xref: /openbmc/linux/drivers/edac/amd64_edac.c (revision bc05aa6e)
1 #include "amd64_edac.h"
2 #include <asm/amd_nb.h>
3 
4 static struct edac_pci_ctl_info *pci_ctl;
5 
6 static int report_gart_errors;
7 module_param(report_gart_errors, int, 0644);
8 
9 /*
10  * Set by command line parameter. If BIOS has enabled the ECC, this override is
11  * cleared to prevent re-enabling the hardware by this driver.
12  */
13 static int ecc_enable_override;
14 module_param(ecc_enable_override, int, 0644);
15 
16 static struct msr __percpu *msrs;
17 
18 /* Per-node stuff */
19 static struct ecc_settings **ecc_stngs;
20 
21 /*
22  * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
23  * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
24  * or higher value'.
25  *
26  *FIXME: Produce a better mapping/linearisation.
27  */
28 static const struct scrubrate {
29        u32 scrubval;           /* bit pattern for scrub rate */
30        u32 bandwidth;          /* bandwidth consumed (bytes/sec) */
31 } scrubrates[] = {
32 	{ 0x01, 1600000000UL},
33 	{ 0x02, 800000000UL},
34 	{ 0x03, 400000000UL},
35 	{ 0x04, 200000000UL},
36 	{ 0x05, 100000000UL},
37 	{ 0x06, 50000000UL},
38 	{ 0x07, 25000000UL},
39 	{ 0x08, 12284069UL},
40 	{ 0x09, 6274509UL},
41 	{ 0x0A, 3121951UL},
42 	{ 0x0B, 1560975UL},
43 	{ 0x0C, 781440UL},
44 	{ 0x0D, 390720UL},
45 	{ 0x0E, 195300UL},
46 	{ 0x0F, 97650UL},
47 	{ 0x10, 48854UL},
48 	{ 0x11, 24427UL},
49 	{ 0x12, 12213UL},
50 	{ 0x13, 6101UL},
51 	{ 0x14, 3051UL},
52 	{ 0x15, 1523UL},
53 	{ 0x16, 761UL},
54 	{ 0x00, 0UL},        /* scrubbing off */
55 };
56 
57 int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
58 			       u32 *val, const char *func)
59 {
60 	int err = 0;
61 
62 	err = pci_read_config_dword(pdev, offset, val);
63 	if (err)
64 		amd64_warn("%s: error reading F%dx%03x.\n",
65 			   func, PCI_FUNC(pdev->devfn), offset);
66 
67 	return err;
68 }
69 
70 int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
71 				u32 val, const char *func)
72 {
73 	int err = 0;
74 
75 	err = pci_write_config_dword(pdev, offset, val);
76 	if (err)
77 		amd64_warn("%s: error writing to F%dx%03x.\n",
78 			   func, PCI_FUNC(pdev->devfn), offset);
79 
80 	return err;
81 }
82 
83 /*
84  * Select DCT to which PCI cfg accesses are routed
85  */
86 static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
87 {
88 	u32 reg = 0;
89 
90 	amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
91 	reg &= (pvt->model == 0x30) ? ~3 : ~1;
92 	reg |= dct;
93 	amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
94 }
95 
96 /*
97  *
98  * Depending on the family, F2 DCT reads need special handling:
99  *
100  * K8: has a single DCT only and no address offsets >= 0x100
101  *
102  * F10h: each DCT has its own set of regs
103  *	DCT0 -> F2x040..
104  *	DCT1 -> F2x140..
105  *
106  * F16h: has only 1 DCT
107  *
108  * F15h: we select which DCT we access using F1x10C[DctCfgSel]
109  */
110 static inline int amd64_read_dct_pci_cfg(struct amd64_pvt *pvt, u8 dct,
111 					 int offset, u32 *val)
112 {
113 	switch (pvt->fam) {
114 	case 0xf:
115 		if (dct || offset >= 0x100)
116 			return -EINVAL;
117 		break;
118 
119 	case 0x10:
120 		if (dct) {
121 			/*
122 			 * Note: If ganging is enabled, barring the regs
123 			 * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx
124 			 * return 0. (cf. Section 2.8.1 F10h BKDG)
125 			 */
126 			if (dct_ganging_enabled(pvt))
127 				return 0;
128 
129 			offset += 0x100;
130 		}
131 		break;
132 
133 	case 0x15:
134 		/*
135 		 * F15h: F2x1xx addresses do not map explicitly to DCT1.
136 		 * We should select which DCT we access using F1x10C[DctCfgSel]
137 		 */
138 		dct = (dct && pvt->model == 0x30) ? 3 : dct;
139 		f15h_select_dct(pvt, dct);
140 		break;
141 
142 	case 0x16:
143 		if (dct)
144 			return -EINVAL;
145 		break;
146 
147 	default:
148 		break;
149 	}
150 	return amd64_read_pci_cfg(pvt->F2, offset, val);
151 }
152 
153 /*
154  * Memory scrubber control interface. For K8, memory scrubbing is handled by
155  * hardware and can involve L2 cache, dcache as well as the main memory. With
156  * F10, this is extended to L3 cache scrubbing on CPU models sporting that
157  * functionality.
158  *
159  * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
160  * (dram) over to cache lines. This is nasty, so we will use bandwidth in
161  * bytes/sec for the setting.
162  *
163  * Currently, we only do dram scrubbing. If the scrubbing is done in software on
164  * other archs, we might not have access to the caches directly.
165  */
166 
167 static inline void __f17h_set_scrubval(struct amd64_pvt *pvt, u32 scrubval)
168 {
169 	/*
170 	 * Fam17h supports scrub values between 0x5 and 0x14. Also, the values
171 	 * are shifted down by 0x5, so scrubval 0x5 is written to the register
172 	 * as 0x0, scrubval 0x6 as 0x1, etc.
173 	 */
174 	if (scrubval >= 0x5 && scrubval <= 0x14) {
175 		scrubval -= 0x5;
176 		pci_write_bits32(pvt->F6, F17H_SCR_LIMIT_ADDR, scrubval, 0xF);
177 		pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 1, 0x1);
178 	} else {
179 		pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 0, 0x1);
180 	}
181 }
182 /*
183  * Scan the scrub rate mapping table for a close or matching bandwidth value to
184  * issue. If requested is too big, then use last maximum value found.
185  */
186 static int __set_scrub_rate(struct amd64_pvt *pvt, u32 new_bw, u32 min_rate)
187 {
188 	u32 scrubval;
189 	int i;
190 
191 	/*
192 	 * map the configured rate (new_bw) to a value specific to the AMD64
193 	 * memory controller and apply to register. Search for the first
194 	 * bandwidth entry that is greater or equal than the setting requested
195 	 * and program that. If at last entry, turn off DRAM scrubbing.
196 	 *
197 	 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
198 	 * by falling back to the last element in scrubrates[].
199 	 */
200 	for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
201 		/*
202 		 * skip scrub rates which aren't recommended
203 		 * (see F10 BKDG, F3x58)
204 		 */
205 		if (scrubrates[i].scrubval < min_rate)
206 			continue;
207 
208 		if (scrubrates[i].bandwidth <= new_bw)
209 			break;
210 	}
211 
212 	scrubval = scrubrates[i].scrubval;
213 
214 	if (pvt->fam == 0x17) {
215 		__f17h_set_scrubval(pvt, scrubval);
216 	} else if (pvt->fam == 0x15 && pvt->model == 0x60) {
217 		f15h_select_dct(pvt, 0);
218 		pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
219 		f15h_select_dct(pvt, 1);
220 		pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
221 	} else {
222 		pci_write_bits32(pvt->F3, SCRCTRL, scrubval, 0x001F);
223 	}
224 
225 	if (scrubval)
226 		return scrubrates[i].bandwidth;
227 
228 	return 0;
229 }
230 
231 static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
232 {
233 	struct amd64_pvt *pvt = mci->pvt_info;
234 	u32 min_scrubrate = 0x5;
235 
236 	if (pvt->fam == 0xf)
237 		min_scrubrate = 0x0;
238 
239 	if (pvt->fam == 0x15) {
240 		/* Erratum #505 */
241 		if (pvt->model < 0x10)
242 			f15h_select_dct(pvt, 0);
243 
244 		if (pvt->model == 0x60)
245 			min_scrubrate = 0x6;
246 	}
247 	return __set_scrub_rate(pvt, bw, min_scrubrate);
248 }
249 
250 static int get_scrub_rate(struct mem_ctl_info *mci)
251 {
252 	struct amd64_pvt *pvt = mci->pvt_info;
253 	int i, retval = -EINVAL;
254 	u32 scrubval = 0;
255 
256 	switch (pvt->fam) {
257 	case 0x15:
258 		/* Erratum #505 */
259 		if (pvt->model < 0x10)
260 			f15h_select_dct(pvt, 0);
261 
262 		if (pvt->model == 0x60)
263 			amd64_read_pci_cfg(pvt->F2, F15H_M60H_SCRCTRL, &scrubval);
264 		break;
265 
266 	case 0x17:
267 		amd64_read_pci_cfg(pvt->F6, F17H_SCR_BASE_ADDR, &scrubval);
268 		if (scrubval & BIT(0)) {
269 			amd64_read_pci_cfg(pvt->F6, F17H_SCR_LIMIT_ADDR, &scrubval);
270 			scrubval &= 0xF;
271 			scrubval += 0x5;
272 		} else {
273 			scrubval = 0;
274 		}
275 		break;
276 
277 	default:
278 		amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
279 		break;
280 	}
281 
282 	scrubval = scrubval & 0x001F;
283 
284 	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
285 		if (scrubrates[i].scrubval == scrubval) {
286 			retval = scrubrates[i].bandwidth;
287 			break;
288 		}
289 	}
290 	return retval;
291 }
292 
293 /*
294  * returns true if the SysAddr given by sys_addr matches the
295  * DRAM base/limit associated with node_id
296  */
297 static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid)
298 {
299 	u64 addr;
300 
301 	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
302 	 * all ones if the most significant implemented address bit is 1.
303 	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
304 	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
305 	 * Application Programming.
306 	 */
307 	addr = sys_addr & 0x000000ffffffffffull;
308 
309 	return ((addr >= get_dram_base(pvt, nid)) &&
310 		(addr <= get_dram_limit(pvt, nid)));
311 }
312 
313 /*
314  * Attempt to map a SysAddr to a node. On success, return a pointer to the
315  * mem_ctl_info structure for the node that the SysAddr maps to.
316  *
317  * On failure, return NULL.
318  */
319 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
320 						u64 sys_addr)
321 {
322 	struct amd64_pvt *pvt;
323 	u8 node_id;
324 	u32 intlv_en, bits;
325 
326 	/*
327 	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
328 	 * 3.4.4.2) registers to map the SysAddr to a node ID.
329 	 */
330 	pvt = mci->pvt_info;
331 
332 	/*
333 	 * The value of this field should be the same for all DRAM Base
334 	 * registers.  Therefore we arbitrarily choose to read it from the
335 	 * register for node 0.
336 	 */
337 	intlv_en = dram_intlv_en(pvt, 0);
338 
339 	if (intlv_en == 0) {
340 		for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
341 			if (base_limit_match(pvt, sys_addr, node_id))
342 				goto found;
343 		}
344 		goto err_no_match;
345 	}
346 
347 	if (unlikely((intlv_en != 0x01) &&
348 		     (intlv_en != 0x03) &&
349 		     (intlv_en != 0x07))) {
350 		amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
351 		return NULL;
352 	}
353 
354 	bits = (((u32) sys_addr) >> 12) & intlv_en;
355 
356 	for (node_id = 0; ; ) {
357 		if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
358 			break;	/* intlv_sel field matches */
359 
360 		if (++node_id >= DRAM_RANGES)
361 			goto err_no_match;
362 	}
363 
364 	/* sanity test for sys_addr */
365 	if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) {
366 		amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
367 			   "range for node %d with node interleaving enabled.\n",
368 			   __func__, sys_addr, node_id);
369 		return NULL;
370 	}
371 
372 found:
373 	return edac_mc_find((int)node_id);
374 
375 err_no_match:
376 	edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
377 		 (unsigned long)sys_addr);
378 
379 	return NULL;
380 }
381 
382 /*
383  * compute the CS base address of the @csrow on the DRAM controller @dct.
