xref: /openbmc/linux/drivers/edac/amd64_edac.c (revision be709d48)
1 #include "amd64_edac.h"
2 #include <asm/amd_nb.h>
3 
4 static struct edac_pci_ctl_info *pci_ctl;
5 
6 static int report_gart_errors;
7 module_param(report_gart_errors, int, 0644);
8 
9 /*
10  * Set by command line parameter. If BIOS has enabled the ECC, this override is
11  * cleared to prevent re-enabling the hardware by this driver.
12  */
13 static int ecc_enable_override;
14 module_param(ecc_enable_override, int, 0644);
15 
16 static struct msr __percpu *msrs;
17 
18 /* Per-node stuff */
19 static struct ecc_settings **ecc_stngs;
20 
21 /*
22  * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
23  * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
24  * or higher value'.
25  *
26  *FIXME: Produce a better mapping/linearisation.
27  */
28 static const struct scrubrate {
29        u32 scrubval;           /* bit pattern for scrub rate */
30        u32 bandwidth;          /* bandwidth consumed (bytes/sec) */
31 } scrubrates[] = {
32 	{ 0x01, 1600000000UL},
33 	{ 0x02, 800000000UL},
34 	{ 0x03, 400000000UL},
35 	{ 0x04, 200000000UL},
36 	{ 0x05, 100000000UL},
37 	{ 0x06, 50000000UL},
38 	{ 0x07, 25000000UL},
39 	{ 0x08, 12284069UL},
40 	{ 0x09, 6274509UL},
41 	{ 0x0A, 3121951UL},
42 	{ 0x0B, 1560975UL},
43 	{ 0x0C, 781440UL},
44 	{ 0x0D, 390720UL},
45 	{ 0x0E, 195300UL},
46 	{ 0x0F, 97650UL},
47 	{ 0x10, 48854UL},
48 	{ 0x11, 24427UL},
49 	{ 0x12, 12213UL},
50 	{ 0x13, 6101UL},
51 	{ 0x14, 3051UL},
52 	{ 0x15, 1523UL},
53 	{ 0x16, 761UL},
54 	{ 0x00, 0UL},        /* scrubbing off */
55 };
56 
57 int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
58 			       u32 *val, const char *func)
59 {
60 	int err = 0;
61 
62 	err = pci_read_config_dword(pdev, offset, val);
63 	if (err)
64 		amd64_warn("%s: error reading F%dx%03x.\n",
65 			   func, PCI_FUNC(pdev->devfn), offset);
66 
67 	return err;
68 }
69 
70 int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
71 				u32 val, const char *func)
72 {
73 	int err = 0;
74 
75 	err = pci_write_config_dword(pdev, offset, val);
76 	if (err)
77 		amd64_warn("%s: error writing to F%dx%03x.\n",
78 			   func, PCI_FUNC(pdev->devfn), offset);
79 
80 	return err;
81 }
82 
83 /*
84  * Select DCT to which PCI cfg accesses are routed
85  */
86 static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
87 {
88 	u32 reg = 0;
89 
90 	amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
91 	reg &= (pvt->model == 0x30) ? ~3 : ~1;
92 	reg |= dct;
93 	amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
94 }
95 
96 /*
97  *
98  * Depending on the family, F2 DCT reads need special handling:
99  *
100  * K8: has a single DCT only and no address offsets >= 0x100
101  *
102  * F10h: each DCT has its own set of regs
103  *	DCT0 -> F2x040..
104  *	DCT1 -> F2x140..
105  *
106  * F16h: has only 1 DCT
107  *
108  * F15h: we select which DCT we access using F1x10C[DctCfgSel]
109  */
110 static inline int amd64_read_dct_pci_cfg(struct amd64_pvt *pvt, u8 dct,
111 					 int offset, u32 *val)
112 {
113 	switch (pvt->fam) {
114 	case 0xf:
115 		if (dct || offset >= 0x100)
116 			return -EINVAL;
117 		break;
118 
119 	case 0x10:
120 		if (dct) {
121 			/*
122 			 * Note: If ganging is enabled, barring the regs
123 			 * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx
124 			 * return 0. (cf. Section 2.8.1 F10h BKDG)
125 			 */
126 			if (dct_ganging_enabled(pvt))
127 				return 0;
128 
129 			offset += 0x100;
130 		}
131 		break;
132 
133 	case 0x15:
134 		/*
135 		 * F15h: F2x1xx addresses do not map explicitly to DCT1.
136 		 * We should select which DCT we access using F1x10C[DctCfgSel]
137 		 */
138 		dct = (dct && pvt->model == 0x30) ? 3 : dct;
139 		f15h_select_dct(pvt, dct);
140 		break;
141 
142 	case 0x16:
143 		if (dct)
144 			return -EINVAL;
145 		break;
146 
147 	default:
148 		break;
149 	}
150 	return amd64_read_pci_cfg(pvt->F2, offset, val);
151 }
152 
153 /*
154  * Memory scrubber control interface. For K8, memory scrubbing is handled by
155  * hardware and can involve L2 cache, dcache as well as the main memory. With
156  * F10, this is extended to L3 cache scrubbing on CPU models sporting that
157  * functionality.
158  *
159  * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
160  * (dram) over to cache lines. This is nasty, so we will use bandwidth in
161  * bytes/sec for the setting.
162  *
163  * Currently, we only do dram scrubbing. If the scrubbing is done in software on
164  * other archs, we might not have access to the caches directly.
165  */
166 
167 static inline void __f17h_set_scrubval(struct amd64_pvt *pvt, u32 scrubval)
168 {
169 	/*
170 	 * Fam17h supports scrub values between 0x5 and 0x14. Also, the values
171 	 * are shifted down by 0x5, so scrubval 0x5 is written to the register
172 	 * as 0x0, scrubval 0x6 as 0x1, etc.
173 	 */
174 	if (scrubval >= 0x5 && scrubval <= 0x14) {
175 		scrubval -= 0x5;
176 		pci_write_bits32(pvt->F6, F17H_SCR_LIMIT_ADDR, scrubval, 0xF);
177 		pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 1, 0x1);
178 	} else {
179 		pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 0, 0x1);
180 	}
181 }
182 /*
183  * Scan the scrub rate mapping table for a close or matching bandwidth value to
184  * issue. If requested is too big, then use last maximum value found.
185  */
186 static int __set_scrub_rate(struct amd64_pvt *pvt, u32 new_bw, u32 min_rate)
187 {
188 	u32 scrubval;
189 	int i;
190 
191 	/*
192 	 * map the configured rate (new_bw) to a value specific to the AMD64
193 	 * memory controller and apply to register. Search for the first
194 	 * bandwidth entry that is greater or equal than the setting requested
195 	 * and program that. If at last entry, turn off DRAM scrubbing.
196 	 *
197 	 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
198 	 * by falling back to the last element in scrubrates[].
199 	 */
200 	for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
201 		/*
202 		 * skip scrub rates which aren't recommended
203 		 * (see F10 BKDG, F3x58)
204 		 */
205 		if (scrubrates[i].scrubval < min_rate)
206 			continue;
207 
208 		if (scrubrates[i].bandwidth <= new_bw)
209 			break;
210 	}
211 
212 	scrubval = scrubrates[i].scrubval;
213 
214 	if (pvt->fam == 0x17 || pvt->fam == 0x18) {
215 		__f17h_set_scrubval(pvt, scrubval);
216 	} else if (pvt->fam == 0x15 && pvt->model == 0x60) {
217 		f15h_select_dct(pvt, 0);
218 		pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
219 		f15h_select_dct(pvt, 1);
220 		pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
221 	} else {
222 		pci_write_bits32(pvt->F3, SCRCTRL, scrubval, 0x001F);
223 	}
224 
225 	if (scrubval)
226 		return scrubrates[i].bandwidth;
227 
228 	return 0;
229 }
230 
231 static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
232 {
233 	struct amd64_pvt *pvt = mci->pvt_info;
234 	u32 min_scrubrate = 0x5;
235 
236 	if (pvt->fam == 0xf)
237 		min_scrubrate = 0x0;
238 
239 	if (pvt->fam == 0x15) {
240 		/* Erratum #505 */
241 		if (pvt->model < 0x10)
242 			f15h_select_dct(pvt, 0);
243 
244 		if (pvt->model == 0x60)
245 			min_scrubrate = 0x6;
246 	}
247 	return __set_scrub_rate(pvt, bw, min_scrubrate);
248 }
249 
250 static int get_scrub_rate(struct mem_ctl_info *mci)
251 {
252 	struct amd64_pvt *pvt = mci->pvt_info;
253 	int i, retval = -EINVAL;
254 	u32 scrubval = 0;
255 
256 	switch (pvt->fam) {
257 	case 0x15:
258 		/* Erratum #505 */
259 		if (pvt->model < 0x10)
260 			f15h_select_dct(pvt, 0);
261 
262 		if (pvt->model == 0x60)
263 			amd64_read_pci_cfg(pvt->F2, F15H_M60H_SCRCTRL, &scrubval);
264 		break;
265 
266 	case 0x17:
267 	case 0x18:
268 		amd64_read_pci_cfg(pvt->F6, F17H_SCR_BASE_ADDR, &scrubval);
269 		if (scrubval & BIT(0)) {
270 			amd64_read_pci_cfg(pvt->F6, F17H_SCR_LIMIT_ADDR, &scrubval);
271 			scrubval &= 0xF;
272 			scrubval += 0x5;
273 		} else {
274 			scrubval = 0;
275 		}
276 		break;
277 
278 	default:
279 		amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
280 		break;
281 	}
282 
283 	scrubval = scrubval & 0x001F;
284 
285 	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
286 		if (scrubrates[i].scrubval == scrubval) {
287 			retval = scrubrates[i].bandwidth;
288 			break;
289 		}
290 	}
291 	return retval;
292 }
293 
294 /*
295  * returns true if the SysAddr given by sys_addr matches the
296  * DRAM base/limit associated with node_id
297  */
298 static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid)
299 {
300 	u64 addr;
301 
302 	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
303 	 * all ones if the most significant implemented address bit is 1.
304 	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
305 	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
306 	 * Application Programming.
307 	 */
308 	addr = sys_addr & 0x000000ffffffffffull;
309 
310 	return ((addr >= get_dram_base(pvt, nid)) &&
311 		(addr <= get_dram_limit(pvt, nid)));
312 }
313 
314 /*
315  * Attempt to map a SysAddr to a node. On success, return a pointer to the
316  * mem_ctl_info structure for the node that the SysAddr maps to.
317  *
318  * On failure, return NULL.
319  */
320 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
321 						u64 sys_addr)
322 {
323 	struct amd64_pvt *pvt;
324 	u8 node_id;
325 	u32 intlv_en, bits;
326 
327 	/*
328 	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
329 	 * 3.4.4.2) registers to map the SysAddr to a node ID.
330 	 */
331 	pvt = mci->pvt_info;
332 
333 	/*
334 	 * The value of this field should be the same for all DRAM Base
335 	 * registers.  Therefore we arbitrarily choose to read it from the
336 	 * register for node 0.
337 	 */
338 	intlv_en = dram_intlv_en(pvt, 0);
339 
340 	if (intlv_en == 0) {
341 		for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
342 			if (base_limit_match(pvt, sys_addr, node_id))
343 				goto found;
344 		}
345 		goto err_no_match;
346 	}
347 
348 	if (unlikely((intlv_en != 0x01) &&
349 		     (intlv_en != 0x03) &&
350 		     (intlv_en != 0x07))) {
351 		amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
352 		return NULL;
353 	}
354 
355 	bits = (((u32) sys_addr) >> 12) & intlv_en;
356 
357 	for (node_id = 0; ; ) {
358 		if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
359 			break;	/* intlv_sel field matches */
360 
361 		if (++node_id >= DRAM_RANGES)
362 			goto err_no_match;
363 	}
364 
365 	/* sanity test for sys_addr */
366 	if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) {
367 		amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
368 			   "range for node %d with node interleaving enabled.\n",
369 			   __func__, sys_addr, node_id);
370 		return NULL;
371 	}
372 
373 found:
374 	return edac_mc_find((int)node_id);
375 
376 err_no_match:
377 	edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
378 		 (unsigned long)sys_addr);
379 
380 	return NULL;
381 }
382 
383 /*
384  * compute the CS base address of the @csrow on the DRAM controller @dct.
385  * For details see F2x[5C:40] in the processor's BKDG
386  */
387 static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
388 				 u64 *base, u64 *mask)
389 {
390 	u64 csbase, csmask, base_bits, mask_bits;
391 	u8 addr_shift;
392 
393 	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
394 		csbase		= pvt->csels[dct].csbases[csrow];
395 		csmask		= pvt->csels[dct].csmasks[csrow];
396 		base_bits	= GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
397 		mask_bits	= GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
398 		addr_shift	= 4;
399 
400 	/*
401 	 * F16h and F15h, models 30h and later need two addr_shift values:
402 	 * 8 for high and 6 for low (cf. F16h BKDG).
403 	 */
404 	} else if (pvt->fam == 0x16 ||
405 		  (pvt->fam == 0x15 && pvt->model >= 0x30)) {
406 		csbase          = pvt->csels[dct].csbases[csrow];
407 		csmask          = pvt->csels[dct].csmasks[csrow >> 1];
408 
409 		*base  = (csbase & GENMASK_ULL(15,  5)) << 6;
410 		*base |= (csbase & GENMASK_ULL(30, 19)) << 8;
411 
412 		*mask = ~0ULL;
413 		/* poke holes for the csmask */
414 		*mask &= ~((GENMASK_ULL(15, 5)  << 6) |
415 			   (GENMASK_ULL(30, 19) << 8));
416 
417 		*mask |= (csmask & GENMASK_ULL(15, 5))  << 6;
418 		*mask |= (csmask & GENMASK_ULL(30, 19)) << 8;
419 
420 		return;
421 	} else {
422 		csbase		= pvt->csels[dct].csbases[csrow];
423 		csmask		= pvt->csels[dct].csmasks[csrow >> 1];
424 		addr_shift	= 8;
425 
426 		if (pvt->fam == 0x15)
427 			base_bits = mask_bits =
428 				GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
429 		else
430 			base_bits = mask_bits =
431 				GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
432 	}
433 
434 	*base  = (csbase & base_bits) << addr_shift;
435 
436 	*mask  = ~0ULL;
437 	/* poke holes for the csmask */
438 	*mask &= ~(mask_bits << addr_shift);
439 	/* OR them in */
440 	*mask |= (csmask & mask_bits) << addr_shift;
441 }
442 
443 #define for_each_chip_select(i, dct, pvt) \
444 	for (i = 0; i < pvt->csels[dct].b_cnt; i++)
445 
446 #define chip_select_base(i, dct, pvt) \
447 	pvt->csels[dct].csbases[i]
448 
449 #define for_each_chip_select_mask(i, dct, pvt) \
450 	for (i = 0; i < pvt->csels[dct].m_cnt; i++)
451 
452 /*
453  * @input_addr is an InputAddr associated with the node given by mci. Return the
454  * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
455  */
456 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
457 {
458 	struct amd64_pvt *pvt;
459 	int csrow;
460 	u64 base, mask;
461 
462 	pvt = mci->pvt_info;
463 
464 	for_each_chip_select(csrow, 0, pvt) {
465 		if (!csrow_enabled(csrow, 0, pvt))
466 			continue;
467 
468 		get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
469 
470 		mask = ~mask;
471 
472 		if ((input_addr & mask) == (base & mask)) {
473 			edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
474 				 (unsigned long)input_addr, csrow,
475 				 pvt->mc_node_id);
476 
477 			return csrow;
478 		}
479 	}
480 	edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
481 		 (unsigned long)input_addr, pvt->mc_node_id);
482 
483 	return -1;
484 }
485 
486 /*
487  * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
488  * for the node represented by mci. Info is passed back in *hole_base,
489  * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
490  * info is invalid. Info may be invalid for either of the following reasons:
491  *
492  * - The revision of the node is not E or greater.  In this case, the DRAM Hole
493  *   Address Register does not exist.
