptor on success, NULL otherwise. 2716 */ 2717 static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt) 2718 { 2719 struct amd64_family_type *fam_type = NULL; 2720 2721 pvt->ext_model = boot_cpu_data.x86_model >> 4; 2722 pvt->stepping = boot_cpu_data.x86_mask; 2723 pvt->model = boot_cpu_data.x86_model; 2724 pvt->fam = boot_cpu_data.x86; 2725 2726 switch (pvt->fam) { 2727 case 0xf: 2728 fam_type = &family_types[K8_CPUS]; 2729 pvt->ops = &family_types[K8_CPUS].ops; 2730 break; 2731 2732 case 0x10: 2733 fam_type = &family_types[F10_CPUS]; 2734 pvt->ops = &family_types[F10_CPUS].ops; 2735 break; 2736 2737 case 0x15: 2738 if (pvt->model == 0x30) { 2739 fam_type = &family_types[F15_M30H_CPUS]; 2740 pvt->ops = &family_types[F15_M30H_CPUS].ops; 2741 break; 2742 } else if (pvt->model == 0x60) { 2743 fam_type = &family_types[F15_M60H_CPUS]; 2744 pvt->ops = &family_types[F15_M60H_CPUS].ops; 2745 break; 2746 } 2747 2748 fam_type = &family_types[F15_CPUS]; 2749 pvt->ops = &family_types[F15_CPUS].ops; 2750 break; 2751 2752 case 0x16: 2753 if (pvt->model == 0x30) { 2754 fam_type = &family_types[F16_M30H_CPUS]; 2755 pvt->ops = &family_types[F16_M30H_CPUS].ops; 2756 break; 2757 } 2758 fam_type = &family_types[F16_CPUS]; 2759 pvt->ops = &family_types[F16_CPUS].ops; 2760 break; 2761 2762 default: 2763 amd64_err("Unsupported family!\n"); 2764 return NULL; 2765 } 2766 2767 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name, 2768 (pvt->fam == 0xf ? 2769 (pvt->ext_model >= K8_REV_F ? "revF or later " 2770 : "revE or earlier ") 2771 : ""), pvt->mc_node_id); 2772 return fam_type; 2773 } 2774 2775 static int init_one_instance(struct pci_dev *F2) 2776 { 2777 struct amd64_pvt *pvt = NULL; 2778 struct amd64_family_type *fam_type = NULL; 2779 struct mem_ctl_info *mci = NULL; 2780 struct edac_mc_layer layers[2]; 2781 int err = 0, ret; 2782 u16 nid = amd_get_node_id(F2); 2783 2784 ret = -ENOMEM; 2785 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL); 2786 if (!pvt) 2787 goto err_ret; 2788 2789 pvt->mc_node_id = nid; 2790 pvt->F2 = F2; 2791 2792 ret = -EINVAL; 2793 fam_type = per_family_init(pvt); 2794 if (!fam_type) 2795 goto err_free; 2796 2797 ret = -ENODEV; 2798 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id); 2799 if (err) 2800 goto err_free; 2801 2802 read_mc_regs(pvt); 2803 2804 /* 2805 * We need to determine how many memory channels there are. Then use 2806 * that information for calculating the size of the dynamic instance 2807 * tables in the 'mci' structure. 2808 */ 2809 ret = -EINVAL; 2810 pvt->channel_count = pvt->ops->early_channel_count(pvt); 2811 if (pvt->channel_count < 0) 2812 goto err_siblings; 2813 2814 ret = -ENOMEM; 2815 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; 2816 layers[0].size = pvt->csels[0].b_cnt; 2817 layers[0].is_virt_csrow = true; 2818 layers[1].type = EDAC_MC_LAYER_CHANNEL; 2819 2820 /* 2821 * Always allocate two channels since we can have setups with DIMMs on 2822 * only one channel. Also, this simplifies handling later for the price 2823 * of a couple of KBs tops. 2824 */ 2825 layers[1].size = 2; 2826 layers[1].is_virt_csrow = false; 2827 2828 mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0); 