384  * For details see F2x[5C:40] in the processor's BKDG
385  */
386 static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
387 				 u64 *base, u64 *mask)
388 {
389 	u64 csbase, csmask, base_bits, mask_bits;
390 	u8 addr_shift;
391 
392 	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
393 		csbase		= pvt->csels[dct].csbases[csrow];
394 		csmask		= pvt->csels[dct].csmasks[csrow];
395 		base_bits	= GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
396 		mask_bits	= GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
397 		addr_shift	= 4;
398 
399 	/*
400 	 * F16h and F15h, models 30h and later need two addr_shift values:
401 	 * 8 for high and 6 for low (cf. F16h BKDG).
402 	 */
403 	} else if (pvt->fam == 0x16 ||
404 		  (pvt->fam == 0x15 && pvt->model >= 0x30)) {
405 		csbase          = pvt->csels[dct].csbases[csrow];
406 		csmask          = pvt->csels[dct].csmasks[csrow >> 1];
407 
408 		*base  = (csbase & GENMASK_ULL(15,  5)) << 6;
409 		*base |= (csbase & GENMASK_ULL(30, 19)) << 8;
410 
411 		*mask = ~0ULL;
412 		/* poke holes for the csmask */
413 		*mask &= ~((GENMASK_ULL(15, 5)  << 6) |
414 			   (GENMASK_ULL(30, 19) << 8));
415 
416 		*mask |= (csmask & GENMASK_ULL(15, 5))  << 6;
417 		*mask |= (csmask & GENMASK_ULL(30, 19)) << 8;
418 
419 		return;
420 	} else {
421 		csbase		= pvt->csels[dct].csbases[csrow];
422 		csmask		= pvt->csels[dct].csmasks[csrow >> 1];
423 		addr_shift	= 8;
424 
425 		if (pvt->fam == 0x15)
426 			base_bits = mask_bits =
427 				GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
428 		else
429 			base_bits = mask_bits =
430 				GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
431 	}
432 
433 	*base  = (csbase & base_bits) << addr_shift;
434 
435 	*mask  = ~0ULL;
436 	/* poke holes for the csmask */
437 	*mask &= ~(mask_bits << addr_shift);
438 	/* OR them in */
439 	*mask |= (csmask & mask_bits) << addr_shift;
440 }
441 
442 #define for_each_chip_select(i, dct, pvt) \
443 	for (i = 0; i < pvt->csels[dct].b_cnt; i++)
444 
445 #define chip_select_base(i, dct, pvt) \
446 	pvt->csels[dct].csbases[i]
447 
448 #define for_each_chip_select_mask(i, dct, pvt) \
449 	for (i = 0; i < pvt->csels[dct].m_cnt; i++)
450 
451 /*
452  * @input_addr is an InputAddr associated with the node given by mci. Return the
453  * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
454  */
455 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
456 {
457 	struct amd64_pvt *pvt;
458 	int csrow;
459 	u64 base, mask;
460 
461 	pvt = mci->pvt_info;
462 
463 	for_each_chip_select(csrow, 0, pvt) {
464 		if (!csrow_enabled(csrow, 0, pvt))
465 			continue;
466 
467 		get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
468 
469 		mask = ~mask;
470 
471 		if ((input_addr & mask) == (base & mask)) {
472 			edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
473 				 (unsigned long)input_addr, csrow,
474 				 pvt->mc_node_id);
475 
476 			return csrow;
477 		}
478 	}
479 	edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
480 		 (unsigned long)input_addr, pvt->mc_node_id);
481 
482 	return -1;
483 }
484 
485 /*
486  * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
487  * for the node represented by mci. Info is passed back in *hole_base,
488  * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
489  * info is invalid. Info may be invalid for either of the following reasons:
490  *
491  * - The revision of the node is not E or greater.  In this case, the DRAM Hole
492  *   Address Register does not exist.
493  *
494  * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
495  *   indicating that its contents are not valid.
496  *
497  * The values passed back in *hole_base, *hole_offset, and *hole_size are
498  * complete 32-bit values despite the fact that the bitfields in the DHAR
499  * only represent bits 31-24 of the base and offset values.
500  */
501 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
502 			     u64 *hole_offset, u64 *hole_size)
503 {
504 	struct amd64_pvt *pvt = mci->pvt_info;
505 
506 	/* only revE and later have the DRAM Hole Address Register */
507 	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
508 		edac_dbg(1, "  revision %d for node %d does not support DHAR\n",
509 			 pvt->ext_model, pvt->mc_node_id);
510 		return 1;
511 	}
512 
513 	/* valid for Fam10h and above */
514 	if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
515 		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this system\n");
516 		return 1;
517 	}
518 
519 	if (!dhar_valid(pvt)) {
520 		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this node %d\n",
521 			 pvt->mc_node_id);
522 		return 1;
523 	}
524 
525 	/* This node has Memory Hoisting */
526 
527 	/* +------------------+--------------------+--------------------+-----
528 	 * | memory           | DRAM hole          | relocated          |
529 	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
530 	 * |                  |                    | DRAM hole          |
531 	 * |                  |                    | [0x100000000,      |
532 	 * |                  |                    |  (0x100000000+     |
533 	 * |                  |                    |   (0xffffffff-x))] |
534 	 * +------------------+--------------------+--------------------+-----
535 	 *
536 	 * Above is a diagram of physical memory showing the DRAM hole and the
537 	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
538 	 * starts at address x (the base address) and extends through address
539 	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
540 	 * addresses in the hole so that they start at 0x100000000.
541 	 */
542 
543 	*hole_base = dhar_base(pvt);
544 	*hole_size = (1ULL << 32) - *hole_base;
545 
546 	*hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
547 					: k8_dhar_offset(pvt);
548 
549 	edac_dbg(1, "  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
550 		 pvt->mc_node_id, (unsigned long)*hole_base,
551 		 (unsigned long)*hole_offset, (unsigned long)*hole_size);
552 
553 	return 0;
554 }
555 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
556 
557 /*
558  * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
559  * assumed that sys_addr maps to the node given by mci.
560  *
561  * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
562  * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
563  * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
564  * then it is also involved in translating a SysAddr to a DramAddr. Sections
565  * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
566  * These parts of the documentation are unclear. I interpret them as follows:
567  *
568  * When node n receives a SysAddr, it processes the SysAddr as follows:
569  *
570  * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
571  *    Limit registers for node n. If the SysAddr is not within the range
572  *    specified by the base and limit values, then node n ignores the Sysaddr
573  *    (since it does not map to node n). Otherwise continue to step 2 below.
574  *
575  * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
576  *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
577  *    the range of relocated addresses (starting at 0x100000000) from the DRAM
578  *    hole. If not, skip to step 3 below. Else get the value of the
579  *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
580  *    offset defined by this value from the SysAddr.
581  *
582  * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
583  *    Base register for node n. To obtain the DramAddr, subtract the base
584  *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
585  */
586 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
587 {
588 	struct amd64_pvt *pvt = mci->pvt_info;
589 	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
590 	int ret;
591 
592 	dram_base = get_dram_base(pvt, pvt->mc_node_id);
593 
594 	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
595 				      &hole_size);
596 	if (!ret) {
597 		if ((sys_addr >= (1ULL << 32)) &&
598 		    (sys_addr < ((1ULL << 32) + hole_size))) {
599 			/* use DHAR to translate SysAddr to DramAddr */
600 			dram_addr = sys_addr - hole_offset;
601 
602 			edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
603 				 (unsigned long)sys_addr,
604 				 (unsigned long)dram_addr);
605 
606 			return dram_addr;
607 		}
608 	}
609 
610 	/*
611 	 * Translate the SysAddr to a DramAddr as shown near the start of
612 	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
613 	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
614 	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
615 	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
616 	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
617 	 * Programmer's Manual Volume 1 Application Programming.
618 	 */
619 	dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base;
620 
621 	edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
622 		 (unsigned long)sys_addr, (unsigned long)dram_addr);
623 	return dram_addr;
624 }
625 
626 /*
627  * @intlv_en is the value of the IntlvEn field from a DRAM Base register
628  * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
629  * for node interleaving.
630  */
631 static int num_node_interleave_bits(unsigned intlv_en)
632 {
633 	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
634 	int n;
635 
636 	BUG_ON(intlv_en > 7);
637 	n = intlv_shift_table[intlv_en];
638 	return n;
639 }
640 
641 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
642 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
643 {
644 	struct amd64_pvt *pvt;
645 	int intlv_shift;
646 	u64 input_addr;
647 
648 	pvt = mci->pvt_info;
649 
650 	/*
651 	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
652 	 * concerning translating a DramAddr to an InputAddr.
653 	 */
654 	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
655 	input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) +
656 		      (dram_addr & 0xfff);
657 
658 	edac_dbg(2, "  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
659 		 intlv_shift, (unsigned long)dram_addr,
660 		 (unsigned long)input_addr);
661 
662 	return input_addr;
663 }
664 
665 /*
666  * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
667  * assumed that @sys_addr maps to the node given by mci.
668  */
669 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
670 {
671 	u64 input_addr;
672 
673 	input_addr =
674 	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
675 
676 	edac_dbg(2, "SysAddr 0x%lx translates to InputAddr 0x%lx\n",
677 		 (unsigned long)sys_addr, (unsigned long)input_addr);
678 
679 	return input_addr;
680 }
681 
682 /* Map the Error address to a PAGE and PAGE OFFSET. */
683 static inline void error_address_to_page_and_offset(u64 error_address,
684 						    struct err_info *err)
685 {
686 	err->page = (u32) (error_address >> PAGE_SHIFT);
687 	err->offset = ((u32) error_address) & ~PAGE_MASK;
688 }
689 
690 /*
691  * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
692  * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
693  * of a node that detected an ECC memory error.  mci represents the node that
694  * the error address maps to (possibly different from the node that detected
695  * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
696  * error.
697  */
698 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
699 {
700 	int csrow;
701 
702 	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
703 
704 	if (csrow == -1)
705 		amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
706 				  "address 0x%lx\n", (unsigned long)sys_addr);
707 	return csrow;
708 }
709 
710 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
711 
712 /*
713  * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
714  * are ECC capable.
715  */
716 static unsigned long determine_edac_cap(struct amd64_pvt *pvt)
717 {
718 	unsigned long edac_cap = EDAC_FLAG_NONE;
719 	u8 bit;
720 
721 	if (pvt->umc) {
722 		u8 i, umc_en_mask = 0, dimm_ecc_en_mask = 0;
723 
724 		for (i = 0; i < NUM_UMCS; i++) {
725 			if (!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT))
726 				continue;
727 
728 			umc_en_mask |= BIT(i);
729 
730 			/* UMC Configuration bit 12 (DimmEccEn) */
731 			if (pvt->umc[i].umc_cfg & BIT(12))
732 				dimm_ecc_en_mask |= BIT(i);
733 		}
734 
735 		if (umc_en_mask == dimm_ecc_en_mask)
736 			edac_cap = EDAC_FLAG_SECDED;
737 	} else {
738 		bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
739 			? 19
740 			: 17;
741 
742 		if (pvt->dclr0 & BIT(bit))
743 			edac_cap = EDAC_FLAG_SECDED;
744 	}
745 
746 	return edac_cap;
747 }
748 
749 static void debug_display_dimm_sizes(struct amd64_pvt *, u8);
750 
751 static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
752 {
753 	edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
754 
755 	if (pvt->dram_type == MEM_LRDDR3) {
756 		u32 dcsm = pvt->csels[chan].csmasks[0];
757 		/*
758 		 * It's assumed all LRDIMMs in a DCT are going to be of
759 		 * same 'type' until proven otherwise. So, use a cs
760 		 * value of '0' here to get dcsm value.