494  *
495  * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
496  *   indicating that its contents are not valid.
497  *
498  * The values passed back in *hole_base, *hole_offset, and *hole_size are
499  * complete 32-bit values despite the fact that the bitfields in the DHAR
500  * only represent bits 31-24 of the base and offset values.
501  */
502 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
503 			     u64 *hole_offset, u64 *hole_size)
504 {
505 	struct amd64_pvt *pvt = mci->pvt_info;
506 
507 	/* only revE and later have the DRAM Hole Address Register */
508 	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
509 		edac_dbg(1, "  revision %d for node %d does not support DHAR\n",
510 			 pvt->ext_model, pvt->mc_node_id);
511 		return 1;
512 	}
513 
514 	/* valid for Fam10h and above */
515 	if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
516 		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this system\n");
517 		return 1;
518 	}
519 
520 	if (!dhar_valid(pvt)) {
521 		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this node %d\n",
522 			 pvt->mc_node_id);
523 		return 1;
524 	}
525 
526 	/* This node has Memory Hoisting */
527 
528 	/* +------------------+--------------------+--------------------+-----
529 	 * | memory           | DRAM hole          | relocated          |
530 	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
531 	 * |                  |                    | DRAM hole          |
532 	 * |                  |                    | [0x100000000,      |
533 	 * |                  |                    |  (0x100000000+     |
534 	 * |                  |                    |   (0xffffffff-x))] |
535 	 * +------------------+--------------------+--------------------+-----
536 	 *
537 	 * Above is a diagram of physical memory showing the DRAM hole and the
538 	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
539 	 * starts at address x (the base address) and extends through address
540 	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
541 	 * addresses in the hole so that they start at 0x100000000.
542 	 */
543 
544 	*hole_base = dhar_base(pvt);
545 	*hole_size = (1ULL << 32) - *hole_base;
546 
547 	*hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
548 					: k8_dhar_offset(pvt);
549 
550 	edac_dbg(1, "  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
551 		 pvt->mc_node_id, (unsigned long)*hole_base,
552 		 (unsigned long)*hole_offset, (unsigned long)*hole_size);
553 
554 	return 0;
555 }
556 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
557 
558 /*
559  * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
560  * assumed that sys_addr maps to the node given by mci.
561  *
562  * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
563  * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
564  * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
565  * then it is also involved in translating a SysAddr to a DramAddr. Sections
566  * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
567  * These parts of the documentation are unclear. I interpret them as follows:
568  *
569  * When node n receives a SysAddr, it processes the SysAddr as follows:
570  *
571  * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
572  *    Limit registers for node n. If the SysAddr is not within the range
573  *    specified by the base and limit values, then node n ignores the Sysaddr
574  *    (since it does not map to node n). Otherwise continue to step 2 below.
575  *
576  * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
577  *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
578  *    the range of relocated addresses (starting at 0x100000000) from the DRAM
579  *    hole. If not, skip to step 3 below. Else get the value of the
580  *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
581  *    offset defined by this value from the SysAddr.
582  *
583  * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
584  *    Base register for node n. To obtain the DramAddr, subtract the base
585  *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
586  */
587 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
588 {
589 	struct amd64_pvt *pvt = mci->pvt_info;
590 	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
591 	int ret;
592 
593 	dram_base = get_dram_base(pvt, pvt->mc_node_id);
594 
595 	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
596 				      &hole_size);
597 	if (!ret) {
598 		if ((sys_addr >= (1ULL << 32)) &&
599 		    (sys_addr < ((1ULL << 32) + hole_size))) {
600 			/* use DHAR to translate SysAddr to DramAddr */
601 			dram_addr = sys_addr - hole_offset;
602 
603 			edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
604 				 (unsigned long)sys_addr,
605 				 (unsigned long)dram_addr);
606 
607 			return dram_addr;
608 		}
609 	}
610 
611 	/*
612 	 * Translate the SysAddr to a DramAddr as shown near the start of
613 	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
614 	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
615 	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
616 	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
617 	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
618 	 * Programmer's Manual Volume 1 Application Programming.
619 	 */
620 	dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base;
621 
622 	edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
623 		 (unsigned long)sys_addr, (unsigned long)dram_addr);
624 	return dram_addr;
625 }
626 
627 /*
628  * @intlv_en is the value of the IntlvEn field from a DRAM Base register
629  * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
630  * for node interleaving.
631  */
632 static int num_node_interleave_bits(unsigned intlv_en)
633 {
634 	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
635 	int n;
636 
637 	BUG_ON(intlv_en > 7);
638 	n = intlv_shift_table[intlv_en];
639 	return n;
640 }
641 
642 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
643 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
644 {
645 	struct amd64_pvt *pvt;
646 	int intlv_shift;
647 	u64 input_addr;
648 
649 	pvt = mci->pvt_info;
650 
651 	/*
652 	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
653 	 * concerning translating a DramAddr to an InputAddr.
654 	 */
655 	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
656 	input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) +
657 		      (dram_addr & 0xfff);
658 
659 	edac_dbg(2, "  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
660 		 intlv_shift, (unsigned long)dram_addr,
661 		 (unsigned long)input_addr);
662 
663 	return input_addr;
664 }
665 
666 /*
667  * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
668  * assumed that @sys_addr maps to the node given by mci.
669  */
670 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
671 {
672 	u64 input_addr;
673 
674 	input_addr =
675 	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
676 
677 	edac_dbg(2, "SysAddr 0x%lx translates to InputAddr 0x%lx\n",
678 		 (unsigned long)sys_addr, (unsigned long)input_addr);
679 
680 	return input_addr;
681 }
682 
683 /* Map the Error address to a PAGE and PAGE OFFSET. */
684 static inline void error_address_to_page_and_offset(u64 error_address,
685 						    struct err_info *err)
686 {
687 	err->page = (u32) (error_address >> PAGE_SHIFT);
688 	err->offset = ((u32) error_address) & ~PAGE_MASK;
689 }
690 
691 /*
692  * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
693  * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
694  * of a node that detected an ECC memory error.  mci represents the node that
695  * the error address maps to (possibly different from the node that detected
696  * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
697  * error.
698  */
699 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
700 {
701 	int csrow;
702 
703 	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
704 
705 	if (csrow == -1)
706 		amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
707 				  "address 0x%lx\n", (unsigned long)sys_addr);
708 	return csrow;
709 }
710 
711 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
712 
713 /*
714  * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
715  * are ECC capable.
716  */
717 static unsigned long determine_edac_cap(struct amd64_pvt *pvt)
718 {
719 	unsigned long edac_cap = EDAC_FLAG_NONE;
720 	u8 bit;
721 
722 	if (pvt->umc) {
723 		u8 i, umc_en_mask = 0, dimm_ecc_en_mask = 0;
724 
725 		for (i = 0; i < NUM_UMCS; i++) {
726 			if (!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT))
727 				continue;
728 
729 			umc_en_mask |= BIT(i);
730 
731 			/* UMC Configuration bit 12 (DimmEccEn) */
732 			if (pvt->umc[i].umc_cfg & BIT(12))
733 				dimm_ecc_en_mask |= BIT(i);
734 		}
735 
736 		if (umc_en_mask == dimm_ecc_en_mask)
737 			edac_cap = EDAC_FLAG_SECDED;
738 	} else {
739 		bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
740 			? 19
741 			: 17;
742 
743 		if (pvt->dclr0 & BIT(bit))
744 			edac_cap = EDAC_FLAG_SECDED;
745 	}
746 
747 	return edac_cap;
748 }
749 
750 static void debug_display_dimm_sizes(struct amd64_pvt *, u8);
751 
752 static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
753 {
754 	edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
755 
756 	if (pvt->dram_type == MEM_LRDDR3) {
757 		u32 dcsm = pvt->csels[chan].csmasks[0];
758 		/*
759 		 * It's assumed all LRDIMMs in a DCT are going to be of
760 		 * same 'type' until proven otherwise. So, use a cs
761 		 * value of '0' here to get dcsm value.
762 		 */
763 		edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm & 0x3));
764 	}
765 
766 	edac_dbg(1, "All DIMMs support ECC:%s\n",
767 		    (dclr & BIT(19)) ? "yes" : "no");
768 
769 
770 	edac_dbg(1, "  PAR/ERR parity: %s\n",
771 		 (dclr & BIT(8)) ?  "enabled" : "disabled");
772 
773 	if (pvt->fam == 0x10)
774 		edac_dbg(1, "  DCT 128bit mode width: %s\n",
775 			 (dclr & BIT(11)) ?  "128b" : "64b");
776 
777 	edac_dbg(1, "  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
778 		 (dclr & BIT(12)) ?  "yes" : "no",
779 		 (dclr & BIT(13)) ?  "yes" : "no",
780 		 (dclr & BIT(14)) ?  "yes" : "no",
781 		 (dclr & BIT(15)) ?  "yes" : "no");
782 }
783 
784 static void debug_display_dimm_sizes_df(struct amd64_pvt *pvt, u8 ctrl)
785 {
786 	int dimm, size0, size1, cs0, cs1;
787 
788 	edac_printk(KERN_DEBUG, EDAC_MC, "UMC%d chip selects:\n", ctrl);
789 
790 	for (dimm = 0; dimm < 4; dimm++) {
791 		size0 = 0;
792 		cs0 = dimm * 2;
793 
794 		if (csrow_enabled(cs0, ctrl, pvt))
795 			size0 = pvt->ops->dbam_to_cs(pvt, ctrl, 0, cs0);
796 
797 		size1 = 0;
798 		cs1 = dimm * 2 + 1;
799 
800 		if (csrow_enabled(cs1, ctrl, pvt))
801 			size1 = pvt->ops->dbam_to_cs(pvt, ctrl, 0, cs1);
802 
803 		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
804 				cs0,	size0,
805 				cs1,	size1);
806 	}
807 }
808 
809 static void __dump_misc_regs_df(struct amd64_pvt *pvt)
810 {
811 	struct amd64_umc *umc;
812 	u32 i, tmp, umc_base;
813 
814 	for (i = 0; i < NUM_UMCS; i++) {
815 		umc_base = get_umc_base(i);
816 		umc = &pvt->umc[i];
817 
818 		edac_dbg(1, "UMC%d DIMM cfg: 0x%x\n", i, umc->dimm_cfg);
819 		edac_dbg(1, "UMC%d UMC cfg: 0x%x\n", i, umc->umc_cfg);
820 		edac_dbg(1, "UMC%d SDP ctrl: 0x%x\n", i, umc->sdp_ctrl);
821 		edac_dbg(1, "UMC%d ECC ctrl: 0x%x\n", i, umc->ecc_ctrl);
822 
823 		amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ECC_BAD_SYMBOL, &tmp);
824 		edac_dbg(1, "UMC%d ECC bad symbol: 0x%x\n", i, tmp);
825 
826 		amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_UMC_CAP, &tmp);
827 		edac_dbg(1, "UMC%d UMC cap: 0x%x\n", i, tmp);
828 		edac_dbg(1, "UMC%d UMC cap high: 0x%x\n", i, umc->umc_cap_hi);
829 
830 		edac_dbg(1, "UMC%d ECC capable: %s, ChipKill ECC capable: %s\n",
831 				i, (umc->umc_cap_hi & BIT(30)) ? "yes" : "no",
832 				    (umc->umc_cap_hi & BIT(31)) ? "yes" : "no");
833 		edac_dbg(1, "UMC%d All DIMMs support ECC: %s\n",
834 				i, (umc->umc_cfg & BIT(12)) ? "yes" : "no");
835 		edac_dbg(1, "UMC%d x4 DIMMs present: %s\n",
836 				i, (umc->dimm_cfg & BIT(6)) ? "yes" : "no");
837 		edac_dbg(1, "UMC%d x16 DIMMs present: %s\n",
838 				i, (umc->dimm_cfg & BIT(7)) ? "yes" : "no");
839 
840 		if (pvt->dram_type == MEM_LRDDR4) {
841 			amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ADDR_CFG, &tmp);
842 			edac_dbg(1, "UMC%d LRDIMM %dx rank multiply\n",
843 					i, 1 << ((tmp >> 4) & 0x3));
844 		}
845 
846 		debug_display_dimm_sizes_df(pvt, i);
847 	}
848 
849 	edac_dbg(1, "F0x104 (DRAM Hole Address): 0x%08x, base: 0x%08x\n",
850 		 pvt->dhar, dhar_base(pvt));
851 }
852 
853 /* Display and decode various NB registers for debug purposes. */
854 static void __dump_misc_regs(struct amd64_pvt *pvt)
855 {
856 	edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
857 
858 	edac_dbg(1, "  NB two channel DRAM capable: %s\n",
859 		 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
860 
861 	edac_dbg(1, "  ECC capable: %s, ChipKill ECC capable: %s\n",
862 		 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
863 		 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
864 
865 	debug_dump_dramcfg_low(pvt, pvt->dclr0, 0);
866 
867 	edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
868 
869 	edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
870 		 pvt->dhar, dhar_base(pvt),
871 		 (pvt->fam == 0xf) ? k8_dhar_offset(pvt)
872 				   : f10_dhar_offset(pvt));
873 
874 	debug_display_dimm_sizes(pvt, 0);
875 
876 	/* everything below this point is Fam10h and above */
877 	if (pvt->fam == 0xf)
878 		return;
879 
880 	debug_display_dimm_sizes(pvt, 1);
881 
882 	/* Only if NOT ganged does dclr1 have valid info */
883 	if (!dct_ganging_enabled(pvt))
884 		debug_dump_dramcfg_low(pvt, pvt->dclr1, 1);
885 }
886 
887 /* Display and decode various NB registers for debug purposes. */
888 static void dump_misc_regs(struct amd64_pvt *pvt)
889 {
890 	if (pvt->umc)
891 		__dump_misc_regs_df(pvt);
892 	else
893 		__dump_misc_regs(pvt);
894 
895 	edac_dbg(1, "  DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
896 
897 	amd64_info("using %s syndromes.\n",
898 			((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
899 }
900 
901 /*
902  * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
903  */
904 static void prep_chip_selects(struct amd64_pvt *pvt)
905 {
906 	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
907 		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
908 		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
909 	} else if (pvt->fam == 0x15 && pvt->model == 0x30) {
910 		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
911 		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
912 	} else {
913 		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
914 		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
915 	}
916 }
917 
918 /*
919  * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
920  */
921 static void read_dct_base_mask(struct amd64_pvt *pvt)
922 {
923 	int base_reg0, base_reg1, mask_reg0, mask_reg1, cs;
924 
925 	prep_chip_selects(pvt);
926 
927 	if (pvt->umc) {
928 		base_reg0 = get_umc_base(0) + UMCCH_BASE_ADDR;
929 		base_reg1 = get_umc_base(1) + UMCCH_BASE_ADDR;
930 		mask_reg0 = get_umc_base(0) + UMCCH_ADDR_MASK;
931 		mask_reg1 = get_umc_base(1) + UMCCH_ADDR_MASK;
932 	} else {
933 		base_reg0 = DCSB0;
934 		base_reg1 = DCSB1;
935 		mask_reg0 = DCSM0;
936 		mask_reg1 = DCSM1;
937 	}
938 
939 	for_each_chip_select(cs, 0, pvt) {
940 		int reg0   = base_reg0 + (cs * 4);
941 		int reg1   = base_reg1 + (cs * 4);
942 		u32 *base0 = &pvt->csels[0].csbases[cs];
943 		u32 *base1 = &pvt->csels[1].csbases[cs];
944 
945 		if (pvt->umc) {
946 			if (!amd_smn_read(pvt->mc_node_id, reg0, base0))
947 				edac_dbg(0, "  DCSB0[%d]=0x%08x reg: 0x%x\n",
948 					 cs, *base0, reg0);
949 
950 			if (!amd_smn_read(pvt->mc_node_id, reg1, base1))
951 				edac_dbg(0, "  DCSB1[%d]=0x%08x reg: 0x%x\n",
952 					 cs, *base1, reg1);
953 		} else {
954 			if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, base0))
955 				edac_dbg(0, "  DCSB0[%d]=0x%08x reg: F2x%x\n",
956 					 cs, *base0, reg0);
957 
958 			if (pvt->fam == 0xf)
959 				continue;
960 
961 			if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, base1))
962 				edac_dbg(0, "  DCSB1[%d]=0x%08x reg: F2x%x\n",
963 					 cs, *base1, (pvt->fam == 0x10) ? reg1
964 								: reg0);
965 		}
966 	}
967 
968 	for_each_chip_select_mask(cs, 0, pvt) {
969 		int reg0   = mask_reg0 + (cs * 4);
970 		int reg1   = mask_reg1 + (cs * 4);
971 		u32 *mask0 = &pvt->csels[0].csmasks[cs];
972 		u32 *mask1 = &pvt->csels[1].csmasks[cs];
973 
974 		if (pvt->umc) {
975 			if (!amd_smn_read(pvt->mc_node_id, reg0, mask0))
976 				edac_dbg(0, "    DCSM0[%d]=0x%08x reg: 0x%x\n",
977 					 cs, *mask0, reg0);
978 
979 			if (!amd_smn_read(pvt->mc_node_id, reg1, mask1))
980 				edac_dbg(0, "    DCSM1[%d]=0x%08x reg: 0x%x\n",
981 					 cs, *mask1, reg1);
982 		} else {
983 			if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, mask0))
984 				edac_dbg(0, "    DCSM0[%d]=0x%08x reg: F2x%x\n",
985 					 cs, *mask0, reg0);
986 
987 			if (pvt->fam == 0xf)
988 				continue;
989 
990 			if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, mask1))
991 				edac_dbg(0, "    DCSM1[%d]=0x%08x reg: F2x%x\n",
992 					 cs, *mask1, (pvt->fam == 0x10) ? reg1
993 								: reg0);
994 		}
995 	}
996 }
997 
998 static void determine_memory_type(struct amd64_pvt *pvt)
999 {
1000 	u32 dram_ctrl, dcsm;
1001 
1002 	switch (pvt->fam) {
1003 	case 0xf:
1004 		if (pvt->ext_model >= K8_REV_F)
1005 			goto ddr3;
1006 
1007 		pvt->dram_type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
1008 		return;
1009 
1010 	case 0x10:
1011 		if (pvt->dchr0 & DDR3_MODE)
1012 			goto ddr3;
1013 
1014 		pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
1015 		return;
1016 
1017 	case 0x15:
1018 		if (pvt->model < 0x60)
1019 			goto ddr3;
1020 
1021 		/*
1022 		 * Model 0x60h needs special handling:
1023 		 *
1024 		 * We use a Chip Select value of '0' to obtain dcsm.