2829 if (!mci) 2830 goto err_siblings; 2831 2832 mci->pvt_info = pvt; 2833 mci->pdev = &pvt->F2->dev; 2834 2835 setup_mci_misc_attrs(mci, fam_type); 2836 2837 if (init_csrows(mci)) 2838 mci->edac_cap = EDAC_FLAG_NONE; 2839 2840 ret = -ENODEV; 2841 if (edac_mc_add_mc(mci)) { 2842 edac_dbg(1, "failed edac_mc_add_mc()\n"); 2843 goto err_add_mc; 2844 } 2845 if (set_mc_sysfs_attrs(mci)) { 2846 edac_dbg(1, "failed edac_mc_add_mc()\n"); 2847 goto err_add_sysfs; 2848 } 2849 2850 /* register stuff with EDAC MCE */ 2851 if (report_gart_errors) 2852 amd_report_gart_errors(true); 2853 2854 amd_register_ecc_decoder(decode_bus_error); 2855 2856 mcis[nid] = mci; 2857 2858 atomic_inc(&drv_instances); 2859 2860 return 0; 2861 2862 err_add_sysfs: 2863 edac_mc_del_mc(mci->pdev); 2864 err_add_mc: 2865 edac_mc_free(mci); 2866 2867 err_siblings: 2868 free_mc_sibling_devs(pvt); 2869 2870 err_free: 2871 kfree(pvt); 2872 2873 err_ret: 2874 return ret; 2875 } 2876 2877 static int probe_one_instance(struct pci_dev *pdev, 2878 const struct pci_device_id *mc_type) 2879 { 2880 u16 nid = amd_get_node_id(pdev); 2881 struct pci_dev *F3 = node_to_amd_nb(nid)->misc; 2882 struct ecc_settings *s; 2883 int ret = 0; 2884 2885 ret = pci_enable_device(pdev); 2886 if (ret < 0) { 2887 edac_dbg(0, "ret=%d\n", ret); 2888 return -EIO; 2889 } 2890 2891 ret = -ENOMEM; 2892 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL); 2893 if (!s) 2894 goto err_out; 2895 2896 ecc_stngs[nid] = s; 2897 2898 if (!ecc_enabled(F3, nid)) { 2899 ret = -ENODEV; 2900 2901 if (!ecc_enable_override) 2902 goto err_enable; 2903 2904 amd64_warn("Forcing ECC on!\n"); 2905 2906 if (!enable_ecc_error_reporting(s, nid, F3)) 2907 goto err_enable; 2908 } 2909 2910 ret = init_one_instance(pdev); 2911 if (ret < 0) { 2912 amd64_err("Error probing instance: %d\n", nid); 2913 restore_ecc_error_reporting(s, nid, F3); 2914 } 2915 2916 return ret; 2917 2918 err_enable: 2919 kfree(s); 2920 ecc_stngs[nid] = NULL; 2921 2922 err_out: 2923 return ret; 2924 } 2925 2926 static void remove_one_instance(struct pci_dev *pdev) 2927 { 2928 struct mem_ctl_info *mci; 2929 struct amd64_pvt *pvt; 2930 u16 nid = amd_get_node_id(pdev); 2931 struct pci_dev *F3 = node_to_amd_nb(nid)->misc; 2932 struct ecc_settings *s = ecc_stngs[nid]; 2933 2934 mci = find_mci_by_dev(&pdev->dev); 2935 WARN_ON(!mci); 2936 2937 del_mc_sysfs_attrs(mci); 2938 /* Remove from EDAC CORE tracking list */ 2939 mci = edac_mc_del_mc(&pdev->dev); 2940 if (!mci) 2941 return; 2942 2943 pvt = mci->pvt_info; 2944 2945 restore_ecc_error_reporting(s, nid, F3); 2946 2947 free_mc_sibling_devs(pvt); 2948 2949 /* unregister from EDAC MCE */ 2950 amd_report_gart_errors(false); 2951 amd_unregister_ecc_decoder(decode_bus_error); 2952 2953 kfree(ecc_stngs[nid]); 2954 ecc_stngs[nid] = NULL; 2955 2956 /* Free the EDAC CORE resources */ 2957 mci->pvt_info = NULL; 2958 mcis[nid] = NULL; 2959 2960 kfree(pvt); 2961 edac_mc_free(mci); 2962 } 2963 2964 /* 2965 * This table is part of the interface for loading drivers for PCI devices. The 2966 * PCI core identifies what devices are on a system during boot, and then 2967 * inquiry this table to see if this driver is for a given device found. 