761 		 */
762 		edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm & 0x3));
763 	}
764 
765 	edac_dbg(1, "All DIMMs support ECC:%s\n",
766 		    (dclr & BIT(19)) ? "yes" : "no");
767 
768 
769 	edac_dbg(1, "  PAR/ERR parity: %s\n",
770 		 (dclr & BIT(8)) ?  "enabled" : "disabled");
771 
772 	if (pvt->fam == 0x10)
773 		edac_dbg(1, "  DCT 128bit mode width: %s\n",
774 			 (dclr & BIT(11)) ?  "128b" : "64b");
775 
776 	edac_dbg(1, "  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
777 		 (dclr & BIT(12)) ?  "yes" : "no",
778 		 (dclr & BIT(13)) ?  "yes" : "no",
779 		 (dclr & BIT(14)) ?  "yes" : "no",
780 		 (dclr & BIT(15)) ?  "yes" : "no");
781 }
782 
783 static void debug_display_dimm_sizes_df(struct amd64_pvt *pvt, u8 ctrl)
784 {
785 	int dimm, size0, size1, cs0, cs1;
786 
787 	edac_printk(KERN_DEBUG, EDAC_MC, "UMC%d chip selects:\n", ctrl);
788 
789 	for (dimm = 0; dimm < 4; dimm++) {
790 		size0 = 0;
791 		cs0 = dimm * 2;
792 
793 		if (csrow_enabled(cs0, ctrl, pvt))
794 			size0 = pvt->ops->dbam_to_cs(pvt, ctrl, 0, cs0);
795 
796 		size1 = 0;
797 		cs1 = dimm * 2 + 1;
798 
799 		if (csrow_enabled(cs1, ctrl, pvt))
800 			size1 = pvt->ops->dbam_to_cs(pvt, ctrl, 0, cs1);
801 
802 		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
803 				cs0,	size0,
804 				cs1,	size1);
805 	}
806 }
807 
808 static void __dump_misc_regs_df(struct amd64_pvt *pvt)
809 {
810 	struct amd64_umc *umc;
811 	u32 i, tmp, umc_base;
812 
813 	for (i = 0; i < NUM_UMCS; i++) {
814 		umc_base = get_umc_base(i);
815 		umc = &pvt->umc[i];
816 
817 		edac_dbg(1, "UMC%d DIMM cfg: 0x%x\n", i, umc->dimm_cfg);
818 		edac_dbg(1, "UMC%d UMC cfg: 0x%x\n", i, umc->umc_cfg);
819 		edac_dbg(1, "UMC%d SDP ctrl: 0x%x\n", i, umc->sdp_ctrl);
820 		edac_dbg(1, "UMC%d ECC ctrl: 0x%x\n", i, umc->ecc_ctrl);
821 
822 		amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ECC_BAD_SYMBOL, &tmp);
823 		edac_dbg(1, "UMC%d ECC bad symbol: 0x%x\n", i, tmp);
824 
825 		amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_UMC_CAP, &tmp);
826 		edac_dbg(1, "UMC%d UMC cap: 0x%x\n", i, tmp);
827 		edac_dbg(1, "UMC%d UMC cap high: 0x%x\n", i, umc->umc_cap_hi);
828 
829 		edac_dbg(1, "UMC%d ECC capable: %s, ChipKill ECC capable: %s\n",
830 				i, (umc->umc_cap_hi & BIT(30)) ? "yes" : "no",
831 				    (umc->umc_cap_hi & BIT(31)) ? "yes" : "no");
832 		edac_dbg(1, "UMC%d All DIMMs support ECC: %s\n",
833 				i, (umc->umc_cfg & BIT(12)) ? "yes" : "no");
834 		edac_dbg(1, "UMC%d x4 DIMMs present: %s\n",
835 				i, (umc->dimm_cfg & BIT(6)) ? "yes" : "no");
836 		edac_dbg(1, "UMC%d x16 DIMMs present: %s\n",
837 				i, (umc->dimm_cfg & BIT(7)) ? "yes" : "no");
838 
839 		if (pvt->dram_type == MEM_LRDDR4) {
840 			amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ADDR_CFG, &tmp);
841 			edac_dbg(1, "UMC%d LRDIMM %dx rank multiply\n",
842 					i, 1 << ((tmp >> 4) & 0x3));
843 		}
844 
845 		debug_display_dimm_sizes_df(pvt, i);
846 	}
847 
848 	edac_dbg(1, "F0x104 (DRAM Hole Address): 0x%08x, base: 0x%08x\n",
849 		 pvt->dhar, dhar_base(pvt));
850 }
851 
852 /* Display and decode various NB registers for debug purposes. */
853 static void __dump_misc_regs(struct amd64_pvt *pvt)
854 {
855 	edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
856 
857 	edac_dbg(1, "  NB two channel DRAM capable: %s\n",
858 		 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
859 
860 	edac_dbg(1, "  ECC capable: %s, ChipKill ECC capable: %s\n",
861 		 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
862 		 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
863 
864 	debug_dump_dramcfg_low(pvt, pvt->dclr0, 0);
865 
866 	edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
867 
868 	edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
869 		 pvt->dhar, dhar_base(pvt),
870 		 (pvt->fam == 0xf) ? k8_dhar_offset(pvt)
871 				   : f10_dhar_offset(pvt));
872 
873 	debug_display_dimm_sizes(pvt, 0);
874 
875 	/* everything below this point is Fam10h and above */
876 	if (pvt->fam == 0xf)
877 		return;
878 
879 	debug_display_dimm_sizes(pvt, 1);
880 
881 	/* Only if NOT ganged does dclr1 have valid info */
882 	if (!dct_ganging_enabled(pvt))
883 		debug_dump_dramcfg_low(pvt, pvt->dclr1, 1);
884 }
885 
886 /* Display and decode various NB registers for debug purposes. */
887 static void dump_misc_regs(struct amd64_pvt *pvt)
888 {
889 	if (pvt->umc)
890 		__dump_misc_regs_df(pvt);
891 	else
892 		__dump_misc_regs(pvt);
893 
894 	edac_dbg(1, "  DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
895 
896 	amd64_info("using %s syndromes.\n",
897 			((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
898 }
899 
900 /*
901  * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
902  */
903 static void prep_chip_selects(struct amd64_pvt *pvt)
904 {
905 	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
906 		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
907 		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
908 	} else if (pvt->fam == 0x15 && pvt->model == 0x30) {
909 		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
910 		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
911 	} else {
912 		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
913 		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
914 	}
915 }
916 
917 /*
918  * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
919  */
920 static void read_dct_base_mask(struct amd64_pvt *pvt)
921 {
922 	int base_reg0, base_reg1, mask_reg0, mask_reg1, cs;
923 
924 	prep_chip_selects(pvt);
925 
926 	if (pvt->umc) {
927 		base_reg0 = get_umc_base(0) + UMCCH_BASE_ADDR;
928 		base_reg1 = get_umc_base(1) + UMCCH_BASE_ADDR;
929 		mask_reg0 = get_umc_base(0) + UMCCH_ADDR_MASK;
930 		mask_reg1 = get_umc_base(1) + UMCCH_ADDR_MASK;
931 	} else {
932 		base_reg0 = DCSB0;
933 		base_reg1 = DCSB1;
934 		mask_reg0 = DCSM0;
935 		mask_reg1 = DCSM1;
936 	}
937 
938 	for_each_chip_select(cs, 0, pvt) {
939 		int reg0   = base_reg0 + (cs * 4);
940 		int reg1   = base_reg1 + (cs * 4);
941 		u32 *base0 = &pvt->csels[0].csbases[cs];
942 		u32 *base1 = &pvt->csels[1].csbases[cs];
943 
944 		if (pvt->umc) {
945 			if (!amd_smn_read(pvt->mc_node_id, reg0, base0))
946 				edac_dbg(0, "  DCSB0[%d]=0x%08x reg: 0x%x\n",
947 					 cs, *base0, reg0);
948 
949 			if (!amd_smn_read(pvt->mc_node_id, reg1, base1))
950 				edac_dbg(0, "  DCSB1[%d]=0x%08x reg: 0x%x\n",
951 					 cs, *base1, reg1);
952 		} else {
953 			if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, base0))
954 				edac_dbg(0, "  DCSB0[%d]=0x%08x reg: F2x%x\n",
955 					 cs, *base0, reg0);
956 
957 			if (pvt->fam == 0xf)
958 				continue;
959 
960 			if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, base1))
961 				edac_dbg(0, "  DCSB1[%d]=0x%08x reg: F2x%x\n",
962 					 cs, *base1, (pvt->fam == 0x10) ? reg1
963 								: reg0);
964 		}
965 	}
966 
967 	for_each_chip_select_mask(cs, 0, pvt) {
968 		int reg0   = mask_reg0 + (cs * 4);
969 		int reg1   = mask_reg1 + (cs * 4);
970 		u32 *mask0 = &pvt->csels[0].csmasks[cs];
971 		u32 *mask1 = &pvt->csels[1].csmasks[cs];
972 
973 		if (pvt->umc) {
974 			if (!amd_smn_read(pvt->mc_node_id, reg0, mask0))
975 				edac_dbg(0, "    DCSM0[%d]=0x%08x reg: 0x%x\n",
976 					 cs, *mask0, reg0);
977 
978 			if (!amd_smn_read(pvt->mc_node_id, reg1, mask1))
979 				edac_dbg(0, "    DCSM1[%d]=0x%08x reg: 0x%x\n",
980 					 cs, *mask1, reg1);
981 		} else {
982 			if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, mask0))
983 				edac_dbg(0, "    DCSM0[%d]=0x%08x reg: F2x%x\n",
984 					 cs, *mask0, reg0);
985 
986 			if (pvt->fam == 0xf)
987 				continue;
988 
989 			if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, mask1))
990 				edac_dbg(0, "    DCSM1[%d]=0x%08x reg: F2x%x\n",
991 					 cs, *mask1, (pvt->fam == 0x10) ? reg1
992 								: reg0);
993 		}
994 	}
995 }
996 
997 static void determine_memory_type(struct amd64_pvt *pvt)
998 {
999 	u32 dram_ctrl, dcsm;
1000 
1001 	switch (pvt->fam) {
1002 	case 0xf:
1003 		if (pvt->ext_model >= K8_REV_F)
1004 			goto ddr3;
1005 
1006 		pvt->dram_type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
1007 		return;
1008 
1009 	case 0x10:
1010 		if (pvt->dchr0 & DDR3_MODE)
1011 			goto ddr3;
1012 
1013 		pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
1014 		return;
1015 
1016 	case 0x15:
1017 		if (pvt->model < 0x60)
1018 			goto ddr3;
1019 
1020 		/*
1021 		 * Model 0x60h needs special handling:
1022 		 *
1023 		 * We use a Chip Select value of '0' to obtain dcsm.
1024 		 * Theoretically, it is possible to populate LRDIMMs of different
1025 		 * 'Rank' value on a DCT. But this is not the common case. So,
1026 		 * it's reasonable to assume all DIMMs are going to be of same
1027 		 * 'type' until proven otherwise.