1025 		 * Theoretically, it is possible to populate LRDIMMs of different
1026 		 * 'Rank' value on a DCT. But this is not the common case. So,
1027 		 * it's reasonable to assume all DIMMs are going to be of same
1028 		 * 'type' until proven otherwise.
1029 		 */
1030 		amd64_read_dct_pci_cfg(pvt, 0, DRAM_CONTROL, &dram_ctrl);
1031 		dcsm = pvt->csels[0].csmasks[0];
1032 
1033 		if (((dram_ctrl >> 8) & 0x7) == 0x2)
1034 			pvt->dram_type = MEM_DDR4;
1035 		else if (pvt->dclr0 & BIT(16))
1036 			pvt->dram_type = MEM_DDR3;
1037 		else if (dcsm & 0x3)
1038 			pvt->dram_type = MEM_LRDDR3;
1039 		else
1040 			pvt->dram_type = MEM_RDDR3;
1041 
1042 		return;
1043 
1044 	case 0x16:
1045 		goto ddr3;
1046 
1047 	case 0x17:
1048 	case 0x18:
1049 		if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(5))
1050 			pvt->dram_type = MEM_LRDDR4;
1051 		else if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(4))
1052 			pvt->dram_type = MEM_RDDR4;
1053 		else
1054 			pvt->dram_type = MEM_DDR4;
1055 		return;
1056 
1057 	default:
1058 		WARN(1, KERN_ERR "%s: Family??? 0x%x\n", __func__, pvt->fam);
1059 		pvt->dram_type = MEM_EMPTY;
1060 	}
1061 	return;
1062 
1063 ddr3:
1064 	pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
1065 }
1066 
1067 /* Get the number of DCT channels the memory controller is using. */
1068 static int k8_early_channel_count(struct amd64_pvt *pvt)
1069 {
1070 	int flag;
1071 
1072 	if (pvt->ext_model >= K8_REV_F)
1073 		/* RevF (NPT) and later */
1074 		flag = pvt->dclr0 & WIDTH_128;
1075 	else
1076 		/* RevE and earlier */
1077 		flag = pvt->dclr0 & REVE_WIDTH_128;
1078 
1079 	/* not used */
1080 	pvt->dclr1 = 0;
1081 
1082 	return (flag) ? 2 : 1;
1083 }
1084 
1085 /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
1086 static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
1087 {
1088 	u16 mce_nid = amd_get_nb_id(m->extcpu);
1089 	struct mem_ctl_info *mci;
1090 	u8 start_bit = 1;
1091 	u8 end_bit   = 47;
1092 	u64 addr;
1093 
1094 	mci = edac_mc_find(mce_nid);
1095 	if (!mci)
1096 		return 0;
1097 
1098 	pvt = mci->pvt_info;
1099 
1100 	if (pvt->fam == 0xf) {
1101 		start_bit = 3;
1102 		end_bit   = 39;
1103 	}
1104 
1105 	addr = m->addr & GENMASK_ULL(end_bit, start_bit);
1106 
1107 	/*
1108 	 * Erratum 637 workaround
1109 	 */
1110 	if (pvt->fam == 0x15) {
1111 		u64 cc6_base, tmp_addr;
1112 		u32 tmp;
1113 		u8 intlv_en;
1114 
1115 		if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
1116 			return addr;
1117 
1118 
1119 		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
1120 		intlv_en = tmp >> 21 & 0x7;
1121 
1122 		/* add [47:27] + 3 trailing bits */
1123 		cc6_base  = (tmp & GENMASK_ULL(20, 0)) << 3;
1124 
1125 		/* reverse and add DramIntlvEn */
1126 		cc6_base |= intlv_en ^ 0x7;
1127 
1128 		/* pin at [47:24] */
1129 		cc6_base <<= 24;
1130 
1131 		if (!intlv_en)
1132 			return cc6_base | (addr & GENMASK_ULL(23, 0));
1133 
1134 		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
1135 
1136 							/* faster log2 */
1137 		tmp_addr  = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1);
1138 
1139 		/* OR DramIntlvSel into bits [14:12] */
1140 		tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9;
1141 
1142 		/* add remaining [11:0] bits from original MC4_ADDR */
1143 		tmp_addr |= addr & GENMASK_ULL(11, 0);
1144 
1145 		return cc6_base | tmp_addr;
1146 	}
1147 
1148 	return addr;
1149 }
1150 
1151 static struct pci_dev *pci_get_related_function(unsigned int vendor,
1152 						unsigned int device,
1153 						struct pci_dev *related)
1154 {
1155 	struct pci_dev *dev = NULL;
1156 
1157 	while ((dev = pci_get_device(vendor, device, dev))) {
1158 		if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
1159 		    (dev->bus->number == related->bus->number) &&
1160 		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1161 			break;
1162 	}
1163 
1164 	return dev;
1165 }
1166 
1167 static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
1168 {
1169 	struct amd_northbridge *nb;
1170 	struct pci_dev *f1 = NULL;
1171 	unsigned int pci_func;
1172 	int off = range << 3;
1173 	u32 llim;
1174 
1175 	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off,  &pvt->ranges[range].base.lo);
1176 	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
1177 
1178 	if (pvt->fam == 0xf)
1179 		return;
1180 
1181 	if (!dram_rw(pvt, range))
1182 		return;
1183 
1184 	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off,  &pvt->ranges[range].base.hi);
1185 	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
1186 
1187 	/* F15h: factor in CC6 save area by reading dst node's limit reg */
1188 	if (pvt->fam != 0x15)
1189 		return;
1190 
1191 	nb = node_to_amd_nb(dram_dst_node(pvt, range));
1192 	if (WARN_ON(!nb))
1193 		return;
1194 
1195 	if (pvt->model == 0x60)
1196 		pci_func = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1;
1197 	else if (pvt->model == 0x30)
1198 		pci_func = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1;
1199 	else
1200 		pci_func = PCI_DEVICE_ID_AMD_15H_NB_F1;
1201 
1202 	f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
1203 	if (WARN_ON(!f1))
1204 		return;
1205 
1206 	amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
1207 
1208 	pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0);
1209 
1210 				    /* {[39:27],111b} */
1211 	pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
1212 
1213 	pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0);
1214 
1215 				    /* [47:40] */
1216 	pvt->ranges[range].lim.hi |= llim >> 13;
1217 
1218 	pci_dev_put(f1);
1219 }
1220 
1221 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1222 				    struct err_info *err)
1223 {
1224 	struct amd64_pvt *pvt = mci->pvt_info;
1225 
1226 	error_address_to_page_and_offset(sys_addr, err);
1227 
1228 	/*
1229 	 * Find out which node the error address belongs to. This may be
1230 	 * different from the node that detected the error.
1231 	 */
1232 	err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
1233 	if (!err->src_mci) {
1234 		amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
1235 			     (unsigned long)sys_addr);
1236 		err->err_code = ERR_NODE;
1237 		return;
1238 	}
1239 
1240 	/* Now map the sys_addr to a CSROW */
1241 	err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
1242 	if (err->csrow < 0) {
1243 		err->err_code = ERR_CSROW;
1244 		return;
1245 	}
1246 
1247 	/* CHIPKILL enabled */
1248 	if (pvt->nbcfg & NBCFG_CHIPKILL) {
1249 		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
1250 		if (err->channel < 0) {
1251 			/*
1252 			 * Syndrome didn't map, so we don't know which of the
1253 			 * 2 DIMMs is in error. So we need to ID 'both' of them
1254 			 * as suspect.
1255 			 */
1256 			amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
1257 				      "possible error reporting race\n",
1258 				      err->syndrome);
1259 			err->err_code = ERR_CHANNEL;
1260 			return;
1261 		}
1262 	} else {
1263 		/*
1264 		 * non-chipkill ecc mode
1265 		 *
1266 		 * The k8 documentation is unclear about how to determine the
1267 		 * channel number when using non-chipkill memory.  This method
1268 		 * was obtained from email communication with someone at AMD.
1269 		 * (Wish the email was placed in this comment - norsk)
1270 		 */
1271 		err->channel = ((sys_addr & BIT(3)) != 0);
1272 	}
1273 }
1274 
1275 static int ddr2_cs_size(unsigned i, bool dct_width)
1276 {
1277 	unsigned shift = 0;
1278 
1279 	if (i <= 2)
1280 		shift = i;
1281 	else if (!(i & 0x1))
1282 		shift = i >> 1;
1283 	else
1284 		shift = (i + 1) >> 1;
1285 
1286 	return 128 << (shift + !!dct_width);
1287 }
1288 
1289 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1290 				  unsigned cs_mode, int cs_mask_nr)
1291 {
1292 	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1293 
1294 	if (pvt->ext_model >= K8_REV_F) {
1295 		WARN_ON(cs_mode > 11);
1296 		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1297 	}
1298 	else if (pvt->ext_model >= K8_REV_D) {
1299 		unsigned diff;
1300 		WARN_ON(cs_mode > 10);
1301 
1302 		/*
1303 		 * the below calculation, besides trying to win an obfuscated C
1304 		 * contest, maps cs_mode values to DIMM chip select sizes. The
1305 		 * mappings are:
1306 		 *
1307 		 * cs_mode	CS size (mb)
1308 		 * =======	============
1309 		 * 0		32
1310 		 * 1		64
1311 		 * 2		128
1312 		 * 3		128
1313 		 * 4		256
1314 		 * 5		512
1315 		 * 6		256
1316 		 * 7		512
1317 		 * 8		1024
1318 		 * 9		1024
1319 		 * 10		2048
1320 		 *
1321 		 * Basically, it calculates a value with which to shift the
1322 		 * smallest CS size of 32MB.
1323 		 *
1324 		 * ddr[23]_cs_size have a similar purpose.
1325 		 */
1326 		diff = cs_mode/3 + (unsigned)(cs_mode > 5);
1327 
1328 		return 32 << (cs_mode - diff);
1329 	}
1330 	else {
1331 		WARN_ON(cs_mode > 6);
1332 		return 32 << cs_mode;
1333 	}
1334 }
1335 
1336 /*
1337  * Get the number of DCT channels in use.
1338  *
1339  * Return:
1340  *	number of Memory Channels in operation
1341  * Pass back:
1342  *	contents of the DCL0_LOW register
1343  */
1344 static int f1x_early_channel_count(struct amd64_pvt *pvt)
1345 {
1346 	int i, j, channels = 0;
1347 
1348 	/* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1349 	if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
1350 		return 2;
1351 
1352 	/*
1353 	 * Need to check if in unganged mode: In such, there are 2 channels,
1354 	 * but they are not in 128 bit mode and thus the above 'dclr0' status
1355 	 * bit will be OFF.
1356 	 *
1357 	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1358 	 * their CSEnable bit on. If so, then SINGLE DIMM case.
1359 	 */
1360 	edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
1361 
1362 	/*
1363 	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1364 	 * is more than just one DIMM present in unganged mode. Need to check
1365 	 * both controllers since DIMMs can be placed in either one.