2968 */ 2969 static const struct pci_device_id amd64_pci_table[] = { 2970 { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_K8_NB_MEMCTL) }, 2971 { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_10H_NB_DRAM) }, 2972 { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_NB_F2) }, 2973 { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_M30H_NB_F2) }, 2974 { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_M60H_NB_F2) }, 2975 { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_16H_NB_F2) }, 2976 { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_16H_M30H_NB_F2) }, 2977 {0, } 2978 }; 2979 MODULE_DEVICE_TABLE(pci, amd64_pci_table); 2980 2981 static struct pci_driver amd64_pci_driver = { 2982 .name = EDAC_MOD_STR, 2983 .probe = probe_one_instance, 2984 .remove = remove_one_instance, 2985 .id_table = amd64_pci_table, 2986 }; 2987 2988 static void setup_pci_device(void) 2989 { 2990 struct mem_ctl_info *mci; 2991 struct amd64_pvt *pvt; 2992 2993 if (pci_ctl) 2994 return; 2995 2996 mci = mcis[0]; 2997 if (!mci) 2998 return; 2999 3000 pvt = mci->pvt_info; 3001 pci_ctl = edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR); 3002 if (!pci_ctl) { 3003 pr_warn("%s(): Unable to create PCI control\n", __func__); 3004 pr_warn("%s(): PCI error report via EDAC not set\n", __func__); 3005 } 3006 } 3007 3008 static int __init amd64_edac_init(void) 3009 { 3010 int err = -ENODEV; 3011 3012 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION); 3013 3014 opstate_init(); 3015 3016 if (amd_cache_northbridges() < 0) 3017 goto err_ret; 3018 3019 err = -ENOMEM; 3020 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL); 3021 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL); 3022 if (!(mcis && ecc_stngs)) 3023 goto err_free; 3024 3025 msrs = msrs_alloc(); 3026 if (!msrs) 3027 goto err_free; 3028 3029 err = pci_register_driver(&amd64_pci_driver); 3030 if (err) 3031 goto err_pci; 3032 3033 err = -ENODEV; 3034 if (!atomic_read(&drv_instances)) 3035 goto err_no_instances; 3036 3037 setup_pci_device(); 3038 3039 #ifdef CONFIG_X86_32 3040 amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR); 3041 #endif 3042 3043 return 0; 3044 3045 err_no_instances: 3046 pci_unregister_driver(&amd64_pci_driver); 3047 3048 err_pci: 3049 msrs_free(msrs); 3050 msrs = NULL; 3051 3052 err_free: 3053 kfree(mcis); 3054 mcis = NULL; 3055 3056 kfree(ecc_stngs); 3057 ecc_stngs = NULL; 3058 3059 err_ret: 3060 return err; 3061 } 3062 3063 static void __exit amd64_edac_exit(void) 3064 { 3065 if (pci_ctl) 3066 edac_pci_release_generic_ctl(pci_ctl); 3067 3068 pci_unregister_driver(&amd64_pci_driver); 3069 3070 kfree(ecc_stngs); 3071 ecc_stngs = NULL; 3072 3073 kfree(mcis); 3074 mcis = NULL; 3075 3076 msrs_free(msrs); 3077 msrs = NULL; 3078 } 3079 3080 module_init(amd64_edac_init); 3081 module_exit(amd64_edac_exit); 3082 3083 MODULE_LICENSE("GPL"); 3084 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, " 3085 "Dave Peterson, Thayne Harbaugh"); 3086 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - " 3087 EDAC_AMD64_VERSION); 3088 3089 module_param(edac_op_state, int, 0444); 3090 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); 3091