1028 		 */
1029 		amd64_read_dct_pci_cfg(pvt, 0, DRAM_CONTROL, &dram_ctrl);
1030 		dcsm = pvt->csels[0].csmasks[0];
1031 
1032 		if (((dram_ctrl >> 8) & 0x7) == 0x2)
1033 			pvt->dram_type = MEM_DDR4;
1034 		else if (pvt->dclr0 & BIT(16))
1035 			pvt->dram_type = MEM_DDR3;
1036 		else if (dcsm & 0x3)
1037 			pvt->dram_type = MEM_LRDDR3;
1038 		else
1039 			pvt->dram_type = MEM_RDDR3;
1040 
1041 		return;
1042 
1043 	case 0x16:
1044 		goto ddr3;
1045 
1046 	case 0x17:
1047 		if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(5))
1048 			pvt->dram_type = MEM_LRDDR4;
1049 		else if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(4))
1050 			pvt->dram_type = MEM_RDDR4;
1051 		else
1052 			pvt->dram_type = MEM_DDR4;
1053 		return;
1054 
1055 	default:
1056 		WARN(1, KERN_ERR "%s: Family??? 0x%x\n", __func__, pvt->fam);
1057 		pvt->dram_type = MEM_EMPTY;
1058 	}
1059 	return;
1060 
1061 ddr3:
1062 	pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
1063 }
1064 
1065 /* Get the number of DCT channels the memory controller is using. */
1066 static int k8_early_channel_count(struct amd64_pvt *pvt)
1067 {
1068 	int flag;
1069 
1070 	if (pvt->ext_model >= K8_REV_F)
1071 		/* RevF (NPT) and later */
1072 		flag = pvt->dclr0 & WIDTH_128;
1073 	else
1074 		/* RevE and earlier */
1075 		flag = pvt->dclr0 & REVE_WIDTH_128;
1076 
1077 	/* not used */
1078 	pvt->dclr1 = 0;
1079 
1080 	return (flag) ? 2 : 1;
1081 }
1082 
1083 /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
1084 static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
1085 {
1086 	u16 mce_nid = amd_get_nb_id(m->extcpu);
1087 	struct mem_ctl_info *mci;
1088 	u8 start_bit = 1;
1089 	u8 end_bit   = 47;
1090 	u64 addr;
1091 
1092 	mci = edac_mc_find(mce_nid);
1093 	if (!mci)
1094 		return 0;
1095 
1096 	pvt = mci->pvt_info;
1097 
1098 	if (pvt->fam == 0xf) {
1099 		start_bit = 3;
1100 		end_bit   = 39;
1101 	}
1102 
1103 	addr = m->addr & GENMASK_ULL(end_bit, start_bit);
1104 
1105 	/*
1106 	 * Erratum 637 workaround
1107 	 */
1108 	if (pvt->fam == 0x15) {
1109 		u64 cc6_base, tmp_addr;
1110 		u32 tmp;
1111 		u8 intlv_en;
1112 
1113 		if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
1114 			return addr;
1115 
1116 
1117 		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
1118 		intlv_en = tmp >> 21 & 0x7;
1119 
1120 		/* add [47:27] + 3 trailing bits */
1121 		cc6_base  = (tmp & GENMASK_ULL(20, 0)) << 3;
1122 
1123 		/* reverse and add DramIntlvEn */
1124 		cc6_base |= intlv_en ^ 0x7;
1125 
1126 		/* pin at [47:24] */
1127 		cc6_base <<= 24;
1128 
1129 		if (!intlv_en)
1130 			return cc6_base | (addr & GENMASK_ULL(23, 0));
1131 
1132 		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
1133 
1134 							/* faster log2 */
1135 		tmp_addr  = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1);
1136 
1137 		/* OR DramIntlvSel into bits [14:12] */
1138 		tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9;
1139 
1140 		/* add remaining [11:0] bits from original MC4_ADDR */
1141 		tmp_addr |= addr & GENMASK_ULL(11, 0);
1142 
1143 		return cc6_base | tmp_addr;
1144 	}
1145 
1146 	return addr;
1147 }
1148 
1149 static struct pci_dev *pci_get_related_function(unsigned int vendor,
1150 						unsigned int device,
1151 						struct pci_dev *related)
1152 {
1153 	struct pci_dev *dev = NULL;
1154 
1155 	while ((dev = pci_get_device(vendor, device, dev))) {
1156 		if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
1157 		    (dev->bus->number == related->bus->number) &&
1158 		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1159 			break;
1160 	}
1161 
1162 	return dev;
1163 }
1164 
1165 static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
1166 {
1167 	struct amd_northbridge *nb;
1168 	struct pci_dev *f1 = NULL;
1169 	unsigned int pci_func;
1170 	int off = range << 3;
1171 	u32 llim;
1172 
1173 	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off,  &pvt->ranges[range].base.lo);
1174 	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
1175 
1176 	if (pvt->fam == 0xf)
1177 		return;
1178 
1179 	if (!dram_rw(pvt, range))
1180 		return;
1181 
1182 	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off,  &pvt->ranges[range].base.hi);
1183 	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
1184 
1185 	/* F15h: factor in CC6 save area by reading dst node's limit reg */
1186 	if (pvt->fam != 0x15)
1187 		return;
1188 
1189 	nb = node_to_amd_nb(dram_dst_node(pvt, range));
1190 	if (WARN_ON(!nb))
1191 		return;
1192 
1193 	if (pvt->model == 0x60)
1194 		pci_func = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1;
1195 	else if (pvt->model == 0x30)
1196 		pci_func = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1;
1197 	else
1198 		pci_func = PCI_DEVICE_ID_AMD_15H_NB_F1;
1199 
1200 	f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
1201 	if (WARN_ON(!f1))
1202 		return;
1203 
1204 	amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
1205 
1206 	pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0);
1207 
1208 				    /* {[39:27],111b} */
1209 	pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
1210 
1211 	pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0);
1212 
1213 				    /* [47:40] */
1214 	pvt->ranges[range].lim.hi |= llim >> 13;
1215 
1216 	pci_dev_put(f1);
1217 }
1218 
1219 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1220 				    struct err_info *err)
1221 {
1222 	struct amd64_pvt *pvt = mci->pvt_info;
1223 
1224 	error_address_to_page_and_offset(sys_addr, err);
1225 
1226 	/*
1227 	 * Find out which node the error address belongs to. This may be
1228 	 * different from the node that detected the error.
1229 	 */
1230 	err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
1231 	if (!err->src_mci) {
1232 		amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
1233 			     (unsigned long)sys_addr);
1234 		err->err_code = ERR_NODE;
1235 		return;
1236 	}
1237 
1238 	/* Now map the sys_addr to a CSROW */
1239 	err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
1240 	if (err->csrow < 0) {
1241 		err->err_code = ERR_CSROW;
1242 		return;
1243 	}
1244 
1245 	/* CHIPKILL enabled */
1246 	if (pvt->nbcfg & NBCFG_CHIPKILL) {
1247 		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
1248 		if (err->channel < 0) {
1249 			/*
1250 			 * Syndrome didn't map, so we don't know which of the
1251 			 * 2 DIMMs is in error. So we need to ID 'both' of them
1252 			 * as suspect.
1253 			 */
1254 			amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
1255 				      "possible error reporting race\n",
1256 				      err->syndrome);
1257 			err->err_code = ERR_CHANNEL;
1258 			return;
1259 		}
1260 	} else {
1261 		/*
1262 		 * non-chipkill ecc mode
1263 		 *
1264 		 * The k8 documentation is unclear about how to determine the
1265 		 * channel number when using non-chipkill memory.  This method
1266 		 * was obtained from email communication with someone at AMD.
1267 		 * (Wish the email was placed in this comment - norsk)
1268 		 */
1269 		err->channel = ((sys_addr & BIT(3)) != 0);
1270 	}
1271 }
1272 
1273 static int ddr2_cs_size(unsigned i, bool dct_width)
1274 {
1275 	unsigned shift = 0;
1276 
1277 	if (i <= 2)
1278 		shift = i;
1279 	else if (!(i & 0x1))
1280 		shift = i >> 1;
1281 	else
1282 		shift = (i + 1) >> 1;
1283 
1284 	return 128 << (shift + !!dct_width);
1285 }
1286 
1287 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1288 				  unsigned cs_mode, int cs_mask_nr)
1289 {
1290 	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1291 
1292 	if (pvt->ext_model >= K8_REV_F) {
1293 		WARN_ON(cs_mode > 11);
1294 		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1295 	}
1296 	else if (pvt->ext_model >= K8_REV_D) {
1297 		unsigned diff;
1298 		WARN_ON(cs_mode > 10);
1299 
1300 		/*
1301 		 * the below calculation, besides trying to win an obfuscated C
1302 		 * contest, maps cs_mode values to DIMM chip select sizes. The
1303 		 * mappings are:
1304 		 *
1305 		 * cs_mode	CS size (mb)
1306 		 * =======	============
1307 		 * 0		32
1308 		 * 1		64
1309 		 * 2		128
1310 		 * 3		128
1311 		 * 4		256
1312 		 * 5		512
1313 		 * 6		256
1314 		 * 7		512
1315 		 * 8		1024
1316 		 * 9		1024
1317 		 * 10		2048
1318 		 *
1319 		 * Basically, it calculates a value with which to shift the
1320 		 * smallest CS size of 32MB.
1321 		 *
1322 		 * ddr[23]_cs_size have a similar purpose.
1323 		 */
1324 		diff = cs_mode/3 + (unsigned)(cs_mode > 5);
1325 
1326 		return 32 << (cs_mode - diff);
1327 	}
1328 	else {
1329 		WARN_ON(cs_mode > 6);
1330 		return 32 << cs_mode;
1331 	}
1332 }
1333 
1334 /*
1335  * Get the number of DCT channels in use.
1336  *
1337  * Return:
1338  *	number of Memory Channels in operation
1339  * Pass back:
1340  *	contents of the DCL0_LOW register
1341  */
1342 static int f1x_early_channel_count(struct amd64_pvt *pvt)
1343 {
1344 	int i, j, channels = 0;
1345 
1346 	/* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1347 	if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
1348 		return 2;
1349 
1350 	/*
1351 	 * Need to check if in unganged mode: In such, there are 2 channels,
1352 	 * but they are not in 128 bit mode and thus the above 'dclr0' status
1353 	 * bit will be OFF.
1354 	 *
1355 	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1356 	 * their CSEnable bit on. If so, then SINGLE DIMM case.
1357 	 */
1358 	edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
1359 
1360 	/*
1361 	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1362 	 * is more than just one DIMM present in unganged mode. Need to check
1363 	 * both controllers since DIMMs can be placed in either one.
1364 	 */
1365 	for (i = 0; i < 2; i++) {
1366 		u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1367 
1368 		for (j = 0; j < 4; j++) {
1369 			if (DBAM_DIMM(j, dbam) > 0) {
1370 				channels++;
1371 				break;
1372 			}
1373 		}
1374 	}
1375 
1376 	if (channels > 2)
1377 		channels = 2;
1378 
1379 	amd64_info("MCT channel count: %d\n", channels);
1380 
1381 	return channels;
1382 }
1383 
1384 static int f17_early_channel_count(struct amd64_pvt *pvt)
1385 {
1386 	int i, channels = 0;
1387 
1388 	/* SDP Control bit 31 (SdpInit) is clear for unused UMC channels */
1389 	for (i = 0; i < NUM_UMCS; i++)
1390 		channels += !!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT);
1391 
1392 	amd64_info("MCT channel count: %d\n", channels);
1393 
1394 	return channels;
1395 }
1396 
1397 static int ddr3_cs_size(unsigned i, bool dct_width)
1398 {
1399 	unsigned shift = 0;
1400 	int cs_size = 0;
1401 
1402 	if (i == 0 || i == 3 || i == 4)
1403 		cs_size = -1;
1404 	else if (i <= 2)
1405 		shift = i;
1406 	else if (i == 12)
1407 		shift = 7;
1408 	else if (!(i & 0x1))
1409 		shift = i >> 1;
1410 	else
1411 		shift = (i + 1) >> 1;
1412 
1413 	if (cs_size != -1)
1414 		cs_size = (128 * (1 << !!dct_width)) << shift;
1415 
1416 	return cs_size;
1417 }
1418 
1419 static int ddr3_lrdimm_cs_size(unsigned i, unsigned rank_multiply)
1420 {
1421 	unsigned shift = 0;
1422 	int cs_size = 0;
1423 
1424 	if (i < 4 || i == 6)
1425 		cs_size = -1;
1426 	else if (i == 12)
1427 		shift = 7;
1428 	else if (!(i & 0x1))
1429 		shift = i >> 1;
1430 	else
1431 		shift = (i + 1) >> 1;
1432 
1433 	if (cs_size != -1)
1434 		cs_size = rank_multiply * (128 << shift);
1435 
1436 	return cs_size;
1437 }
1438 
1439 static int ddr4_cs_size(unsigned i)
1440 {
1441 	int cs_size = 0;
1442 
1443 	if (i == 0)
1444 		cs_size = -1;
1445 	else if (i == 1)
1446 		cs_size = 1024;
1447 	else
1448 		/* Min cs_size = 1G */
1449 		cs_size = 1024 * (1 << (i >> 1));
1450 
1451 	return cs_size;
1452 }
1453 
1454 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1455 				   unsigned cs_mode, int cs_mask_nr)
1456 {
1457 	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1458 
1459 	WARN_ON(cs_mode > 11);
1460 
1461 	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1462 		return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1463 	else
1464 		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1465 }
1466 
1467 /*
1468  * F15h supports only 64bit DCT interfaces
1469  */
1470 static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1471 				   unsigned cs_mode, int cs_mask_nr)
1472 {
1473 	WARN_ON(cs_mode > 12);
1474 
1475 	return ddr3_cs_size(cs_mode, false);
1476 }
1477 
1478 /* F15h M60h supports DDR4 mapping as well.. */
1479 static int f15_m60h_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1480 					unsigned cs_mode, int cs_mask_nr)
1481 {
1482 	int cs_size;
1483 	u32 dcsm = pvt->csels[dct].csmasks[cs_mask_nr];
1484 
1485 	WARN_ON(cs_mode > 12);
1486 
1487 	if (pvt->dram_type == MEM_DDR4) {
1488 		if (cs_mode > 9)
1489 			return -1;
1490 
1491 		cs_size = ddr4_cs_size(cs_mode);
1492 	} else if (pvt->dram_type == MEM_LRDDR3) {
1493 		unsigned rank_multiply = dcsm & 0xf;
1494 
1495 		if (rank_multiply == 3)
1496 			rank_multiply = 4;
1497 		cs_size = ddr3_lrdimm_cs_size(cs_mode, rank_multiply);
1498 	} else {
1499 		/* Minimum cs size is 512mb for F15hM60h*/
1500 		if (cs_mode == 0x1)
1501 			return -1;
1502 
1503 		cs_size = ddr3_cs_size(cs_mode, false);
1504 	}
1505 
1506 	return cs_size;
1507 }
1508 
1509 /*
1510  * F16h and F15h model 30h have only limited cs_modes.