1366 	 */
1367 	for (i = 0; i < 2; i++) {
1368 		u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1369 
1370 		for (j = 0; j < 4; j++) {
1371 			if (DBAM_DIMM(j, dbam) > 0) {
1372 				channels++;
1373 				break;
1374 			}
1375 		}
1376 	}
1377 
1378 	if (channels > 2)
1379 		channels = 2;
1380 
1381 	amd64_info("MCT channel count: %d\n", channels);
1382 
1383 	return channels;
1384 }
1385 
1386 static int f17_early_channel_count(struct amd64_pvt *pvt)
1387 {
1388 	int i, channels = 0;
1389 
1390 	/* SDP Control bit 31 (SdpInit) is clear for unused UMC channels */
1391 	for (i = 0; i < NUM_UMCS; i++)
1392 		channels += !!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT);
1393 
1394 	amd64_info("MCT channel count: %d\n", channels);
1395 
1396 	return channels;
1397 }
1398 
1399 static int ddr3_cs_size(unsigned i, bool dct_width)
1400 {
1401 	unsigned shift = 0;
1402 	int cs_size = 0;
1403 
1404 	if (i == 0 || i == 3 || i == 4)
1405 		cs_size = -1;
1406 	else if (i <= 2)
1407 		shift = i;
1408 	else if (i == 12)
1409 		shift = 7;
1410 	else if (!(i & 0x1))
1411 		shift = i >> 1;
1412 	else
1413 		shift = (i + 1) >> 1;
1414 
1415 	if (cs_size != -1)
1416 		cs_size = (128 * (1 << !!dct_width)) << shift;
1417 
1418 	return cs_size;
1419 }
1420 
1421 static int ddr3_lrdimm_cs_size(unsigned i, unsigned rank_multiply)
1422 {
1423 	unsigned shift = 0;
1424 	int cs_size = 0;
1425 
1426 	if (i < 4 || i == 6)
1427 		cs_size = -1;
1428 	else if (i == 12)
1429 		shift = 7;
1430 	else if (!(i & 0x1))
1431 		shift = i >> 1;
1432 	else
1433 		shift = (i + 1) >> 1;
1434 
1435 	if (cs_size != -1)
1436 		cs_size = rank_multiply * (128 << shift);
1437 
1438 	return cs_size;
1439 }
1440 
1441 static int ddr4_cs_size(unsigned i)
1442 {
1443 	int cs_size = 0;
1444 
1445 	if (i == 0)
1446 		cs_size = -1;
1447 	else if (i == 1)
1448 		cs_size = 1024;
1449 	else
1450 		/* Min cs_size = 1G */
1451 		cs_size = 1024 * (1 << (i >> 1));
1452 
1453 	return cs_size;
1454 }
1455 
1456 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1457 				   unsigned cs_mode, int cs_mask_nr)
1458 {
1459 	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1460 
1461 	WARN_ON(cs_mode > 11);
1462 
1463 	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1464 		return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1465 	else
1466 		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1467 }
1468 
1469 /*
1470  * F15h supports only 64bit DCT interfaces
1471  */
1472 static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1473 				   unsigned cs_mode, int cs_mask_nr)
1474 {
1475 	WARN_ON(cs_mode > 12);
1476 
1477 	return ddr3_cs_size(cs_mode, false);
1478 }
1479 
1480 /* F15h M60h supports DDR4 mapping as well.. */
1481 static int f15_m60h_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1482 					unsigned cs_mode, int cs_mask_nr)
1483 {
1484 	int cs_size;
1485 	u32 dcsm = pvt->csels[dct].csmasks[cs_mask_nr];
1486 
1487 	WARN_ON(cs_mode > 12);
1488 
1489 	if (pvt->dram_type == MEM_DDR4) {
1490 		if (cs_mode > 9)
1491 			return -1;
1492 
1493 		cs_size = ddr4_cs_size(cs_mode);
1494 	} else if (pvt->dram_type == MEM_LRDDR3) {
1495 		unsigned rank_multiply = dcsm & 0xf;
1496 
1497 		if (rank_multiply == 3)
1498 			rank_multiply = 4;
1499 		cs_size = ddr3_lrdimm_cs_size(cs_mode, rank_multiply);
1500 	} else {
1501 		/* Minimum cs size is 512mb for F15hM60h*/
1502 		if (cs_mode == 0x1)
1503 			return -1;
1504 
1505 		cs_size = ddr3_cs_size(cs_mode, false);
1506 	}
1507 
1508 	return cs_size;
1509 }
1510 
1511 /*
1512  * F16h and F15h model 30h have only limited cs_modes.
1513  */
1514 static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1515 				unsigned cs_mode, int cs_mask_nr)
1516 {
1517 	WARN_ON(cs_mode > 12);
1518 
1519 	if (cs_mode == 6 || cs_mode == 8 ||
1520 	    cs_mode == 9 || cs_mode == 12)
1521 		return -1;
1522 	else
1523 		return ddr3_cs_size(cs_mode, false);
1524 }
1525 
1526 static int f17_base_addr_to_cs_size(struct amd64_pvt *pvt, u8 umc,
1527 				    unsigned int cs_mode, int csrow_nr)
1528 {
1529 	u32 base_addr = pvt->csels[umc].csbases[csrow_nr];
1530 
1531 	/*  Each mask is used for every two base addresses. */
1532 	u32 addr_mask = pvt->csels[umc].csmasks[csrow_nr >> 1];
1533 
1534 	/*  Register [31:1] = Address [39:9]. Size is in kBs here. */
1535 	u32 size = ((addr_mask >> 1) - (base_addr >> 1) + 1) >> 1;
1536 
1537 	edac_dbg(1, "BaseAddr: 0x%x, AddrMask: 0x%x\n", base_addr, addr_mask);
1538 
1539 	/* Return size in MBs. */
1540 	return size >> 10;
1541 }
1542 
1543 static void read_dram_ctl_register(struct amd64_pvt *pvt)
1544 {
1545 
1546 	if (pvt->fam == 0xf)
1547 		return;
1548 
1549 	if (!amd64_read_pci_cfg(pvt->F2, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1550 		edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1551 			 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1552 
1553 		edac_dbg(0, "  DCTs operate in %s mode\n",
1554 			 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1555 
1556 		if (!dct_ganging_enabled(pvt))
1557 			edac_dbg(0, "  Address range split per DCT: %s\n",
1558 				 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1559 
1560 		edac_dbg(0, "  data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
1561 			 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1562 			 (dct_memory_cleared(pvt) ? "yes" : "no"));
1563 
1564 		edac_dbg(0, "  channel interleave: %s, "
1565 			 "interleave bits selector: 0x%x\n",
1566 			 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1567 			 dct_sel_interleave_addr(pvt));
1568 	}
1569 
1570 	amd64_read_pci_cfg(pvt->F2, DCT_SEL_HI, &pvt->dct_sel_hi);
1571 }
1572 
1573 /*
1574  * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
1575  * 2.10.12 Memory Interleaving Modes).
1576  */
1577 static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1578 				     u8 intlv_en, int num_dcts_intlv,
1579 				     u32 dct_sel)
1580 {
1581 	u8 channel = 0;
1582 	u8 select;
1583 
1584 	if (!(intlv_en))
1585 		return (u8)(dct_sel);
1586 
1587 	if (num_dcts_intlv == 2) {
1588 		select = (sys_addr >> 8) & 0x3;
1589 		channel = select ? 0x3 : 0;
1590 	} else if (num_dcts_intlv == 4) {
1591 		u8 intlv_addr = dct_sel_interleave_addr(pvt);
1592 		switch (intlv_addr) {
1593 		case 0x4:
1594 			channel = (sys_addr >> 8) & 0x3;
1595 			break;
1596 		case 0x5:
1597 			channel = (sys_addr >> 9) & 0x3;
1598 			break;
1599 		}
1600 	}
1601 	return channel;
1602 }
1603 
1604 /*
1605  * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1606  * Interleaving Modes.
1607  */
1608 static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1609 				bool hi_range_sel, u8 intlv_en)
1610 {
1611 	u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1612 
1613 	if (dct_ganging_enabled(pvt))
1614 		return 0;
1615 
1616 	if (hi_range_sel)
1617 		return dct_sel_high;
1618 
1619 	/*
1620 	 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1621 	 */
1622 	if (dct_interleave_enabled(pvt)) {
1623 		u8 intlv_addr = dct_sel_interleave_addr(pvt);
1624 
1625 		/* return DCT select function: 0=DCT0, 1=DCT1 */
1626 		if (!intlv_addr)
1627 			return sys_addr >> 6 & 1;
1628 
1629 		if (intlv_addr & 0x2) {
1630 			u8 shift = intlv_addr & 0x1 ? 9 : 6;
1631 			u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) & 1;
1632 
1633 			return ((sys_addr >> shift) & 1) ^ temp;
1634 		}
1635 
1636 		if (intlv_addr & 0x4) {
1637 			u8 shift = intlv_addr & 0x1 ? 9 : 8;
1638 
1639 			return (sys_addr >> shift) & 1;
1640 		}
1641 
1642 		return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1643 	}
1644 
1645 	if (dct_high_range_enabled(pvt))
1646 		return ~dct_sel_high & 1;
1647 
1648 	return 0;
1649 }
1650 
1651 /* Convert the sys_addr to the normalized DCT address */
1652 static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
1653 				 u64 sys_addr, bool hi_rng,
1654 				 u32 dct_sel_base_addr)
1655 {
1656 	u64 chan_off;
1657 	u64 dram_base		= get_dram_base(pvt, range);
1658 	u64 hole_off		= f10_dhar_offset(pvt);
1659 	u64 dct_sel_base_off	= (u64)(pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1660 
1661 	if (hi_rng) {
1662 		/*
1663 		 * if
1664 		 * base address of high range is below 4Gb
1665 		 * (bits [47:27] at [31:11])
1666 		 * DRAM address space on this DCT is hoisted above 4Gb	&&
1667 		 * sys_addr > 4Gb
1668 		 *
1669 		 *	remove hole offset from sys_addr
1670 		 * else
1671 		 *	remove high range offset from sys_addr
1672 		 */
1673 		if ((!(dct_sel_base_addr >> 16) ||
1674 		     dct_sel_base_addr < dhar_base(pvt)) &&
1675 		    dhar_valid(pvt) &&
1676 		    (sys_addr >= BIT_64(32)))
1677 			chan_off = hole_off;
1678 		else
1679 			chan_off = dct_sel_base_off;
1680 	} else {
1681 		/*
1682 		 * if
1683 		 * we have a valid hole		&&
1684 		 * sys_addr > 4Gb
1685 		 *
1686 		 *	remove hole
1687 		 * else
1688 		 *	remove dram base to normalize to DCT address
1689 		 */
1690 		if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1691 			chan_off = hole_off;
1692 		else
1693 			chan_off = dram_base;
1694 	}
1695 
1696 	return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23));
1697 }
1698 
1699 /*
1700  * checks if the csrow passed in is marked as SPARED, if so returns the new
1701  * spare row
1702  */
1703 static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1704 {
1705 	int tmp_cs;
1706 
1707 	if (online_spare_swap_done(pvt, dct) &&
1708 	    csrow == online_spare_bad_dramcs(pvt, dct)) {
1709 
1710 		for_each_chip_select(tmp_cs, dct, pvt) {
1711 			if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1712 				csrow = tmp_cs;
1713 				break;
1714 			}
1715 		}
1716 	}
1717 	return csrow;
1718 }
1719 
1720 /*
1721  * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1722  * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1723  *
1724  * Return:
1725  *	-EINVAL:  NOT FOUND
1726  *	0..csrow = Chip-Select Row
1727  */
1728 static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
1729 {
1730 	struct mem_ctl_info *mci;
1731 	struct amd64_pvt *pvt;
1732 	u64 cs_base, cs_mask;
1733 	int cs_found = -EINVAL;
1734 	int csrow;
1735 
1736 	mci = edac_mc_find(nid);
1737 	if (!mci)
1738 		return cs_found;
1739 
1740 	pvt = mci->pvt_info;
1741 
1742 	edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1743 
1744 	for_each_chip_select(csrow, dct, pvt) {
1745 		if (!csrow_enabled(csrow, dct, pvt))
1746 			continue;
1747 
1748 		get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1749 
1750 		edac_dbg(1, "    CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1751 			 csrow, cs_base, cs_mask);
1752 
1753 		cs_mask = ~cs_mask;
1754 
1755 		edac_dbg(1, "    (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
1756 			 (in_addr & cs_mask), (cs_base & cs_mask));
1757 
1758 		if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1759 			if (pvt->fam == 0x15 && pvt->model >= 0x30) {
1760 				cs_found =  csrow;
1761 				break;
1762 			}
1763 			cs_found = f10_process_possible_spare(pvt, dct, csrow);
1764 
1765 			edac_dbg(1, " MATCH csrow=%d\n", cs_found);
1766 			break;
1767 		}
1768 	}
1769 	return cs_found;
1770 }
1771 
1772 /*
1773  * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1774  * swapped with a region located at the bottom of memory so that the GPU can use
1775  * the interleaved region and thus two channels.
1776  */
1777 static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1778 {
1779 	u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1780 
1781 	if (pvt->fam == 0x10) {
1782 		/* only revC3 and revE have that feature */
1783 		if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
1784 			return sys_addr;
1785 	}
1786 
1787 	amd64_read_pci_cfg(pvt->F2, SWAP_INTLV_REG, &swap_reg);
1788 
1789 	if (!(swap_reg & 0x1))
1790 		return sys_addr;
1791 
1792 	swap_base	= (swap_reg >> 3) & 0x7f;
1793 	swap_limit	= (swap_reg >> 11) & 0x7f;
1794 	rgn_size	= (swap_reg >> 20) & 0x7f;
1795 	tmp_addr	= sys_addr >> 27;
1796 
1797 	if (!(sys_addr >> 34) &&
1798 	    (((tmp_addr >= swap_base) &&
1799 	     (tmp_addr <= swap_limit)) ||
1800 	     (tmp_addr < rgn_size)))
1801 		return sys_addr ^ (u64)swap_base << 27;
1802 
1803 	return sys_addr;
1804 }
1805 
1806 /* For a given @dram_range, check if @sys_addr falls within it. */
1807 static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1808 				  u64 sys_addr, int *chan_sel)
1809 {
1810 	int cs_found = -EINVAL;
1811 	u64 chan_addr;
1812 	u32 dct_sel_base;
1813 	u8 channel;
1814 	bool high_range = false;
1815 
1816 	u8 node_id    = dram_dst_node(pvt, range);
1817 	u8 intlv_en   = dram_intlv_en(pvt, range);
1818 	u32 intlv_sel = dram_intlv_sel(pvt, range);
1819 
1820 	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1821 		 range, sys_addr, get_dram_limit(pvt, range));
1822 
1823 	if (dhar_valid(pvt) &&
1824 	    dhar_base(pvt) <= sys_addr &&
1825 	    sys_addr < BIT_64(32)) {
1826 		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1827 			    sys_addr);
1828 		return -EINVAL;
1829 	}
1830 
1831 	if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1832 		return -EINVAL;
1833 
1834 	sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1835 
1836 	dct_sel_base = dct_sel_baseaddr(pvt);
1837 
1838 	/*
1839 	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1840 	 * select between DCT0 and DCT1.
1841 	 */
1842 	if (dct_high_range_enabled(pvt) &&
1843 	   !dct_ganging_enabled(pvt) &&
1844 	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1845 		high_range = true;
1846 
1847 	channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1848 
1849 	chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1850 					  high_range, dct_sel_base);
1851 
1852 	/* Remove node interleaving, see F1x120 */
1853 	if (intlv_en)
1854 		chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1855 			    (chan_addr & 0xfff);
1856 
1857 	/* remove channel interleave */
1858 	if (dct_interleave_enabled(pvt) &&
1859 	   !dct_high_range_enabled(pvt) &&
1860 	   !dct_ganging_enabled(pvt)) {
1861 
1862 		if (dct_sel_interleave_addr(pvt) != 1) {
1863 			if (dct_sel_interleave_addr(pvt) == 0x3)
1864 				/* hash 9 */
1865 				chan_addr = ((chan_addr >> 10) << 9) |
1866 					     (chan_addr & 0x1ff);
1867 			else
1868 				/* A[6] or hash 6 */
1869 				chan_addr = ((chan_addr >> 7) << 6) |
1870 					     (chan_addr & 0x3f);
1871 		} else
1872 			/* A[12] */
1873 			chan_addr = ((chan_addr >> 13) << 12) |
1874 				     (chan_addr & 0xfff);
1875 	}
1876 
1877 	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);
1878 
1879 	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1880 
1881 	if (cs_found >= 0)
1882 		*chan_sel = channel;
1883 
1884 	return cs_found;
1885 }
1886 
1887 static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1888 					u64 sys_addr, int *chan_sel)
1889 {
1890 	int cs_found = -EINVAL;
1891 	int num_dcts_intlv = 0;
1892 	u64 chan_addr, chan_offset;
1893 	u64 dct_base, dct_limit;
1894 	u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
1895 	u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;
1896 
1897 	u64 dhar_offset		= f10_dhar_offset(pvt);
1898 	u8 intlv_addr		= dct_sel_interleave_addr(pvt);
1899 	u8 node_id		= dram_dst_node(pvt, range);
1900 	u8 intlv_en		= dram_intlv_en(pvt, range);
1901 
1902 	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
1903 	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);
1904 
1905 	dct_offset_en		= (u8) ((dct_cont_base_reg >> 3) & BIT(0));
1906 	dct_sel			= (u8) ((dct_cont_base_reg >> 4) & 0x7);
1907 
1908 	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1909 		 range, sys_addr, get_dram_limit(pvt, range));
1910 
1911 	if (!(get_dram_base(pvt, range)  <= sys_addr) &&
1912 	    !(get_dram_limit(pvt, range) >= sys_addr))
1913 		return -EINVAL;
1914 
1915 	if (dhar_valid(pvt) &&
1916 	    dhar_base(pvt) <= sys_addr &&
1917 	    sys_addr < BIT_64(32)) {
1918 		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1919 			    sys_addr);
1920 		return -EINVAL;
1921 	}
1922 
1923 	/* Verify sys_addr is within DCT Range. */
1924 	dct_base = (u64) dct_sel_baseaddr(pvt);
1925 	dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
1926 
1927 	if (!(dct_cont_base_reg & BIT(0)) &&
1928 	    !(dct_base <= (sys_addr >> 27) &&
1929 	      dct_limit >= (sys_addr >> 27)))
1930 		return -EINVAL;
1931 
1932 	/* Verify number of dct's that participate in channel interleaving. */
1933 	num_dcts_intlv = (int) hweight8(intlv_en);
1934 
1935 	if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
1936 		return -EINVAL;
1937 
1938 	if (pvt->model >= 0x60)
1939 		channel = f1x_determine_channel(pvt, sys_addr, false, intlv_en);
1940 	else
1941 		channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
1942 						     num_dcts_intlv, dct_sel);
1943 
1944 	/* Verify we stay within the MAX number of channels allowed */
1945 	if (channel > 3)
1946 		return -EINVAL;
1947 
1948 	leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));
1949 
1950 	/* Get normalized DCT addr */
1951 	if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
1952 		chan_offset = dhar_offset;
1953 	else
1954 		chan_offset = dct_base << 27;
1955 
1956 	chan_addr = sys_addr - chan_offset;
1957 
1958 	/* remove channel interleave */
1959 	if (num_dcts_intlv == 2) {
1960 		if (intlv_addr == 0x4)
1961 			chan_addr = ((chan_addr >> 9) << 8) |
1962 						(chan_addr & 0xff);
1963 		else if (intlv_addr == 0x5)
1964 			chan_addr = ((chan_addr >> 10) << 9) |
1965 						(chan_addr & 0x1ff);
1966 		else
1967 			return -EINVAL;
1968 
1969 	} else if (num_dcts_intlv == 4) {
1970 		if (intlv_addr == 0x4)
1971 			chan_addr = ((chan_addr >> 10) << 8) |
1972 							(chan_addr & 0xff);
1973 		else if (intlv_addr == 0x5)
1974 			chan_addr = ((chan_addr >> 11) << 9) |
1975 							(chan_addr & 0x1ff);
1976 		else
1977 			return -EINVAL;
1978 	}
1979 
1980 	if (dct_offset_en) {
1981 		amd64_read_pci_cfg(pvt->F1,
1982 				   DRAM_CONT_HIGH_OFF + (int) channel * 4,
1983 				   &tmp);
1984 		chan_addr +=  (u64) ((tmp >> 11) & 0xfff) << 27;
1985 	}
1986 
1987 	f15h_select_dct(pvt, channel);
1988 
1989 	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);
1990 
1991 	/*
1992 	 * Find Chip select:
1993 	 * if channel = 3, then alias it to 1. This is because, in F15 M30h,
1994 	 * there is support for 4 DCT's, but only 2 are currently functional.
1995 	 * They are DCT0 and DCT3. But we have read all registers of DCT3 into
1996 	 * pvt->csels[1]. So we need to use '1' here to get correct info.
1997 	 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
1998 	 */
1999 	alias_channel =  (channel == 3) ? 1 : channel;
2000 
2001 	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);
2002 
2003 	if (cs_found >= 0)
2004 		*chan_sel = alias_channel;
2005 
2006 	return cs_found;
2007 }
2008 
2009 static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
2010 					u64 sys_addr,
2011 					int *chan_sel)
2012 {
2013 	int cs_found = -EINVAL;
2014 	unsigned range;
2015 
2016 	for (range = 0; range < DRAM_RANGES; range++) {
2017 		if (!dram_rw(pvt, range))
2018 			continue;
2019 
2020 		if (pvt->fam == 0x15 && pvt->model >= 0x30)
2021 			cs_found = f15_m30h_match_to_this_node(pvt, range,
2022 							       sys_addr,
2023 							       chan_sel);
2024 
2025 		else if ((get_dram_base(pvt, range)  <= sys_addr) &&
2026 			 (get_dram_limit(pvt, range) >= sys_addr)) {
2027 			cs_found = f1x_match_to_this_node(pvt, range,
2028 							  sys_addr, chan_sel);
2029 			if (cs_found >= 0)
2030 				break;
2031 		}
2032 	}
2033 	return cs_found;
2034 }
2035 
2036 /*
2037  * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
2038  * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
2039  *
2040  * The @sys_addr is usually an error address received from the hardware
2041  * (MCX_ADDR).
2042  */
2043 static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
2044 				     struct err_info *err)
2045 {
2046 	struct amd64_pvt *pvt = mci->pvt_info;
2047 
2048 	error_address_to_page_and_offset(sys_addr, err);
2049 
2050 	err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
2051 	if (err->csrow < 0) {
2052 		err->err_code = ERR_CSROW;
2053 		return;
2054 	}
2055 
2056 	/*
2057 	 * We need the syndromes for channel detection only when we're
2058 	 * ganged. Otherwise @chan should already contain the channel at
2059 	 * this point.
2060 	 */
2061 	if (dct_ganging_enabled(pvt))
2062 		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
2063 }
2064 
2065 /*
2066  * debug routine to display the memory sizes of all logical DIMMs and its
2067  * CSROWs
2068  */
2069 static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
2070 {
2071 	int dimm, size0, size1;
2072 	u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
2073 	u32 dbam  = ctrl ? pvt->dbam1 : pvt->dbam0;
2074 
2075 	if (pvt->fam == 0xf) {
2076 		/* K8 families < revF not supported yet */
2077 	       if (pvt->ext_model < K8_REV_F)
2078 			return;
2079 	       else
2080 		       WARN_ON(ctrl != 0);
2081 	}
2082 
2083 	if (pvt->fam == 0x10) {
2084 		dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1
2085 							   : pvt->dbam0;
2086 		dcsb = (ctrl && !dct_ganging_enabled(pvt)) ?
2087 				 pvt->csels[1].csbases :
2088 				 pvt->csels[0].csbases;
2089 	} else if (ctrl) {
2090 		dbam = pvt->dbam0;
2091 		dcsb = pvt->csels[1].csbases;
2092 	}
2093 	edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
2094 		 ctrl, dbam);
2095 
2096 	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
2097 
2098 	/* Dump memory sizes for DIMM and its CSROWs */
2099 	for (dimm = 0; dimm < 4; dimm++) {
2100 
2101 		size0 = 0;
2102 		if (dcsb[dimm*2] & DCSB_CS_ENABLE)
2103 			/*
2104 			 * For F15m60h, we need multiplier for LRDIMM cs_size
2105 			 * calculation. We pass dimm value to the dbam_to_cs
2106 			 * mapper so we can find the multiplier from the
2107 			 * corresponding DCSM.
2108 			 */
2109 			size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
2110 						     DBAM_DIMM(dimm, dbam),
2111 						     dimm);
2112 
2113 		size1 = 0;
2114 		if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
2115 			size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
2116 						     DBAM_DIMM(dimm, dbam),
2117 						     dimm);
2118 
2119 		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
2120 				dimm * 2,     size0,
2121 				dimm * 2 + 1, size1);
2122 	}
2123 }
2124 
2125 static struct amd64_family_type family_types[] = {
2126 	[K8_CPUS] = {
2127 		.ctl_name = "K8",
2128 		.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
2129 		.f2_id = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2130 		.ops = {
2131 			.early_channel_count	= k8_early_channel_count,
2132 			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
2133 			.dbam_to_cs		= k8_dbam_to_chip_select,
2134 		}
2135 	},
2136 	[F10_CPUS] = {
2137 		.ctl_name = "F10h",
2138 		.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
2139 		.f2_id = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2140 		.ops = {
2141 			.early_channel_count	= f1x_early_channel_count,
2142 			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
2143 			.dbam_to_cs		= f10_dbam_to_chip_select,
2144 		}
2145 	},
2146 	[F15_CPUS] = {
2147 		.ctl_name = "F15h",
2148 		.f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
2149 		.f2_id = PCI_DEVICE_ID_AMD_15H_NB_F2,
2150 		.ops = {
2151 			.early_channel_count	= f1x_early_channel_count,
2152 			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
2153 			.dbam_to_cs		= f15_dbam_to_chip_select,
2154 		}
2155 	},
2156 	[F15_M30H_CPUS] = {
2157 		.ctl_name = "F15h_M30h",
2158 		.f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
2159 		.f2_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2,
2160 		.ops = {
2161 			.early_channel_count	= f1x_early_channel_count,
2162 			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
2163 			.dbam_to_cs		= f16_dbam_to_chip_select,
2164 		}
2165 	},
2166 	[F15_M60H_CPUS] = {
2167 		.ctl_name = "F15h_M60h",
2168 		.f1_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1,
2169 		.f2_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F2,
2170 		.ops = {
2171 			.early_channel_count	= f1x_early_channel_count,
2172 			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
2173 			.dbam_to_cs		= f15_m60h_dbam_to_chip_select,
2174 		}
2175 	},
2176 	[F16_CPUS] = {
2177 		.ctl_name = "F16h",
2178 		.f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
2179 		.f2_id = PCI_DEVICE_ID_AMD_16H_NB_F2,
2180 		.ops = {
2181 			.early_channel_count	= f1x_early_channel_count,
2182 			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
2183 			.dbam_to_cs		= f16_dbam_to_chip_select,
2184 		}
2185 	},
2186 	[F16_M30H_CPUS] = {
2187 		.ctl_name = "F16h_M30h",
2188 		.f1_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F1,
2189 		.f2_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F2,
2190 		.ops = {
2191 			.early_channel_count	= f1x_early_channel_count,
2192 			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
2193 			.dbam_to_cs		= f16_dbam_to_chip_select,
2194 		}
2195 	},
2196 	[F17_CPUS] = {
2197 		.ctl_name = "F17h",
2198 		.f0_id = PCI_DEVICE_ID_AMD_17H_DF_F0,
2199 		.f6_id = PCI_DEVICE_ID_AMD_17H_DF_F6,
2200 		.ops = {
2201 			.early_channel_count	= f17_early_channel_count,
2202 			.dbam_to_cs		= f17_base_addr_to_cs_size,
2203 		}
2204 	},
2205 	[F17_M10H_CPUS] = {
2206 		.ctl_name = "F17h_M10h",
2207 		.f0_id = PCI_DEVICE_ID_AMD_17H_M10H_DF_F0,
2208 		.f6_id = PCI_DEVICE_ID_AMD_17H_M10H_DF_F6,
2209 		.ops = {
2210 			.early_channel_count	= f17_early_channel_count,
2211 			.dbam_to_cs		= f17_base_addr_to_cs_size,
2212 		}
2213 	},
2214 };
2215 
2216 /*
2217  * These are tables of eigenvectors (one per line) which can be used for the
2218  * construction of the syndrome tables. The modified syndrome search algorithm
2219  * uses those to find the symbol in error and thus the DIMM.
2220  *
2221  * Algorithm courtesy of Ross LaFetra from AMD.