1511  */
1512 static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1513 				unsigned cs_mode, int cs_mask_nr)
1514 {
1515 	WARN_ON(cs_mode > 12);
1516 
1517 	if (cs_mode == 6 || cs_mode == 8 ||
1518 	    cs_mode == 9 || cs_mode == 12)
1519 		return -1;
1520 	else
1521 		return ddr3_cs_size(cs_mode, false);
1522 }
1523 
1524 static int f17_base_addr_to_cs_size(struct amd64_pvt *pvt, u8 umc,
1525 				    unsigned int cs_mode, int csrow_nr)
1526 {
1527 	u32 base_addr = pvt->csels[umc].csbases[csrow_nr];
1528 
1529 	/*  Each mask is used for every two base addresses. */
1530 	u32 addr_mask = pvt->csels[umc].csmasks[csrow_nr >> 1];
1531 
1532 	/*  Register [31:1] = Address [39:9]. Size is in kBs here. */
1533 	u32 size = ((addr_mask >> 1) - (base_addr >> 1) + 1) >> 1;
1534 
1535 	edac_dbg(1, "BaseAddr: 0x%x, AddrMask: 0x%x\n", base_addr, addr_mask);
1536 
1537 	/* Return size in MBs. */
1538 	return size >> 10;
1539 }
1540 
1541 static void read_dram_ctl_register(struct amd64_pvt *pvt)
1542 {
1543 
1544 	if (pvt->fam == 0xf)
1545 		return;
1546 
1547 	if (!amd64_read_pci_cfg(pvt->F2, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1548 		edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1549 			 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1550 
1551 		edac_dbg(0, "  DCTs operate in %s mode\n",
1552 			 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1553 
1554 		if (!dct_ganging_enabled(pvt))
1555 			edac_dbg(0, "  Address range split per DCT: %s\n",
1556 				 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1557 
1558 		edac_dbg(0, "  data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
1559 			 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1560 			 (dct_memory_cleared(pvt) ? "yes" : "no"));
1561 
1562 		edac_dbg(0, "  channel interleave: %s, "
1563 			 "interleave bits selector: 0x%x\n",
1564 			 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1565 			 dct_sel_interleave_addr(pvt));
1566 	}
1567 
1568 	amd64_read_pci_cfg(pvt->F2, DCT_SEL_HI, &pvt->dct_sel_hi);
1569 }
1570 
1571 /*
1572  * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
1573  * 2.10.12 Memory Interleaving Modes).
1574  */
1575 static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1576 				     u8 intlv_en, int num_dcts_intlv,
1577 				     u32 dct_sel)
1578 {
1579 	u8 channel = 0;
1580 	u8 select;
1581 
1582 	if (!(intlv_en))
1583 		return (u8)(dct_sel);
1584 
1585 	if (num_dcts_intlv == 2) {
1586 		select = (sys_addr >> 8) & 0x3;
1587 		channel = select ? 0x3 : 0;
1588 	} else if (num_dcts_intlv == 4) {
1589 		u8 intlv_addr = dct_sel_interleave_addr(pvt);
1590 		switch (intlv_addr) {
1591 		case 0x4:
1592 			channel = (sys_addr >> 8) & 0x3;
1593 			break;
1594 		case 0x5:
1595 			channel = (sys_addr >> 9) & 0x3;
1596 			break;
1597 		}
1598 	}
1599 	return channel;
1600 }
1601 
1602 /*
1603  * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1604  * Interleaving Modes.
1605  */
1606 static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1607 				bool hi_range_sel, u8 intlv_en)
1608 {
1609 	u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1610 
1611 	if (dct_ganging_enabled(pvt))
1612 		return 0;
1613 
1614 	if (hi_range_sel)
1615 		return dct_sel_high;
1616 
1617 	/*
1618 	 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1619 	 */
1620 	if (dct_interleave_enabled(pvt)) {
1621 		u8 intlv_addr = dct_sel_interleave_addr(pvt);
1622 
1623 		/* return DCT select function: 0=DCT0, 1=DCT1 */
1624 		if (!intlv_addr)
1625 			return sys_addr >> 6 & 1;
1626 
1627 		if (intlv_addr & 0x2) {
1628 			u8 shift = intlv_addr & 0x1 ? 9 : 6;
1629 			u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) & 1;
1630 
1631 			return ((sys_addr >> shift) & 1) ^ temp;
1632 		}
1633 
1634 		if (intlv_addr & 0x4) {
1635 			u8 shift = intlv_addr & 0x1 ? 9 : 8;
1636 
1637 			return (sys_addr >> shift) & 1;
1638 		}
1639 
1640 		return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1641 	}
1642 
1643 	if (dct_high_range_enabled(pvt))
1644 		return ~dct_sel_high & 1;
1645 
1646 	return 0;
1647 }
1648 
1649 /* Convert the sys_addr to the normalized DCT address */
1650 static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
1651 				 u64 sys_addr, bool hi_rng,
1652 				 u32 dct_sel_base_addr)
1653 {
1654 	u64 chan_off;
1655 	u64 dram_base		= get_dram_base(pvt, range);
1656 	u64 hole_off		= f10_dhar_offset(pvt);
1657 	u64 dct_sel_base_off	= (u64)(pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1658 
1659 	if (hi_rng) {
1660 		/*
1661 		 * if
1662 		 * base address of high range is below 4Gb
1663 		 * (bits [47:27] at [31:11])
1664 		 * DRAM address space on this DCT is hoisted above 4Gb	&&
1665 		 * sys_addr > 4Gb
1666 		 *
1667 		 *	remove hole offset from sys_addr
1668 		 * else
1669 		 *	remove high range offset from sys_addr
1670 		 */
1671 		if ((!(dct_sel_base_addr >> 16) ||
1672 		     dct_sel_base_addr < dhar_base(pvt)) &&
1673 		    dhar_valid(pvt) &&
1674 		    (sys_addr >= BIT_64(32)))
1675 			chan_off = hole_off;
1676 		else
1677 			chan_off = dct_sel_base_off;
1678 	} else {
1679 		/*
1680 		 * if
1681 		 * we have a valid hole		&&
1682 		 * sys_addr > 4Gb
1683 		 *
1684 		 *	remove hole
1685 		 * else
1686 		 *	remove dram base to normalize to DCT address
1687 		 */
1688 		if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1689 			chan_off = hole_off;
1690 		else
1691 			chan_off = dram_base;
1692 	}
1693 
1694 	return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23));
1695 }
1696 
1697 /*
1698  * checks if the csrow passed in is marked as SPARED, if so returns the new
1699  * spare row
1700  */
1701 static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1702 {
1703 	int tmp_cs;
1704 
1705 	if (online_spare_swap_done(pvt, dct) &&
1706 	    csrow == online_spare_bad_dramcs(pvt, dct)) {
1707 
1708 		for_each_chip_select(tmp_cs, dct, pvt) {
1709 			if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1710 				csrow = tmp_cs;
1711 				break;
1712 			}
1713 		}
1714 	}
1715 	return csrow;
1716 }
1717 
1718 /*
1719  * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1720  * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1721  *
1722  * Return:
1723  *	-EINVAL:  NOT FOUND
1724  *	0..csrow = Chip-Select Row
1725  */
1726 static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
1727 {
1728 	struct mem_ctl_info *mci;
1729 	struct amd64_pvt *pvt;
1730 	u64 cs_base, cs_mask;
1731 	int cs_found = -EINVAL;
1732 	int csrow;
1733 
1734 	mci = edac_mc_find(nid);
1735 	if (!mci)
1736 		return cs_found;
1737 
1738 	pvt = mci->pvt_info;
1739 
1740 	edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1741 
1742 	for_each_chip_select(csrow, dct, pvt) {
1743 		if (!csrow_enabled(csrow, dct, pvt))
1744 			continue;
1745 
1746 		get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1747 
1748 		edac_dbg(1, "    CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1749 			 csrow, cs_base, cs_mask);
1750 
1751 		cs_mask = ~cs_mask;
1752 
1753 		edac_dbg(1, "    (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
1754 			 (in_addr & cs_mask), (cs_base & cs_mask));
1755 
1756 		if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1757 			if (pvt->fam == 0x15 && pvt->model >= 0x30) {
1758 				cs_found =  csrow;
1759 				break;
1760 			}
1761 			cs_found = f10_process_possible_spare(pvt, dct, csrow);
1762 
1763 			edac_dbg(1, " MATCH csrow=%d\n", cs_found);
1764 			break;
1765 		}
1766 	}
1767 	return cs_found;
1768 }
1769 
1770 /*
1771  * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1772  * swapped with a region located at the bottom of memory so that the GPU can use
1773  * the interleaved region and thus two channels.
1774  */
1775 static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1776 {
1777 	u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1778 
1779 	if (pvt->fam == 0x10) {
1780 		/* only revC3 and revE have that feature */
1781 		if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
1782 			return sys_addr;
1783 	}
1784 
1785 	amd64_read_pci_cfg(pvt->F2, SWAP_INTLV_REG, &swap_reg);
1786 
1787 	if (!(swap_reg & 0x1))
1788 		return sys_addr;
1789 
1790 	swap_base	= (swap_reg >> 3) & 0x7f;
1791 	swap_limit	= (swap_reg >> 11) & 0x7f;
1792 	rgn_size	= (swap_reg >> 20) & 0x7f;
1793 	tmp_addr	= sys_addr >> 27;
1794 
1795 	if (!(sys_addr >> 34) &&
1796 	    (((tmp_addr >= swap_base) &&
1797 	     (tmp_addr <= swap_limit)) ||
1798 	     (tmp_addr < rgn_size)))
1799 		return sys_addr ^ (u64)swap_base << 27;
1800 
1801 	return sys_addr;
1802 }
1803 
1804 /* For a given @dram_range, check if @sys_addr falls within it. */
1805 static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1806 				  u64 sys_addr, int *chan_sel)
1807 {
1808 	int cs_found = -EINVAL;
1809 	u64 chan_addr;
1810 	u32 dct_sel_base;
1811 	u8 channel;
1812 	bool high_range = false;
1813 
1814 	u8 node_id    = dram_dst_node(pvt, range);
1815 	u8 intlv_en   = dram_intlv_en(pvt, range);
1816 	u32 intlv_sel = dram_intlv_sel(pvt, range);
1817 
1818 	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1819 		 range, sys_addr, get_dram_limit(pvt, range));
1820 
1821 	if (dhar_valid(pvt) &&
1822 	    dhar_base(pvt) <= sys_addr &&
1823 	    sys_addr < BIT_64(32)) {
1824 		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1825 			    sys_addr);
1826 		return -EINVAL;
1827 	}
1828 
1829 	if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1830 		return -EINVAL;
1831 
1832 	sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1833 
1834 	dct_sel_base = dct_sel_baseaddr(pvt);
1835 
1836 	/*
1837 	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1838 	 * select between DCT0 and DCT1.