2222  */
2223 static const u16 x4_vectors[] = {
2224 	0x2f57, 0x1afe, 0x66cc, 0xdd88,
2225 	0x11eb, 0x3396, 0x7f4c, 0xeac8,
2226 	0x0001, 0x0002, 0x0004, 0x0008,
2227 	0x1013, 0x3032, 0x4044, 0x8088,
2228 	0x106b, 0x30d6, 0x70fc, 0xe0a8,
2229 	0x4857, 0xc4fe, 0x13cc, 0x3288,
2230 	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
2231 	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
2232 	0x15c1, 0x2a42, 0x89ac, 0x4758,
2233 	0x2b03, 0x1602, 0x4f0c, 0xca08,
2234 	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
2235 	0x8ba7, 0x465e, 0x244c, 0x1cc8,
2236 	0x2b87, 0x164e, 0x642c, 0xdc18,
2237 	0x40b9, 0x80de, 0x1094, 0x20e8,
2238 	0x27db, 0x1eb6, 0x9dac, 0x7b58,
2239 	0x11c1, 0x2242, 0x84ac, 0x4c58,
2240 	0x1be5, 0x2d7a, 0x5e34, 0xa718,
2241 	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
2242 	0x4c97, 0xc87e, 0x11fc, 0x33a8,
2243 	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
2244 	0x16b3, 0x3d62, 0x4f34, 0x8518,
2245 	0x1e2f, 0x391a, 0x5cac, 0xf858,
2246 	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
2247 	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
2248 	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
2249 	0x4397, 0xc27e, 0x17fc, 0x3ea8,
2250 	0x1617, 0x3d3e, 0x6464, 0xb8b8,
2251 	0x23ff, 0x12aa, 0xab6c, 0x56d8,
2252 	0x2dfb, 0x1ba6, 0x913c, 0x7328,
2253 	0x185d, 0x2ca6, 0x7914, 0x9e28,
2254 	0x171b, 0x3e36, 0x7d7c, 0xebe8,
2255 	0x4199, 0x82ee, 0x19f4, 0x2e58,
2256 	0x4807, 0xc40e, 0x130c, 0x3208,
2257 	0x1905, 0x2e0a, 0x5804, 0xac08,
2258 	0x213f, 0x132a, 0xadfc, 0x5ba8,
2259 	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
2260 };
2261 
2262 static const u16 x8_vectors[] = {
2263 	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
2264 	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
2265 	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
2266 	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
2267 	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
2268 	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
2269 	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
2270 	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
2271 	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
2272 	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
2273 	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
2274 	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
2275 	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
2276 	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
2277 	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
2278 	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
2279 	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
2280 	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
2281 	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
2282 };
2283 
2284 static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
2285 			   unsigned v_dim)
2286 {
2287 	unsigned int i, err_sym;
2288 
2289 	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
2290 		u16 s = syndrome;
2291 		unsigned v_idx =  err_sym * v_dim;
2292 		unsigned v_end = (err_sym + 1) * v_dim;
2293 
2294 		/* walk over all 16 bits of the syndrome */
2295 		for (i = 1; i < (1U << 16); i <<= 1) {
2296 
2297 			/* if bit is set in that eigenvector... */
2298 			if (v_idx < v_end && vectors[v_idx] & i) {
2299 				u16 ev_comp = vectors[v_idx++];
2300 
2301 				/* ... and bit set in the modified syndrome, */
2302 				if (s & i) {
2303 					/* remove it. */
2304 					s ^= ev_comp;
2305 
2306 					if (!s)
2307 						return err_sym;
2308 				}
2309 
2310 			} else if (s & i)
2311 				/* can't get to zero, move to next symbol */
2312 				break;
2313 		}
2314 	}
2315 
2316 	edac_dbg(0, "syndrome(%x) not found\n", syndrome);
2317 	return -1;
2318 }
2319 
2320 static int map_err_sym_to_channel(int err_sym, int sym_size)
2321 {
2322 	if (sym_size == 4)
2323 		switch (err_sym) {
2324 		case 0x20:
2325 		case 0x21:
2326 			return 0;
2327 			break;
2328 		case 0x22:
2329 		case 0x23:
2330 			return 1;
2331 			break;
2332 		default:
2333 			return err_sym >> 4;
2334 			break;
2335 		}
2336 	/* x8 symbols */
2337 	else
2338 		switch (err_sym) {
2339 		/* imaginary bits not in a DIMM */
2340 		case 0x10:
2341 			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
2342 					  err_sym);
2343 			return -1;
2344 			break;
2345 
2346 		case 0x11:
2347 			return 0;
2348 			break;
2349 		case 0x12:
2350 			return 1;
2351 			break;
2352 		default:
2353 			return err_sym >> 3;
2354 			break;
2355 		}
2356 	return -1;
2357 }
2358 
2359 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
2360 {
2361 	struct amd64_pvt *pvt = mci->pvt_info;
2362 	int err_sym = -1;
2363 
2364 	if (pvt->ecc_sym_sz == 8)
2365 		err_sym = decode_syndrome(syndrome, x8_vectors,
2366 					  ARRAY_SIZE(x8_vectors),
2367 					  pvt->ecc_sym_sz);
2368 	else if (pvt->ecc_sym_sz == 4)
2369 		err_sym = decode_syndrome(syndrome, x4_vectors,
2370 					  ARRAY_SIZE(x4_vectors),
2371 					  pvt->ecc_sym_sz);
2372 	else {
2373 		amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
2374 		return err_sym;
2375 	}
2376 
2377 	return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
2378 }
2379 
2380 static void __log_ecc_error(struct mem_ctl_info *mci, struct err_info *err,
2381 			    u8 ecc_type)
2382 {
2383 	enum hw_event_mc_err_type err_type;
2384 	const char *string;
2385 
2386 	if (ecc_type == 2)
2387 		err_type = HW_EVENT_ERR_CORRECTED;
2388 	else if (ecc_type == 1)
2389 		err_type = HW_EVENT_ERR_UNCORRECTED;
2390 	else if (ecc_type == 3)
2391 		err_type = HW_EVENT_ERR_DEFERRED;
2392 	else {
2393 		WARN(1, "Something is rotten in the state of Denmark.\n");
2394 		return;
2395 	}
2396 
2397 	switch (err->err_code) {
2398 	case DECODE_OK:
2399 		string = "";
2400 		break;
2401 	case ERR_NODE:
2402 		string = "Failed to map error addr to a node";
2403 		break;
2404 	case ERR_CSROW:
2405 		string = "Failed to map error addr to a csrow";
2406 		break;
2407 	case ERR_CHANNEL:
2408 		string = "Unknown syndrome - possible error reporting race";
2409 		break;
2410 	case ERR_SYND:
2411 		string = "MCA_SYND not valid - unknown syndrome and csrow";
2412 		break;
2413 	case ERR_NORM_ADDR:
2414 		string = "Cannot decode normalized address";
2415 		break;
2416 	default:
2417 		string = "WTF error";
2418 		break;
2419 	}
2420 
2421 	edac_mc_handle_error(err_type, mci, 1,
2422 			     err->page, err->offset, err->syndrome,
2423 			     err->csrow, err->channel, -1,
2424 			     string, "");
2425 }
2426 
2427 static inline void decode_bus_error(int node_id, struct mce *m)
2428 {
2429 	struct mem_ctl_info *mci;
2430 	struct amd64_pvt *pvt;
2431 	u8 ecc_type = (m->status >> 45) & 0x3;
2432 	u8 xec = XEC(m->status, 0x1f);
2433 	u16 ec = EC(m->status);
2434 	u64 sys_addr;
2435 	struct err_info err;
2436 
2437 	mci = edac_mc_find(node_id);
2438 	if (!mci)
2439 		return;
2440 
2441 	pvt = mci->pvt_info;
2442 
2443 	/* Bail out early if this was an 'observed' error */
2444 	if (PP(ec) == NBSL_PP_OBS)
2445 		return;
2446 
2447 	/* Do only ECC errors */
2448 	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
2449 		return;
2450 
2451 	memset(&err, 0, sizeof(err));
2452 
2453 	sys_addr = get_error_address(pvt, m);
2454 
2455 	if (ecc_type == 2)
2456 		err.syndrome = extract_syndrome(m->status);
2457 
2458 	pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);
2459 
2460 	__log_ecc_error(mci, &err, ecc_type);
2461 }
2462 
2463 /*
2464  * To find the UMC channel represented by this bank we need to match on its
2465  * instance_id. The instance_id of a bank is held in the lower 32 bits of its
2466  * IPID.
2467  */
2468 static int find_umc_channel(struct amd64_pvt *pvt, struct mce *m)
2469 {
2470 	u32 umc_instance_id[] = {0x50f00, 0x150f00};
2471 	u32 instance_id = m->ipid & GENMASK(31, 0);
2472 	int i, channel = -1;
2473 
2474 	for (i = 0; i < ARRAY_SIZE(umc_instance_id); i++)
2475 		if (umc_instance_id[i] == instance_id)
2476 			channel = i;
2477 
2478 	return channel;
2479 }
2480 
2481 static void decode_umc_error(int node_id, struct mce *m)
2482 {
2483 	u8 ecc_type = (m->status >> 45) & 0x3;
2484 	struct mem_ctl_info *mci;
2485 	struct amd64_pvt *pvt;
2486 	struct err_info err;
2487 	u64 sys_addr;
2488 
2489 	mci = edac_mc_find(node_id);
2490 	if (!mci)
2491 		return;
2492 
2493 	pvt = mci->pvt_info;
2494 
2495 	memset(&err, 0, sizeof(err));
2496 
2497 	if (m->status & MCI_STATUS_DEFERRED)
2498 		ecc_type = 3;
2499 
2500 	err.channel = find_umc_channel(pvt, m);
2501 	if (err.channel < 0) {
2502 		err.err_code = ERR_CHANNEL;
2503 		goto log_error;
2504 	}
2505 
2506 	if (umc_normaddr_to_sysaddr(m->addr, pvt->mc_node_id, err.channel, &sys_addr)) {
2507 		err.err_code = ERR_NORM_ADDR;
2508 		goto log_error;
2509 	}
2510 
2511 	error_address_to_page_and_offset(sys_addr, &err);
2512 
2513 	if (!(m->status & MCI_STATUS_SYNDV)) {
2514 		err.err_code = ERR_SYND;
2515 		goto log_error;
2516 	}
2517 
2518 	if (ecc_type == 2) {
2519 		u8 length = (m->synd >> 18) & 0x3f;
2520 
2521 		if (length)
2522 			err.syndrome = (m->synd >> 32) & GENMASK(length - 1, 0);
2523 		else
2524 			err.err_code = ERR_CHANNEL;
2525 	}
2526 
2527 	err.csrow = m->synd & 0x7;
2528 
2529 log_error:
2530 	__log_ecc_error(mci, &err, ecc_type);
2531 }
2532 
2533 /*
2534  * Use pvt->F3 which contains the F3 CPU PCI device to get the related
2535  * F1 (AddrMap) and F2 (Dct) devices. Return negative value on error.
2536  * Reserve F0 and F6 on systems with a UMC.
2537  */
2538 static int
2539 reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 pci_id1, u16 pci_id2)
2540 {
2541 	if (pvt->umc) {
2542 		pvt->F0 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
2543 		if (!pvt->F0) {
2544 			amd64_err("F0 not found, device 0x%x (broken BIOS?)\n", pci_id1);
2545 			return -ENODEV;
2546 		}
2547 
2548 		pvt->F6 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
2549 		if (!pvt->F6) {
2550 			pci_dev_put(pvt->F0);
2551 			pvt->F0 = NULL;
2552 
2553 			amd64_err("F6 not found: device 0x%x (broken BIOS?)\n", pci_id2);
2554 			return -ENODEV;
2555 		}
2556 
2557 		edac_dbg(1, "F0: %s\n", pci_name(pvt->F0));
2558 		edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
2559 		edac_dbg(1, "F6: %s\n", pci_name(pvt->F6));
2560 
2561 		return 0;
2562 	}
2563 
2564 	/* Reserve the ADDRESS MAP Device */
2565 	pvt->F1 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
2566 	if (!pvt->F1) {
2567 		amd64_err("F1 not found: device 0x%x (broken BIOS?)\n", pci_id1);
2568 		return -ENODEV;
2569 	}
2570 
2571 	/* Reserve the DCT Device */
2572 	pvt->F2 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
2573 	if (!pvt->F2) {
2574 		pci_dev_put(pvt->F1);
2575 		pvt->F1 = NULL;
2576 
2577 		amd64_err("F2 not found: device 0x%x (broken BIOS?)\n", pci_id2);
2578 		return -ENODEV;
2579 	}
2580 
2581 	edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
2582 	edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
2583 	edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
2584 
2585 	return 0;
2586 }
2587 
2588 static void free_mc_sibling_devs(struct amd64_pvt *pvt)
2589 {
2590 	if (pvt->umc) {
2591 		pci_dev_put(pvt->F0);
2592 		pci_dev_put(pvt->F6);
2593 	} else {
2594 		pci_dev_put(pvt->F1);
2595 		pci_dev_put(pvt->F2);
2596 	}
2597 }
2598 
2599 static void determine_ecc_sym_sz(struct amd64_pvt *pvt)
2600 {
2601 	pvt->ecc_sym_sz = 4;
2602 
2603 	if (pvt->umc) {
2604 		u8 i;
2605 
2606 		for (i = 0; i < NUM_UMCS; i++) {
2607 			/* Check enabled channels only: */
2608 			if ((pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) &&
2609 			    (pvt->umc[i].ecc_ctrl & BIT(7))) {
2610 				pvt->ecc_sym_sz = 8;
2611 				break;
2612 			}
2613 		}
2614 
2615 		return;
2616 	}
2617 
2618 	if (pvt->fam >= 0x10) {
2619 		u32 tmp;
2620 
2621 		amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
2622 		/* F16h has only DCT0, so no need to read dbam1. */
2623 		if (pvt->fam != 0x16)
2624 			amd64_read_dct_pci_cfg(pvt, 1, DBAM0, &pvt->dbam1);
2625 
2626 		/* F10h, revD and later can do x8 ECC too. */
2627 		if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
2628 			pvt->ecc_sym_sz = 8;
2629 	}
2630 }
2631 
2632 /*
2633  * Retrieve the hardware registers of the memory controller.
2634  */
2635 static void __read_mc_regs_df(struct amd64_pvt *pvt)
2636 {
2637 	u8 nid = pvt->mc_node_id;
2638 	struct amd64_umc *umc;
2639 	u32 i, umc_base;
2640 
2641 	/* Read registers from each UMC */
2642 	for (i = 0; i < NUM_UMCS; i++) {
2643 
2644 		umc_base = get_umc_base(i);
2645 		umc = &pvt->umc[i];
2646 
2647 		amd_smn_read(nid, umc_base + UMCCH_DIMM_CFG, &umc->dimm_cfg);
2648 		amd_smn_read(nid, umc_base + UMCCH_UMC_CFG, &umc->umc_cfg);
2649 		amd_smn_read(nid, umc_base + UMCCH_SDP_CTRL, &umc->sdp_ctrl);
2650 		amd_smn_read(nid, umc_base + UMCCH_ECC_CTRL, &umc->ecc_ctrl);
2651 		amd_smn_read(nid, umc_base + UMCCH_UMC_CAP_HI, &umc->umc_cap_hi);
2652 	}
2653 }
2654 
2655 /*
2656  * Retrieve the hardware registers of the memory controller (this includes the
2657  * 'Address Map' and 'Misc' device regs)
2658  */
2659 static void read_mc_regs(struct amd64_pvt *pvt)
2660 {
2661 	unsigned int range;
2662 	u64 msr_val;
2663 
2664 	/*
2665 	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2666 	 * those are Read-As-Zero.
2667 	 */
2668 	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2669 	edac_dbg(0, "  TOP_MEM:  0x%016llx\n", pvt->top_mem);
2670 
2671 	/* Check first whether TOP_MEM2 is enabled: */
2672 	rdmsrl(MSR_K8_SYSCFG, msr_val);
2673 	if (msr_val & BIT(21)) {
2674 		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2675 		edac_dbg(0, "  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2676 	} else {
2677 		edac_dbg(0, "  TOP_MEM2 disabled\n");
2678 	}
2679 
2680 	if (pvt->umc) {
2681 		__read_mc_regs_df(pvt);
2682 		amd64_read_pci_cfg(pvt->F0, DF_DHAR, &pvt->dhar);
2683 
2684 		goto skip;
2685 	}
2686 
2687 	amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
2688 
2689 	read_dram_ctl_register(pvt);
2690 
2691 	for (range = 0; range < DRAM_RANGES; range++) {
2692 		u8 rw;
2693 
2694 		/* read settings for this DRAM range */
2695 		read_dram_base_limit_regs(pvt, range);
2696 
2697 		rw = dram_rw(pvt, range);
2698 		if (!rw)
2699 			continue;
2700 
2701 		edac_dbg(1, "  DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
2702 			 range,
2703 			 get_dram_base(pvt, range),
2704 			 get_dram_limit(pvt, range));
2705 
2706 		edac_dbg(1, "   IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
2707 			 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
2708 			 (rw & 0x1) ? "R" : "-",
2709 			 (rw & 0x2) ? "W" : "-",
2710 			 dram_intlv_sel(pvt, range),
2711 			 dram_dst_node(pvt, range));
2712 	}
2713 
2714 	amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
2715 	amd64_read_dct_pci_cfg(pvt, 0, DBAM0, &pvt->dbam0);
2716 
2717 	amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2718 
2719 	amd64_read_dct_pci_cfg(pvt, 0, DCLR0, &pvt->dclr0);
2720 	amd64_read_dct_pci_cfg(pvt, 0, DCHR0, &pvt->dchr0);
2721 
2722 	if (!dct_ganging_enabled(pvt)) {
2723 		amd64_read_dct_pci_cfg(pvt, 1, DCLR0, &pvt->dclr1);
2724 		amd64_read_dct_pci_cfg(pvt, 1, DCHR0, &pvt->dchr1);
2725 	}
2726 
2727 skip:
2728 	read_dct_base_mask(pvt);
2729 
2730 	determine_memory_type(pvt);
2731 	edac_dbg(1, "  DIMM type: %s\n", edac_mem_types[pvt->dram_type]);
2732 
2733 	determine_ecc_sym_sz(pvt);
2734 
2735 	dump_misc_regs(pvt);
2736 }
2737 
2738 /*
2739  * NOTE: CPU Revision Dependent code
2740  *
2741  * Input:
2742  *	@csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2743  *	k8 private pointer to -->
2744  *			DRAM Bank Address mapping register
2745  *			node_id
2746  *			DCL register where dual_channel_active is
2747  *
2748  * The DBAM register consists of 4 sets of 4 bits each definitions:
2749  *
2750  * Bits:	CSROWs
2751  * 0-3		CSROWs 0 and 1
2752  * 4-7		CSROWs 2 and 3
2753  * 8-11		CSROWs 4 and 5
2754  * 12-15	CSROWs 6 and 7
2755  *
2756  * Values range from: 0 to 15
2757  * The meaning of the values depends on CPU revision and dual-channel state,
2758  * see relevant BKDG more info.
2759  *
2760  * The memory controller provides for total of only 8 CSROWs in its current
2761  * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2762  * single channel or two (2) DIMMs in dual channel mode.
2763  *
2764  * The following code logic collapses the various tables for CSROW based on CPU
2765  * revision.
2766  *
2767  * Returns:
2768  *	The number of PAGE_SIZE pages on the specified CSROW number it
2769  *	encompasses
2770  *
2771  */
2772 static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr_orig)
2773 {
2774 	u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
2775 	int csrow_nr = csrow_nr_orig;
2776 	u32 cs_mode, nr_pages;
2777 
2778 	if (!pvt->umc)
2779 		csrow_nr >>= 1;
2780 
2781 	cs_mode = DBAM_DIMM(csrow_nr, dbam);
2782 
2783 	nr_pages   = pvt->ops->dbam_to_cs(pvt, dct, cs_mode, csrow_nr);
2784 	nr_pages <<= 20 - PAGE_SHIFT;
2785 
2786 	edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
2787 		    csrow_nr_orig, dct,  cs_mode);
2788 	edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
2789 
2790 	return nr_pages;
2791 }
2792 
2793 /*
2794  * Initialize the array of csrow attribute instances, based on the values
2795  * from pci config hardware registers.
2796  */
2797 static int init_csrows(struct mem_ctl_info *mci)
2798 {
2799 	struct amd64_pvt *pvt = mci->pvt_info;
2800 	enum edac_type edac_mode = EDAC_NONE;
2801 	struct csrow_info *csrow;
2802 	struct dimm_info *dimm;
2803 	int i, j, empty = 1;
2804 	int nr_pages = 0;
2805 	u32 val;
2806 
2807 	if (!pvt->umc) {
2808 		amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2809 
2810 		pvt->nbcfg = val;
2811 
2812 		edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2813 			 pvt->mc_node_id, val,
2814 			 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2815 	}
2816 
2817 	/*
2818 	 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
2819 	 */
2820 	for_each_chip_select(i, 0, pvt) {
2821 		bool row_dct0 = !!csrow_enabled(i, 0, pvt);
2822 		bool row_dct1 = false;
2823 
2824 		if (pvt->fam != 0xf)
2825 			row_dct1 = !!csrow_enabled(i, 1, pvt);
2826 
2827 		if (!row_dct0 && !row_dct1)
2828 			continue;
2829 
2830 		csrow = mci->csrows[i];
2831 		empty = 0;
2832 
2833 		edac_dbg(1, "MC node: %d, csrow: %d\n",
2834 			    pvt->mc_node_id, i);
2835 
2836 		if (row_dct0) {
2837 			nr_pages = get_csrow_nr_pages(pvt, 0, i);
2838 			csrow->channels[0]->dimm->nr_pages = nr_pages;
2839 		}
2840 
2841 		/* K8 has only one DCT */
2842 		if (pvt->fam != 0xf && row_dct1) {
2843 			int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i);
2844 
2845 			csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
2846 			nr_pages += row_dct1_pages;
2847 		}
2848 
2849 		edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
2850 
2851 		/* Determine DIMM ECC mode: */
2852 		if (pvt->umc) {
2853 			if (mci->edac_ctl_cap & EDAC_FLAG_S4ECD4ED)
2854 				edac_mode = EDAC_S4ECD4ED;
2855 			else if (mci->edac_ctl_cap & EDAC_FLAG_SECDED)
2856 				edac_mode = EDAC_SECDED;
2857 
2858 		} else if (pvt->nbcfg & NBCFG_ECC_ENABLE) {
2859 			edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL)
2860 					? EDAC_S4ECD4ED
2861 					: EDAC_SECDED;
2862 		}
2863 
2864 		for (j = 0; j < pvt->channel_count; j++) {
2865 			dimm = csrow->channels[j]->dimm;
2866 			dimm->mtype = pvt->dram_type;
2867 			dimm->edac_mode = edac_mode;
2868 		}
2869 	}
2870 
2871 	return empty;
2872 }
2873 
2874 /* get all cores on this DCT */
2875 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
2876 {
2877 	int cpu;
2878 
2879 	for_each_online_cpu(cpu)
2880 		if (amd_get_nb_id(cpu) == nid)
2881 			cpumask_set_cpu(cpu, mask);
2882 }
2883 
2884 /* check MCG_CTL on all the cpus on this node */
2885 static bool nb_mce_bank_enabled_on_node(u16 nid)
2886 {
2887 	cpumask_var_t mask;
2888 	int cpu, nbe;
2889 	bool ret = false;
2890 
2891 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2892 		amd64_warn("%s: Error allocating mask\n", __func__);
2893 		return false;
2894 	}
2895 
2896 	get_cpus_on_this_dct_cpumask(mask, nid);
2897 
2898 	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2899 
2900 	for_each_cpu(cpu, mask) {
2901 		struct msr *reg = per_cpu_ptr(msrs, cpu);
2902 		nbe = reg->l & MSR_MCGCTL_NBE;
2903 
2904 		edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2905 			 cpu, reg->q,
2906 			 (nbe ? "enabled" : "disabled"));
2907 
2908 		if (!nbe)
2909 			goto out;
2910 	}
2911 	ret = true;
2912 
2913 out:
2914 	free_cpumask_var(mask);
2915 	return ret;
2916 }
2917 
2918 static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
2919 {
2920 	cpumask_var_t cmask;
2921 	int cpu;
2922 
2923 	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2924 		amd64_warn("%s: error allocating mask\n", __func__);
2925 		return -ENOMEM;
2926 	}
2927 
2928 	get_cpus_on_this_dct_cpumask(cmask, nid);
2929 
2930 	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2931 
2932 	for_each_cpu(cpu, cmask) {
2933 
2934 		struct msr *reg = per_cpu_ptr(msrs, cpu);
2935 
2936 		if (on) {
2937 			if (reg->l & MSR_MCGCTL_NBE)
2938 				s->flags.nb_mce_enable = 1;
2939 
2940 			reg->l |= MSR_MCGCTL_NBE;
2941 		} else {
2942 			/*
2943 			 * Turn off NB MCE reporting only when it was off before
2944 			 */
2945 			if (!s->flags.nb_mce_enable)
2946 				reg->l &= ~MSR_MCGCTL_NBE;
2947 		}
2948 	}
2949 	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2950 
2951 	free_cpumask_var(cmask);
2952 
2953 	return 0;
2954 }
2955 
2956 static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
2957 				       struct pci_dev *F3)
2958 {
2959 	bool ret = true;
2960 	u32 value, mask = 0x3;		/* UECC/CECC enable */
2961 
2962 	if (toggle_ecc_err_reporting(s, nid, ON)) {
2963 		amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2964 		return false;
2965 	}
2966 
2967 	amd64_read_pci_cfg(F3, NBCTL, &value);
2968 
2969 	s->old_nbctl   = value & mask;
2970 	s->nbctl_valid = true;
2971 
2972 	value |= mask;
2973 	amd64_write_pci_cfg(F3, NBCTL, value);
2974 
2975 	amd64_read_pci_cfg(F3, NBCFG, &value);
2976 
2977 	edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2978 		 nid, value, !!(value & NBCFG_ECC_ENABLE));
2979 
2980 	if (!(value & NBCFG_ECC_ENABLE)) {
2981 		amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2982 
2983 		s->flags.nb_ecc_prev = 0;
2984 
2985 		/* Attempt to turn on DRAM ECC Enable */
2986 		value |= NBCFG_ECC_ENABLE;
2987 		amd64_write_pci_cfg(F3, NBCFG, value);
2988 
2989 		amd64_read_pci_cfg(F3, NBCFG, &value);
2990 
2991 		if (!(value & NBCFG_ECC_ENABLE)) {
2992 			amd64_warn("Hardware rejected DRAM ECC enable,"
2993 				   "check memory DIMM configuration.\n");
2994 			ret = false;
2995 		} else {
2996 			amd64_info("Hardware accepted DRAM ECC Enable\n");
2997 		}
2998 	} else {
2999 		s->flags.nb_ecc_prev = 1;
3000 	}
3001 
3002 	edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
3003 		 nid, value, !!(value & NBCFG_ECC_ENABLE));
3004 
3005 	return ret;
3006 }
3007 
3008 static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
3009 					struct pci_dev *F3)
3010 {
3011 	u32 value, mask = 0x3;		/* UECC/CECC enable */
3012 
3013 	if (!s->nbctl_valid)
3014 		return;
3015 
3016 	amd64_read_pci_cfg(F3, NBCTL, &value);
3017 	value &= ~mask;
3018 	value |= s->old_nbctl;
3019 
3020 	amd64_write_pci_cfg(F3, NBCTL, value);
3021 
3022 	/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
3023 	if (!s->flags.nb_ecc_prev) {
3024 		amd64_read_pci_cfg(F3, NBCFG, &value);
3025 		value &= ~NBCFG_ECC_ENABLE;
3026 		amd64_write_pci_cfg(F3, NBCFG, value);
3027 	}
3028 
3029 	/* restore the NB Enable MCGCTL bit */
3030 	if (toggle_ecc_err_reporting(s, nid, OFF))
3031 		amd64_warn("Error restoring NB MCGCTL settings!\n");
3032 }
3033 
3034 /*
3035  * EDAC requires that the BIOS have ECC enabled before
3036  * taking over the processing of ECC errors. A command line
3037  * option allows to force-enable hardware ECC later in
3038  * enable_ecc_error_reporting().
3039  */
3040 static const char *ecc_msg =
3041 	"ECC disabled in the BIOS or no ECC capability, module will not load.\n"
3042 	" Either enable ECC checking or force module loading by setting "
3043 	"'ecc_enable_override'.\n"
3044 	" (Note that use of the override may cause unknown side effects.)\n";
3045 
3046 static bool ecc_enabled(struct pci_dev *F3, u16 nid)
3047 {
3048 	bool nb_mce_en = false;
3049 	u8 ecc_en = 0, i;
3050 	u32 value;
3051 
3052 	if (boot_cpu_data.x86 >= 0x17) {
3053 		u8 umc_en_mask = 0, ecc_en_mask = 0;
3054 
3055 		for (i = 0; i < NUM_UMCS; i++) {
3056 			u32 base = get_umc_base(i);
3057 
3058 			/* Only check enabled UMCs. */
3059 			if (amd_smn_read(nid, base + UMCCH_SDP_CTRL, &value))
3060 				continue;
3061 
3062 			if (!(value & UMC_SDP_INIT))
3063 				continue;
3064 
3065 			umc_en_mask |= BIT(i);
3066 
3067 			if (amd_smn_read(nid, base + UMCCH_UMC_CAP_HI, &value))
3068 				continue;
3069 
3070 			if (value & UMC_ECC_ENABLED)
3071 				ecc_en_mask |= BIT(i);
3072 		}
3073 
3074 		/* Check whether at least one UMC is enabled: */
3075 		if (umc_en_mask)
3076 			ecc_en = umc_en_mask == ecc_en_mask;
3077 		else
3078 			edac_dbg(0, "Node %d: No enabled UMCs.\n", nid);
3079 
3080 		/* Assume UMC MCA banks are enabled. */
3081 		nb_mce_en = true;
3082 	} else {
3083 		amd64_read_pci_cfg(F3, NBCFG, &value);
3084 
3085 		ecc_en = !!(value & NBCFG_ECC_ENABLE);
3086 
3087 		nb_mce_en = nb_mce_bank_enabled_on_node(nid);
3088 		if (!nb_mce_en)
3089 			edac_dbg(0, "NB MCE bank disabled, set MSR 0x%08x[4] on node %d to enable.\n",
3090 				     MSR_IA32_MCG_CTL, nid);
3091 	}
3092 
3093 	amd64_info("Node %d: DRAM ECC %s.\n",
3094 		   nid, (ecc_en ? "enabled" : "disabled"));
3095 
3096 	if (!ecc_en || !nb_mce_en) {
3097 		amd64_info("%s", ecc_msg);
3098 		return false;
3099 	}
3100 	return true;
3101 }
3102 
3103 static inline void
3104 f17h_determine_edac_ctl_cap(struct mem_ctl_info *mci, struct amd64_pvt *pvt)
3105 {
3106 	u8 i, ecc_en = 1, cpk_en = 1;
3107 
3108 	for (i = 0; i < NUM_UMCS; i++) {
3109 		if (pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) {
3110 			ecc_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_ENABLED);
3111 			cpk_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_CHIPKILL_CAP);
3112 		}
3113 	}
3114 
3115 	/* Set chipkill only if ECC is enabled: */
3116 	if (ecc_en) {
3117 		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
3118 
3119 		if (cpk_en)
3120 			mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
3121 	}
3122 }
3123 
3124 static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
3125 				 struct amd64_family_type *fam)
3126 {
3127 	struct amd64_pvt *pvt = mci->pvt_info;
3128 
3129 	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
3130 	mci->edac_ctl_cap	= EDAC_FLAG_NONE;
3131 
3132 	if (pvt->umc) {
3133 		f17h_determine_edac_ctl_cap(mci, pvt);
3134 	} else {
3135 		if (pvt->nbcap & NBCAP_SECDED)
3136 			mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
3137 
3138 		if (pvt->nbcap & NBCAP_CHIPKILL)
3139 			mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
3140 	}
3141 
3142 	mci->edac_cap		= determine_edac_cap(pvt);
3143 	mci->mod_name		= EDAC_MOD_STR;
3144 	mci->ctl_name		= fam->ctl_name;
3145 	mci->dev_name		= pci_name(pvt->F3);
3146 	mci->ctl_page_to_phys	= NULL;
3147 
3148 	/* memory scrubber interface */
3149 	mci->set_sdram_scrub_rate = set_scrub_rate;
3150 	mci->get_sdram_scrub_rate = get_scrub_rate;
3151 }
3152 
3153 /*
3154  * returns a pointer to the family descriptor on success, NULL otherwise.