1839 	 */
1840 	if (dct_high_range_enabled(pvt) &&
1841 	   !dct_ganging_enabled(pvt) &&
1842 	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1843 		high_range = true;
1844 
1845 	channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1846 
1847 	chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1848 					  high_range, dct_sel_base);
1849 
1850 	/* Remove node interleaving, see F1x120 */
1851 	if (intlv_en)
1852 		chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1853 			    (chan_addr & 0xfff);
1854 
1855 	/* remove channel interleave */
1856 	if (dct_interleave_enabled(pvt) &&
1857 	   !dct_high_range_enabled(pvt) &&
1858 	   !dct_ganging_enabled(pvt)) {
1859 
1860 		if (dct_sel_interleave_addr(pvt) != 1) {
1861 			if (dct_sel_interleave_addr(pvt) == 0x3)
1862 				/* hash 9 */
1863 				chan_addr = ((chan_addr >> 10) << 9) |
1864 					     (chan_addr & 0x1ff);
1865 			else
1866 				/* A[6] or hash 6 */
1867 				chan_addr = ((chan_addr >> 7) << 6) |
1868 					     (chan_addr & 0x3f);
1869 		} else
1870 			/* A[12] */
1871 			chan_addr = ((chan_addr >> 13) << 12) |
1872 				     (chan_addr & 0xfff);
1873 	}
1874 
1875 	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);
1876 
1877 	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1878 
1879 	if (cs_found >= 0)
1880 		*chan_sel = channel;
1881 
1882 	return cs_found;
1883 }
1884 
1885 static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1886 					u64 sys_addr, int *chan_sel)
1887 {
1888 	int cs_found = -EINVAL;
1889 	int num_dcts_intlv = 0;
1890 	u64 chan_addr, chan_offset;
1891 	u64 dct_base, dct_limit;
1892 	u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
1893 	u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;
1894 
1895 	u64 dhar_offset		= f10_dhar_offset(pvt);
1896 	u8 intlv_addr		= dct_sel_interleave_addr(pvt);
1897 	u8 node_id		= dram_dst_node(pvt, range);
1898 	u8 intlv_en		= dram_intlv_en(pvt, range);
1899 
1900 	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
1901 	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);
1902 
1903 	dct_offset_en		= (u8) ((dct_cont_base_reg >> 3) & BIT(0));
1904 	dct_sel			= (u8) ((dct_cont_base_reg >> 4) & 0x7);
1905 
1906 	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1907 		 range, sys_addr, get_dram_limit(pvt, range));
1908 
1909 	if (!(get_dram_base(pvt, range)  <= sys_addr) &&
1910 	    !(get_dram_limit(pvt, range) >= sys_addr))
1911 		return -EINVAL;
1912 
1913 	if (dhar_valid(pvt) &&
1914 	    dhar_base(pvt) <= sys_addr &&
1915 	    sys_addr < BIT_64(32)) {
1916 		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1917 			    sys_addr);
1918 		return -EINVAL;
1919 	}
1920 
1921 	/* Verify sys_addr is within DCT Range. */
1922 	dct_base = (u64) dct_sel_baseaddr(pvt);
1923 	dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
1924 
1925 	if (!(dct_cont_base_reg & BIT(0)) &&
1926 	    !(dct_base <= (sys_addr >> 27) &&
1927 	      dct_limit >= (sys_addr >> 27)))
1928 		return -EINVAL;
1929 
1930 	/* Verify number of dct's that participate in channel interleaving. */
1931 	num_dcts_intlv = (int) hweight8(intlv_en);
1932 
1933 	if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
1934 		return -EINVAL;
1935 
1936 	if (pvt->model >= 0x60)
1937 		channel = f1x_determine_channel(pvt, sys_addr, false, intlv_en);
1938 	else
1939 		channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
1940 						     num_dcts_intlv, dct_sel);
1941 
1942 	/* Verify we stay within the MAX number of channels allowed */
1943 	if (channel > 3)
1944 		return -EINVAL;
1945 
1946 	leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));
1947 
1948 	/* Get normalized DCT addr */
1949 	if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
1950 		chan_offset = dhar_offset;
1951 	else
1952 		chan_offset = dct_base << 27;
1953 
1954 	chan_addr = sys_addr - chan_offset;
1955 
1956 	/* remove channel interleave */
1957 	if (num_dcts_intlv == 2) {
1958 		if (intlv_addr == 0x4)
1959 			chan_addr = ((chan_addr >> 9) << 8) |
1960 						(chan_addr & 0xff);
1961 		else if (intlv_addr == 0x5)
1962 			chan_addr = ((chan_addr >> 10) << 9) |
1963 						(chan_addr & 0x1ff);
1964 		else
1965 			return -EINVAL;
1966 
1967 	} else if (num_dcts_intlv == 4) {
1968 		if (intlv_addr == 0x4)
1969 			chan_addr = ((chan_addr >> 10) << 8) |
1970 							(chan_addr & 0xff);
1971 		else if (intlv_addr == 0x5)
1972 			chan_addr = ((chan_addr >> 11) << 9) |
1973 							(chan_addr & 0x1ff);
1974 		else
1975 			return -EINVAL;
1976 	}
1977 
1978 	if (dct_offset_en) {
1979 		amd64_read_pci_cfg(pvt->F1,
1980 				   DRAM_CONT_HIGH_OFF + (int) channel * 4,
1981 				   &tmp);
1982 		chan_addr +=  (u64) ((tmp >> 11) & 0xfff) << 27;
1983 	}
1984 
1985 	f15h_select_dct(pvt, channel);
1986 
1987 	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);
1988 
1989 	/*
1990 	 * Find Chip select:
1991 	 * if channel = 3, then alias it to 1. This is because, in F15 M30h,
1992 	 * there is support for 4 DCT's, but only 2 are currently functional.
1993 	 * They are DCT0 and DCT3. But we have read all registers of DCT3 into
1994 	 * pvt->csels[1]. So we need to use '1' here to get correct info.
1995 	 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
1996 	 */
1997 	alias_channel =  (channel == 3) ? 1 : channel;
1998 
1999 	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);
2000 
2001 	if (cs_found >= 0)
2002 		*chan_sel = alias_channel;
2003 
2004 	return cs_found;
2005 }
2006 
2007 static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
2008 					u64 sys_addr,
2009 					int *chan_sel)
2010 {
2011 	int cs_found = -EINVAL;
2012 	unsigned range;
2013 
2014 	for (range = 0; range < DRAM_RANGES; range++) {
2015 		if (!dram_rw(pvt, range))
2016 			continue;
2017 
2018 		if (pvt->fam == 0x15 && pvt->model >= 0x30)
2019 			cs_found = f15_m30h_match_to_this_node(pvt, range,
2020 							       sys_addr,
2021 							       chan_sel);
2022 
2023 		else if ((get_dram_base(pvt, range)  <= sys_addr) &&
2024 			 (get_dram_limit(pvt, range) >= sys_addr)) {
2025 			cs_found = f1x_match_to_this_node(pvt, range,
2026 							  sys_addr, chan_sel);
2027 			if (cs_found >= 0)
2028 				break;
2029 		}
2030 	}
2031 	return cs_found;
2032 }
2033 
2034 /*
2035  * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
2036  * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
2037  *
2038  * The @sys_addr is usually an error address received from the hardware
2039  * (MCX_ADDR).
2040  */
2041 static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
2042 				     struct err_info *err)
2043 {
2044 	struct amd64_pvt *pvt = mci->pvt_info;
2045 
2046 	error_address_to_page_and_offset(sys_addr, err);
2047 
2048 	err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
2049 	if (err->csrow < 0) {
2050 		err->err_code = ERR_CSROW;
2051 		return;
2052 	}
2053 
2054 	/*
2055 	 * We need the syndromes for channel detection only when we're
2056 	 * ganged. Otherwise @chan should already contain the channel at
2057 	 * this point.
2058 	 */
2059 	if (dct_ganging_enabled(pvt))
2060 		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
2061 }
2062 
2063 /*
2064  * debug routine to display the memory sizes of all logical DIMMs and its
2065  * CSROWs
2066  */
2067 static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
2068 {
2069 	int dimm, size0, size1;
2070 	u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
2071 	u32 dbam  = ctrl ? pvt->dbam1 : pvt->dbam0;
2072 
2073 	if (pvt->fam == 0xf) {
2074 		/* K8 families < revF not supported yet */
2075 	       if (pvt->ext_model < K8_REV_F)
2076 			return;
2077 	       else
2078 		       WARN_ON(ctrl != 0);
2079 	}
2080 
2081 	if (pvt->fam == 0x10) {
2082 		dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1
2083 							   : pvt->dbam0;
2084 		dcsb = (ctrl && !dct_ganging_enabled(pvt)) ?
2085 				 pvt->csels[1].csbases :
2086 				 pvt->csels[0].csbases;
2087 	} else if (ctrl) {
2088 		dbam = pvt->dbam0;
2089 		dcsb = pvt->csels[1].csbases;
2090 	}
2091 	edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
2092 		 ctrl, dbam);
2093 
2094 	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
2095 
2096 	/* Dump memory sizes for DIMM and its CSROWs */
2097 	for (dimm = 0; dimm < 4; dimm++) {
2098 
2099 		size0 = 0;
2100 		if (dcsb[dimm*2] & DCSB_CS_ENABLE)
2101 			/*
2102 			 * For F15m60h, we need multiplier for LRDIMM cs_size
2103 			 * calculation. We pass dimm value to the dbam_to_cs
2104 			 * mapper so we can find the multiplier from the
2105 			 * corresponding DCSM.
2106 			 */
2107 			size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
2108 						     DBAM_DIMM(dimm, dbam),
2109 						     dimm);
2110 
2111 		size1 = 0;
2112 		if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
2113 			size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
2114 						     DBAM_DIMM(dimm, dbam),
2115 						     dimm);
2116 
2117 		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
2118 				dimm * 2,     size0,
2119 				dimm * 2 + 1, size1);
2120 	}
2121 }
2122 
2123 static struct amd64_family_type family_types[] = {
2124 	[K8_CPUS] = {
2125 		.ctl_name = "K8",
2126 		.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
2127 		.f2_id = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2128 		.ops = {
2129 			.early_channel_count	= k8_early_channel_count,
2130 			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
2131 			.dbam_to_cs		= k8_dbam_to_chip_select,
2132 		}
2133 	},
2134 	[F10_CPUS] = {
2135 		.ctl_name = "F10h",
2136 		.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
2137 		.f2_id = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2138 		.ops = {
2139 			.early_channel_count	= f1x_early_channel_count,
2140 			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
2141 			.dbam_to_cs		= f10_dbam_to_chip_select,
2142 		}
2143 	},
2144 	[F15_CPUS] = {
2145 		.ctl_name = "F15h",
2146 		.f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
2147 		.f2_id = PCI_DEVICE_ID_AMD_15H_NB_F2,
2148 		.ops = {
2149 			.early_channel_count	= f1x_early_channel_count,
2150 			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
2151 			.dbam_to_cs		= f15_dbam_to_chip_select,
2152 		}
2153 	},
2154 	[F15_M30H_CPUS] = {
2155 		.ctl_name = "F15h_M30h",
2156 		.f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
2157 		.f2_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2,
2158 		.ops = {
2159 			.early_channel_count	= f1x_early_channel_count,
2160 			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
2161 			.dbam_to_cs		= f16_dbam_to_chip_select,
2162 		}
2163 	},
2164 	[F15_M60H_CPUS] = {
2165 		.ctl_name = "F15h_M60h",
2166 		.f1_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1,
2167 		.f2_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F2,
2168 		.ops = {
2169 			.early_channel_count	= f1x_early_channel_count,
2170 			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
2171 			.dbam_to_cs		= f15_m60h_dbam_to_chip_select,
2172 		}
2173 	},
2174 	[F16_CPUS] = {
2175 		.ctl_name = "F16h",
2176 		.f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
2177 		.f2_id = PCI_DEVICE_ID_AMD_16H_NB_F2,
2178 		.ops = {
2179 			.early_channel_count	= f1x_early_channel_count,
2180 			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
2181 			.dbam_to_cs		= f16_dbam_to_chip_select,
2182 		}
2183 	},
2184 	[F16_M30H_CPUS] = {
2185 		.ctl_name = "F16h_M30h",
2186 		.f1_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F1,
2187 		.f2_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F2,
2188 		.ops = {
2189 			.early_channel_count	= f1x_early_channel_count,
2190 			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
2191 			.dbam_to_cs		= f16_dbam_to_chip_select,
2192 		}
2193 	},
2194 	[F17_CPUS] = {
2195 		.ctl_name = "F17h",
2196 		.f0_id = PCI_DEVICE_ID_AMD_17H_DF_F0,
2197 		.f6_id = PCI_DEVICE_ID_AMD_17H_DF_F6,
2198 		.ops = {
2199 			.early_channel_count	= f17_early_channel_count,
2200 			.dbam_to_cs		= f17_base_addr_to_cs_size,
2201 		}
2202 	},
2203 };
2204 
2205 /*
2206  * These are tables of eigenvectors (one per line) which can be used for the
2207  * construction of the syndrome tables. The modified syndrome search algorithm
2208  * uses those to find the symbol in error and thus the DIMM.