3155  */
3156 static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt)
3157 {
3158 	struct amd64_family_type *fam_type = NULL;
3159 
3160 	pvt->ext_model  = boot_cpu_data.x86_model >> 4;
3161 	pvt->stepping	= boot_cpu_data.x86_stepping;
3162 	pvt->model	= boot_cpu_data.x86_model;
3163 	pvt->fam	= boot_cpu_data.x86;
3164 
3165 	switch (pvt->fam) {
3166 	case 0xf:
3167 		fam_type	= &family_types[K8_CPUS];
3168 		pvt->ops	= &family_types[K8_CPUS].ops;
3169 		break;
3170 
3171 	case 0x10:
3172 		fam_type	= &family_types[F10_CPUS];
3173 		pvt->ops	= &family_types[F10_CPUS].ops;
3174 		break;
3175 
3176 	case 0x15:
3177 		if (pvt->model == 0x30) {
3178 			fam_type = &family_types[F15_M30H_CPUS];
3179 			pvt->ops = &family_types[F15_M30H_CPUS].ops;
3180 			break;
3181 		} else if (pvt->model == 0x60) {
3182 			fam_type = &family_types[F15_M60H_CPUS];
3183 			pvt->ops = &family_types[F15_M60H_CPUS].ops;
3184 			break;
3185 		}
3186 
3187 		fam_type	= &family_types[F15_CPUS];
3188 		pvt->ops	= &family_types[F15_CPUS].ops;
3189 		break;
3190 
3191 	case 0x16:
3192 		if (pvt->model == 0x30) {
3193 			fam_type = &family_types[F16_M30H_CPUS];
3194 			pvt->ops = &family_types[F16_M30H_CPUS].ops;
3195 			break;
3196 		}
3197 		fam_type	= &family_types[F16_CPUS];
3198 		pvt->ops	= &family_types[F16_CPUS].ops;
3199 		break;
3200 
3201 	case 0x17:
3202 		if (pvt->model >= 0x10 && pvt->model <= 0x2f) {
3203 			fam_type = &family_types[F17_M10H_CPUS];
3204 			pvt->ops = &family_types[F17_M10H_CPUS].ops;
3205 			break;
3206 		}
3207 		/* fall through */
3208 	case 0x18:
3209 		fam_type	= &family_types[F17_CPUS];
3210 		pvt->ops	= &family_types[F17_CPUS].ops;
3211 
3212 		if (pvt->fam == 0x18)
3213 			family_types[F17_CPUS].ctl_name = "F18h";
3214 		break;
3215 
3216 	default:
3217 		amd64_err("Unsupported family!\n");
3218 		return NULL;
3219 	}
3220 
3221 	amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
3222 		     (pvt->fam == 0xf ?
3223 				(pvt->ext_model >= K8_REV_F  ? "revF or later "
3224 							     : "revE or earlier ")
3225 				 : ""), pvt->mc_node_id);
3226 	return fam_type;
3227 }
3228 
3229 static const struct attribute_group *amd64_edac_attr_groups[] = {
3230 #ifdef CONFIG_EDAC_DEBUG
3231 	&amd64_edac_dbg_group,
3232 #endif
3233 #ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION
3234 	&amd64_edac_inj_group,
3235 #endif
3236 	NULL
3237 };
3238 
3239 static int init_one_instance(unsigned int nid)
3240 {
3241 	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
3242 	struct amd64_family_type *fam_type = NULL;
3243 	struct mem_ctl_info *mci = NULL;
3244 	struct edac_mc_layer layers[2];
3245 	struct amd64_pvt *pvt = NULL;
3246 	u16 pci_id1, pci_id2;
3247 	int err = 0, ret;
3248 
3249 	ret = -ENOMEM;
3250 	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
3251 	if (!pvt)
3252 		goto err_ret;
3253 
3254 	pvt->mc_node_id	= nid;
3255 	pvt->F3 = F3;
3256 
3257 	ret = -EINVAL;
3258 	fam_type = per_family_init(pvt);
3259 	if (!fam_type)
3260 		goto err_free;
3261 
3262 	if (pvt->fam >= 0x17) {
3263 		pvt->umc = kcalloc(NUM_UMCS, sizeof(struct amd64_umc), GFP_KERNEL);
3264 		if (!pvt->umc) {
3265 			ret = -ENOMEM;
3266 			goto err_free;
3267 		}
3268 
3269 		pci_id1 = fam_type->f0_id;
3270 		pci_id2 = fam_type->f6_id;
3271 	} else {
3272 		pci_id1 = fam_type->f1_id;
3273 		pci_id2 = fam_type->f2_id;
3274 	}
3275 
3276 	err = reserve_mc_sibling_devs(pvt, pci_id1, pci_id2);
3277 	if (err)
3278 		goto err_post_init;
3279 
3280 	read_mc_regs(pvt);
3281 
3282 	/*
3283 	 * We need to determine how many memory channels there are. Then use
3284 	 * that information for calculating the size of the dynamic instance
3285 	 * tables in the 'mci' structure.
3286 	 */
3287 	ret = -EINVAL;
3288 	pvt->channel_count = pvt->ops->early_channel_count(pvt);
3289 	if (pvt->channel_count < 0)
3290 		goto err_siblings;
3291 
3292 	ret = -ENOMEM;
3293 	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
3294 	layers[0].size = pvt->csels[0].b_cnt;
3295 	layers[0].is_virt_csrow = true;
3296 	layers[1].type = EDAC_MC_LAYER_CHANNEL;
3297 
3298 	/*
3299 	 * Always allocate two channels since we can have setups with DIMMs on
3300 	 * only one channel. Also, this simplifies handling later for the price
3301 	 * of a couple of KBs tops.
3302 	 */
3303 	layers[1].size = 2;
3304 	layers[1].is_virt_csrow = false;
3305 
3306 	mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
3307 	if (!mci)
3308 		goto err_siblings;
3309 
3310 	mci->pvt_info = pvt;
3311 	mci->pdev = &pvt->F3->dev;
3312 
3313 	setup_mci_misc_attrs(mci, fam_type);
3314 
3315 	if (init_csrows(mci))
3316 		mci->edac_cap = EDAC_FLAG_NONE;
3317 
3318 	ret = -ENODEV;
3319 	if (edac_mc_add_mc_with_groups(mci, amd64_edac_attr_groups)) {
3320 		edac_dbg(1, "failed edac_mc_add_mc()\n");
3321 		goto err_add_mc;
3322 	}
3323 
3324 	return 0;
3325 
3326 err_add_mc:
3327 	edac_mc_free(mci);
3328 
3329 err_siblings:
3330 	free_mc_sibling_devs(pvt);
3331 
3332 err_post_init:
3333 	if (pvt->fam >= 0x17)
3334 		kfree(pvt->umc);
3335 
3336 err_free:
3337 	kfree(pvt);
3338 
3339 err_ret:
3340 	return ret;
3341 }
3342 
3343 static int probe_one_instance(unsigned int nid)
3344 {
3345 	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
3346 	struct ecc_settings *s;
3347 	int ret;
3348 
3349 	ret = -ENOMEM;
3350 	s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
3351 	if (!s)
3352 		goto err_out;
3353 
3354 	ecc_stngs[nid] = s;
3355 
3356 	if (!ecc_enabled(F3, nid)) {
3357 		ret = 0;
3358 
3359 		if (!ecc_enable_override)
3360 			goto err_enable;
3361 
3362 		if (boot_cpu_data.x86 >= 0x17) {
3363 			amd64_warn("Forcing ECC on is not recommended on newer systems. Please enable ECC in BIOS.");
3364 			goto err_enable;
3365 		} else
3366 			amd64_warn("Forcing ECC on!\n");
3367 
3368 		if (!enable_ecc_error_reporting(s, nid, F3))
3369 			goto err_enable;
3370 	}
3371 
3372 	ret = init_one_instance(nid);
3373 	if (ret < 0) {
3374 		amd64_err("Error probing instance: %d\n", nid);
3375 
3376 		if (boot_cpu_data.x86 < 0x17)
3377 			restore_ecc_error_reporting(s, nid, F3);
3378 
3379 		goto err_enable;
3380 	}
3381 
3382 	return ret;
3383 
3384 err_enable:
3385 	kfree(s);
3386 	ecc_stngs[nid] = NULL;
3387 
3388 err_out:
3389 	return ret;
3390 }
3391 
3392 static void remove_one_instance(unsigned int nid)
3393 {
3394 	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
3395 	struct ecc_settings *s = ecc_stngs[nid];
3396 	struct mem_ctl_info *mci;
3397 	struct amd64_pvt *pvt;
3398 
3399 	mci = find_mci_by_dev(&F3->dev);
3400 	WARN_ON(!mci);
3401 
3402 	/* Remove from EDAC CORE tracking list */
3403 	mci = edac_mc_del_mc(&F3->dev);
3404 	if (!mci)
3405 		return;
3406 
3407 	pvt = mci->pvt_info;
3408 
3409 	restore_ecc_error_reporting(s, nid, F3);
3410 
3411 	free_mc_sibling_devs(pvt);
3412 
3413 	kfree(ecc_stngs[nid]);
3414 	ecc_stngs[nid] = NULL;
3415 
3416 	/* Free the EDAC CORE resources */
3417 	mci->pvt_info = NULL;
3418 
3419 	kfree(pvt);
3420 	edac_mc_free(mci);
3421 }
3422 
3423 static void setup_pci_device(void)
3424 {
3425 	struct mem_ctl_info *mci;
3426 	struct amd64_pvt *pvt;
3427 
3428 	if (pci_ctl)
3429 		return;
3430 
3431 	mci = edac_mc_find(0);
3432 	if (!mci)
3433 		return;
3434 
3435 	pvt = mci->pvt_info;
3436 	if (pvt->umc)
3437 		pci_ctl = edac_pci_create_generic_ctl(&pvt->F0->dev, EDAC_MOD_STR);
3438 	else
3439 		pci_ctl = edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
3440 	if (!pci_ctl) {
3441 		pr_warn("%s(): Unable to create PCI control\n", __func__);
3442 		pr_warn("%s(): PCI error report via EDAC not set\n", __func__);
3443 	}
3444 }
3445 
3446 static const struct x86_cpu_id amd64_cpuids[] = {
3447 	{ X86_VENDOR_AMD, 0xF,	X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
3448 	{ X86_VENDOR_AMD, 0x10, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
3449 	{ X86_VENDOR_AMD, 0x15, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
3450 	{ X86_VENDOR_AMD, 0x16, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
3451 	{ X86_VENDOR_AMD, 0x17, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
3452 	{ X86_VENDOR_HYGON, 0x18, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
3453 	{ }
3454 };
3455 MODULE_DEVICE_TABLE(x86cpu, amd64_cpuids);
3456 
3457 static int __init amd64_edac_init(void)
3458 {
3459 	const char *owner;
3460 	int err = -ENODEV;
3461 	int i;
3462 
3463 	owner = edac_get_owner();
3464 	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
3465 		return -EBUSY;
3466 
3467 	if (!x86_match_cpu(amd64_cpuids))
3468 		return -ENODEV;
3469 
3470 	if (amd_cache_northbridges() < 0)
3471 		return -ENODEV;
3472 
3473 	opstate_init();
3474 
3475 	err = -ENOMEM;
3476 	ecc_stngs = kcalloc(amd_nb_num(), sizeof(ecc_stngs[0]), GFP_KERNEL);
3477 	if (!ecc_stngs)
3478 		goto err_free;
3479 
3480 	msrs = msrs_alloc();
3481 	if (!msrs)
3482 		goto err_free;
3483 
3484 	for (i = 0; i < amd_nb_num(); i++) {
3485 		err = probe_one_instance(i);
3486 		if (err) {
3487 			/* unwind properly */
3488 			while (--i >= 0)
3489 				remove_one_instance(i);
3490 
3491 			goto err_pci;
3492 		}
3493 	}
3494 
3495 	if (!edac_has_mcs()) {
3496 		err = -ENODEV;
3497 		goto err_pci;
3498 	}
3499 
3500 	/* register stuff with EDAC MCE */
3501 	if (report_gart_errors)
3502 		amd_report_gart_errors(true);
3503 
3504 	if (boot_cpu_data.x86 >= 0x17)
3505 		amd_register_ecc_decoder(decode_umc_error);
3506 	else
3507 		amd_register_ecc_decoder(decode_bus_error);
3508 
3509 	setup_pci_device();
3510 
3511 #ifdef CONFIG_X86_32
3512 	amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR);
3513 #endif
3514 
3515 	printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
3516 
3517 	return 0;
3518 
3519 err_pci:
3520 	msrs_free(msrs);
3521 	msrs = NULL;
3522 
3523 err_free:
3524 	kfree(ecc_stngs);
3525 	ecc_stngs = NULL;
3526 
3527 	return err;
3528 }
3529 
3530 static void __exit amd64_edac_exit(void)
3531 {
3532 	int i;
3533 
3534 	if (pci_ctl)
3535 		edac_pci_release_generic_ctl(pci_ctl);
3536 
3537 	/* unregister from EDAC MCE */
3538 	amd_report_gart_errors(false);
3539 
3540 	if (boot_cpu_data.x86 >= 0x17)
3541 		amd_unregister_ecc_decoder(decode_umc_error);
3542 	else
3543 		amd_unregister_ecc_decoder(decode_bus_error);
3544 
3545 	for (i = 0; i < amd_nb_num(); i++)
3546 		remove_one_instance(i);
3547 
3548 	kfree(ecc_stngs);
3549 	ecc_stngs = NULL;
3550 
3551 	msrs_free(msrs);
3552 	msrs = NULL;
3553 }
3554 
3555 module_init(amd64_edac_init);
3556 module_exit(amd64_edac_exit);
3557 
3558 MODULE_LICENSE("GPL");
3559 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
3560 		"Dave Peterson, Thayne Harbaugh");
3561 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
3562 		EDAC_AMD64_VERSION);
3563 
3564 module_param(edac_op_state, int, 0444);
3565 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
3566