2209  *
2210  * Algorithm courtesy of Ross LaFetra from AMD.
2211  */
2212 static const u16 x4_vectors[] = {
2213 	0x2f57, 0x1afe, 0x66cc, 0xdd88,
2214 	0x11eb, 0x3396, 0x7f4c, 0xeac8,
2215 	0x0001, 0x0002, 0x0004, 0x0008,
2216 	0x1013, 0x3032, 0x4044, 0x8088,
2217 	0x106b, 0x30d6, 0x70fc, 0xe0a8,
2218 	0x4857, 0xc4fe, 0x13cc, 0x3288,
2219 	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
2220 	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
2221 	0x15c1, 0x2a42, 0x89ac, 0x4758,
2222 	0x2b03, 0x1602, 0x4f0c, 0xca08,
2223 	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
2224 	0x8ba7, 0x465e, 0x244c, 0x1cc8,
2225 	0x2b87, 0x164e, 0x642c, 0xdc18,
2226 	0x40b9, 0x80de, 0x1094, 0x20e8,
2227 	0x27db, 0x1eb6, 0x9dac, 0x7b58,
2228 	0x11c1, 0x2242, 0x84ac, 0x4c58,
2229 	0x1be5, 0x2d7a, 0x5e34, 0xa718,
2230 	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
2231 	0x4c97, 0xc87e, 0x11fc, 0x33a8,
2232 	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
2233 	0x16b3, 0x3d62, 0x4f34, 0x8518,
2234 	0x1e2f, 0x391a, 0x5cac, 0xf858,
2235 	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
2236 	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
2237 	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
2238 	0x4397, 0xc27e, 0x17fc, 0x3ea8,
2239 	0x1617, 0x3d3e, 0x6464, 0xb8b8,
2240 	0x23ff, 0x12aa, 0xab6c, 0x56d8,
2241 	0x2dfb, 0x1ba6, 0x913c, 0x7328,
2242 	0x185d, 0x2ca6, 0x7914, 0x9e28,
2243 	0x171b, 0x3e36, 0x7d7c, 0xebe8,
2244 	0x4199, 0x82ee, 0x19f4, 0x2e58,
2245 	0x4807, 0xc40e, 0x130c, 0x3208,
2246 	0x1905, 0x2e0a, 0x5804, 0xac08,
2247 	0x213f, 0x132a, 0xadfc, 0x5ba8,
2248 	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
2249 };
2250 
2251 static const u16 x8_vectors[] = {
2252 	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
2253 	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
2254 	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
2255 	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
2256 	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
2257 	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
2258 	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
2259 	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
2260 	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
2261 	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
2262 	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
2263 	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
2264 	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
2265 	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
2266 	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
2267 	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
2268 	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
2269 	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
2270 	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
2271 };
2272 
2273 static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
2274 			   unsigned v_dim)
2275 {
2276 	unsigned int i, err_sym;
2277 
2278 	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
2279 		u16 s = syndrome;
2280 		unsigned v_idx =  err_sym * v_dim;
2281 		unsigned v_end = (err_sym + 1) * v_dim;
2282 
2283 		/* walk over all 16 bits of the syndrome */
2284 		for (i = 1; i < (1U << 16); i <<= 1) {
2285 
2286 			/* if bit is set in that eigenvector... */
2287 			if (v_idx < v_end && vectors[v_idx] & i) {
2288 				u16 ev_comp = vectors[v_idx++];
2289 
2290 				/* ... and bit set in the modified syndrome, */
2291 				if (s & i) {
2292 					/* remove it. */
2293 					s ^= ev_comp;
2294 
2295 					if (!s)
2296 						return err_sym;
2297 				}
2298 
2299 			} else if (s & i)
2300 				/* can't get to zero, move to next symbol */
2301 				break;
2302 		}
2303 	}
2304 
2305 	edac_dbg(0, "syndrome(%x) not found\n", syndrome);
2306 	return -1;
2307 }
2308 
2309 static int map_err_sym_to_channel(int err_sym, int sym_size)
2310 {
2311 	if (sym_size == 4)
2312 		switch (err_sym) {
2313 		case 0x20:
2314 		case 0x21:
2315 			return 0;
2316 			break;
2317 		case 0x22:
2318 		case 0x23:
2319 			return 1;
2320 			break;
2321 		default:
2322 			return err_sym >> 4;
2323 			break;
2324 		}
2325 	/* x8 symbols */
2326 	else
2327 		switch (err_sym) {
2328 		/* imaginary bits not in a DIMM */
2329 		case 0x10:
2330 			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
2331 					  err_sym);
2332 			return -1;
2333 			break;
2334 
2335 		case 0x11:
2336 			return 0;
2337 			break;
2338 		case 0x12:
2339 			return 1;
2340 			break;
2341 		default:
2342 			return err_sym >> 3;
2343 			break;
2344 		}
2345 	return -1;
2346 }
2347 
2348 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
2349 {
2350 	struct amd64_pvt *pvt = mci->pvt_info;
2351 	int err_sym = -1;
2352 
2353 	if (pvt->ecc_sym_sz == 8)
2354 		err_sym = decode_syndrome(syndrome, x8_vectors,
2355 					  ARRAY_SIZE(x8_vectors),
2356 					  pvt->ecc_sym_sz);
2357 	else if (pvt->ecc_sym_sz == 4)
2358 		err_sym = decode_syndrome(syndrome, x4_vectors,
2359 					  ARRAY_SIZE(x4_vectors),
2360 					  pvt->ecc_sym_sz);
2361 	else {
2362 		amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
2363 		return err_sym;
2364 	}
2365 
2366 	return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
2367 }
2368 
2369 static void __log_ecc_error(struct mem_ctl_info *mci, struct err_info *err,
2370 			    u8 ecc_type)
2371 {
2372 	enum hw_event_mc_err_type err_type;
2373 	const char *string;
2374 
2375 	if (ecc_type == 2)
2376 		err_type = HW_EVENT_ERR_CORRECTED;
2377 	else if (ecc_type == 1)
2378 		err_type = HW_EVENT_ERR_UNCORRECTED;
2379 	else if (ecc_type == 3)
2380 		err_type = HW_EVENT_ERR_DEFERRED;
2381 	else {
2382 		WARN(1, "Something is rotten in the state of Denmark.\n");
2383 		return;
2384 	}
2385 
2386 	switch (err->err_code) {
2387 	case DECODE_OK:
2388 		string = "";
2389 		break;
2390 	case ERR_NODE:
2391 		string = "Failed to map error addr to a node";
2392 		break;
2393 	case ERR_CSROW:
2394 		string = "Failed to map error addr to a csrow";
2395 		break;
2396 	case ERR_CHANNEL:
2397 		string = "Unknown syndrome - possible error reporting race";
2398 		break;
2399 	case ERR_SYND:
2400 		string = "MCA_SYND not valid - unknown syndrome and csrow";
2401 		break;
2402 	case ERR_NORM_ADDR:
2403 		string = "Cannot decode normalized address";
2404 		break;
2405 	default:
2406 		string = "WTF error";
2407 		break;
2408 	}
2409 
2410 	edac_mc_handle_error(err_type, mci, 1,
2411 			     err->page, err->offset, err->syndrome,
2412 			     err->csrow, err->channel, -1,
2413 			     string, "");
2414 }
2415 
2416 static inline void decode_bus_error(int node_id, struct mce *m)
2417 {
2418 	struct mem_ctl_info *mci;
2419 	struct amd64_pvt *pvt;
2420 	u8 ecc_type = (m->status >> 45) & 0x3;
2421 	u8 xec = XEC(m->status, 0x1f);
2422 	u16 ec = EC(m->status);
2423 	u64 sys_addr;
2424 	struct err_info err;
2425 
2426 	mci = edac_mc_find(node_id);
2427 	if (!mci)
2428 		return;
2429 
2430 	pvt = mci->pvt_info;
2431 
2432 	/* Bail out early if this was an 'observed' error */
2433 	if (PP(ec) == NBSL_PP_OBS)
2434 		return;
2435 
2436 	/* Do only ECC errors */
2437 	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
2438 		return;
2439 
2440 	memset(&err, 0, sizeof(err));
2441 
2442 	sys_addr = get_error_address(pvt, m);
2443 
2444 	if (ecc_type == 2)
2445 		err.syndrome = extract_syndrome(m->status);
2446 
2447 	pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);
2448 
2449 	__log_ecc_error(mci, &err, ecc_type);
2450 }
2451 
2452 /*
2453  * To find the UMC channel represented by this bank we need to match on its
2454  * instance_id. The instance_id of a bank is held in the lower 32 bits of its
2455  * IPID.
2456  */
2457 static int find_umc_channel(struct amd64_pvt *pvt, struct mce *m)
2458 {
2459 	u32 umc_instance_id[] = {0x50f00, 0x150f00};
2460 	u32 instance_id = m->ipid & GENMASK(31, 0);
2461 	int i, channel = -1;
2462 
2463 	for (i = 0; i < ARRAY_SIZE(umc_instance_id); i++)
2464 		if (umc_instance_id[i] == instance_id)
2465 			channel = i;
2466 
2467 	return channel;
2468 }
2469 
2470 static void decode_umc_error(int node_id, struct mce *m)
2471 {
2472 	u8 ecc_type = (m->status >> 45) & 0x3;
2473 	struct mem_ctl_info *mci;
2474 	struct amd64_pvt *pvt;
2475 	struct err_info err;
2476 	u64 sys_addr;
2477 
2478 	mci = edac_mc_find(node_id);
2479 	if (!mci)
2480 		return;
2481 
2482 	pvt = mci->pvt_info;
2483 
2484 	memset(&err, 0, sizeof(err));
2485 
2486 	if (m->status & MCI_STATUS_DEFERRED)
2487 		ecc_type = 3;
2488 
2489 	err.channel = find_umc_channel(pvt, m);
2490 	if (err.channel < 0) {
2491 		err.err_code = ERR_CHANNEL;
2492 		goto log_error;
2493 	}
2494 
2495 	if (umc_normaddr_to_sysaddr(m->addr, pvt->mc_node_id, err.channel, &sys_addr)) {
2496 		err.err_code = ERR_NORM_ADDR;
2497 		goto log_error;
2498 	}
2499 
2500 	error_address_to_page_and_offset(sys_addr, &err);
2501 
2502 	if (!(m->status & MCI_STATUS_SYNDV)) {
2503 		err.err_code = ERR_SYND;
2504 		goto log_error;
2505 	}
2506 
2507 	if (ecc_type == 2) {
2508 		u8 length = (m->synd >> 18) & 0x3f;
2509 
2510 		if (length)
2511 			err.syndrome = (m->synd >> 32) & GENMASK(length - 1, 0);
2512 		else
2513 			err.err_code = ERR_CHANNEL;
2514 	}
2515 
2516 	err.csrow = m->synd & 0x7;
2517 
2518 log_error:
2519 	__log_ecc_error(mci, &err, ecc_type);
2520 }
2521 
2522 /*
2523  * Use pvt->F3 which contains the F3 CPU PCI device to get the related
2524  * F1 (AddrMap) and F2 (Dct) devices. Return negative value on error.
2525  * Reserve F0 and F6 on systems with a UMC.
2526  */
2527 static int
2528 reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 pci_id1, u16 pci_id2)
2529 {
2530 	if (pvt->umc) {
2531 		pvt->F0 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
2532 		if (!pvt->F0) {
2533 			amd64_err("F0 not found, device 0x%x (broken BIOS?)\n", pci_id1);
2534 			return -ENODEV;
2535 		}
2536 
2537 		pvt->F6 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
2538 		if (!pvt->F6) {
2539 			pci_dev_put(pvt->F0);
2540 			pvt->F0 = NULL;
2541 
2542 			amd64_err("F6 not found: device 0x%x (broken BIOS?)\n", pci_id2);
2543 			return -ENODEV;
2544 		}
2545 
2546 		edac_dbg(1, "F0: %s\n", pci_name(pvt->F0));
2547 		edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
2548 		edac_dbg(1, "F6: %s\n", pci_name(pvt->F6));
2549 
2550 		return 0;
2551 	}
2552 
2553 	/* Reserve the ADDRESS MAP Device */
2554 	pvt->F1 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
2555 	if (!pvt->F1) {
2556 		amd64_err("F1 not found: device 0x%x (broken BIOS?)\n", pci_id1);
2557 		return -ENODEV;
2558 	}
2559 
2560 	/* Reserve the DCT Device */
2561 	pvt->F2 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
2562 	if (!pvt->F2) {
2563 		pci_dev_put(pvt->F1);
2564 		pvt->F1 = NULL;
2565 
2566 		amd64_err("F2 not found: device 0x%x (broken BIOS?)\n", pci_id2);
2567 		return -ENODEV;
2568 	}
2569 
2570 	edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
2571 	edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
2572 	edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
2573 
2574 	return 0;
2575 }
2576 
2577 static void free_mc_sibling_devs(struct amd64_pvt *pvt)
2578 {
2579 	if (pvt->umc) {
2580 		pci_dev_put(pvt->F0);
2581 		pci_dev_put(pvt->F6);
2582 	} else {
2583 		pci_dev_put(pvt->F1);
2584 		pci_dev_put(pvt->F2);
2585 	}
2586 }
2587 
2588 static void determine_ecc_sym_sz(struct amd64_pvt *pvt)
2589 {
2590 	pvt->ecc_sym_sz = 4;
2591 
2592 	if (pvt->umc) {
2593 		u8 i;
2594 
2595 		for (i = 0; i < NUM_UMCS; i++) {
2596 			/* Check enabled channels only: */
2597 			if ((pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) &&
2598 			    (pvt->umc[i].ecc_ctrl & BIT(7))) {
2599 				pvt->ecc_sym_sz = 8;
2600 				break;
2601 			}
2602 		}
2603 
2604 		return;
2605 	}
2606 
2607 	if (pvt->fam >= 0x10) {
2608 		u32 tmp;
2609 
2610 		amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
2611 		/* F16h has only DCT0, so no need to read dbam1. */
2612 		if (pvt->fam != 0x16)
2613 			amd64_read_dct_pci_cfg(pvt, 1, DBAM0, &pvt->dbam1);
2614 
2615 		/* F10h, revD and later can do x8 ECC too. */
2616 		if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
2617 			pvt->ecc_sym_sz = 8;
2618 	}
2619 }
2620 
2621 /*
2622  * Retrieve the hardware registers of the memory controller.
2623  */
2624 static void __read_mc_regs_df(struct amd64_pvt *pvt)
2625 {
2626 	u8 nid = pvt->mc_node_id;
2627 	struct amd64_umc *umc;
2628 	u32 i, umc_base;
2629 
2630 	/* Read registers from each UMC */
2631 	for (i = 0; i < NUM_UMCS; i++) {
2632 
2633 		umc_base = get_umc_base(i);
2634 		umc = &pvt->umc[i];
2635 
2636 		amd_smn_read(nid, umc_base + UMCCH_DIMM_CFG, &umc->dimm_cfg);
2637 		amd_smn_read(nid, umc_base + UMCCH_UMC_CFG, &umc->umc_cfg);
2638 		amd_smn_read(nid, umc_base + UMCCH_SDP_CTRL, &umc->sdp_ctrl);
2639 		amd_smn_read(nid, umc_base + UMCCH_ECC_CTRL, &umc->ecc_ctrl);
2640 		amd_smn_read(nid, umc_base + UMCCH_UMC_CAP_HI, &umc->umc_cap_hi);
2641 	}
2642 }
2643 
2644 /*
2645  * Retrieve the hardware registers of the memory controller (this includes the
2646  * 'Address Map' and 'Misc' device regs)
2647  */
2648 static void read_mc_regs(struct amd64_pvt *pvt)
2649 {
2650 	unsigned int range;
2651 	u64 msr_val;
2652 
2653 	/*
2654 	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2655 	 * those are Read-As-Zero.
2656 	 */
2657 	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2658 	edac_dbg(0, "  TOP_MEM:  0x%016llx\n", pvt->top_mem);
2659 
2660 	/* Check first whether TOP_MEM2 is enabled: */
2661 	rdmsrl(MSR_K8_SYSCFG, msr_val);
2662 	if (msr_val & BIT(21)) {
2663 		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2664 		edac_dbg(0, "  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2665 	} else {
2666 		edac_dbg(0, "  TOP_MEM2 disabled\n");
2667 	}
2668 
2669 	if (pvt->umc) {
2670 		__read_mc_regs_df(pvt);
2671 		amd64_read_pci_cfg(pvt->F0, DF_DHAR, &pvt->dhar);
2672 
2673 		goto skip;
2674 	}
2675 
2676 	amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
2677 
2678 	read_dram_ctl_register(pvt);
2679 
2680 	for (range = 0; range < DRAM_RANGES; range++) {
2681 		u8 rw;
2682 
2683 		/* read settings for this DRAM range */
2684 		read_dram_base_limit_regs(pvt, range);
2685 
2686 		rw = dram_rw(pvt, range);
2687 		if (!rw)
2688 			continue;
2689 
2690 		edac_dbg(1, "  DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
2691 			 range,
2692 			 get_dram_base(pvt, range),
2693 			 get_dram_limit(pvt, range));
2694 
2695 		edac_dbg(1, "   IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
2696 			 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
2697 			 (rw & 0x1) ? "R" : "-",
2698 			 (rw & 0x2) ? "W" : "-",
2699 			 dram_intlv_sel(pvt, range),
2700 			 dram_dst_node(pvt, range));
2701 	}
2702 
2703 	amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
2704 	amd64_read_dct_pci_cfg(pvt, 0, DBAM0, &pvt->dbam0);
2705 
2706 	amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2707 
2708 	amd64_read_dct_pci_cfg(pvt, 0, DCLR0, &pvt->dclr0);
2709 	amd64_read_dct_pci_cfg(pvt, 0, DCHR0, &pvt->dchr0);
2710 
2711 	if (!dct_ganging_enabled(pvt)) {
2712 		amd64_read_dct_pci_cfg(pvt, 1, DCLR0, &pvt->dclr1);
2713 		amd64_read_dct_pci_cfg(pvt, 1, DCHR0, &pvt->dchr1);
2714 	}
2715 
2716 skip:
2717 	read_dct_base_mask(pvt);
2718 
2719 	determine_memory_type(pvt);
2720 	edac_dbg(1, "  DIMM type: %s\n", edac_mem_types[pvt->dram_type]);
2721 
2722 	determine_ecc_sym_sz(pvt);
2723 
2724 	dump_misc_regs(pvt);
2725 }
2726 
2727 /*
2728  * NOTE: CPU Revision Dependent code
2729  *
2730  * Input:
2731  *	@csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2732  *	k8 private pointer to -->
2733  *			DRAM Bank Address mapping register
2734  *			node_id
2735  *			DCL register where dual_channel_active is
2736  *
2737  * The DBAM register consists of 4 sets of 4 bits each definitions:
2738  *
2739  * Bits:	CSROWs
2740  * 0-3		CSROWs 0 and 1
2741  * 4-7		CSROWs 2 and 3
2742  * 8-11		CSROWs 4 and 5
2743  * 12-15	CSROWs 6 and 7
2744  *
2745  * Values range from: 0 to 15
2746  * The meaning of the values depends on CPU revision and dual-channel state,
2747  * see relevant BKDG more info.
2748  *
2749  * The memory controller provides for total of only 8 CSROWs in its current
2750  * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2751  * single channel or two (2) DIMMs in dual channel mode.
2752  *
2753  * The following code logic collapses the various tables for CSROW based on CPU
2754  * revision.
2755  *
2756  * Returns:
2757  *	The number of PAGE_SIZE pages on the specified CSROW number it
2758  *	encompasses
2759  *
2760  */
2761 static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr_orig)
2762 {
2763 	u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
2764 	int csrow_nr = csrow_nr_orig;
2765 	u32 cs_mode, nr_pages;
2766 
2767 	if (!pvt->umc)
2768 		csrow_nr >>= 1;
2769 
2770 	cs_mode = DBAM_DIMM(csrow_nr, dbam);
2771 
2772 	nr_pages   = pvt->ops->dbam_to_cs(pvt, dct, cs_mode, csrow_nr);
2773 	nr_pages <<= 20 - PAGE_SHIFT;
2774 
2775 	edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
2776 		    csrow_nr_orig, dct,  cs_mode);
2777 	edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
2778 
2779 	return nr_pages;
2780 }
2781 
2782 /*
2783  * Initialize the array of csrow attribute instances, based on the values
2784  * from pci config hardware registers.
2785  */
2786 static int init_csrows(struct mem_ctl_info *mci)
2787 {
2788 	struct amd64_pvt *pvt = mci->pvt_info;
2789 	enum edac_type edac_mode = EDAC_NONE;
2790 	struct csrow_info *csrow;
2791 	struct dimm_info *dimm;
2792 	int i, j, empty = 1;
2793 	int nr_pages = 0;
2794 	u32 val;
2795 
2796 	if (!pvt->umc) {
2797 		amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2798 
2799 		pvt->nbcfg = val;
2800 
2801 		edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2802 			 pvt->mc_node_id, val,
2803 			 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2804 	}
2805 
2806 	/*
2807 	 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
2808 	 */
2809 	for_each_chip_select(i, 0, pvt) {
2810 		bool row_dct0 = !!csrow_enabled(i, 0, pvt);
2811 		bool row_dct1 = false;
2812 
2813 		if (pvt->fam != 0xf)
2814 			row_dct1 = !!csrow_enabled(i, 1, pvt);
2815 
2816 		if (!row_dct0 && !row_dct1)
2817 			continue;
2818 
2819 		csrow = mci->csrows[i];
2820 		empty = 0;
2821 
2822 		edac_dbg(1, "MC node: %d, csrow: %d\n",
2823 			    pvt->mc_node_id, i);
2824 
2825 		if (row_dct0) {
2826 			nr_pages = get_csrow_nr_pages(pvt, 0, i);
2827 			csrow->channels[0]->dimm->nr_pages = nr_pages;
2828 		}
2829 
2830 		/* K8 has only one DCT */
2831 		if (pvt->fam != 0xf && row_dct1) {
2832 			int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i);
2833 
2834 			csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
2835 			nr_pages += row_dct1_pages;
2836 		}
2837 
2838 		edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
2839 
2840 		/* Determine DIMM ECC mode: */
2841 		if (pvt->umc) {
2842 			if (mci->edac_ctl_cap & EDAC_FLAG_S4ECD4ED)
2843 				edac_mode = EDAC_S4ECD4ED;
2844 			else if (mci->edac_ctl_cap & EDAC_FLAG_SECDED)
2845 				edac_mode = EDAC_SECDED;
2846 
2847 		} else if (pvt->nbcfg & NBCFG_ECC_ENABLE) {
2848 			edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL)
2849 					? EDAC_S4ECD4ED
2850 					: EDAC_SECDED;
2851 		}
2852 
2853 		for (j = 0; j < pvt->channel_count; j++) {
2854 			dimm = csrow->channels[j]->dimm;
2855 			dimm->mtype = pvt->dram_type;
2856 			dimm->edac_mode = edac_mode;
2857 		}
2858 	}
2859 
2860 	return empty;
2861 }
2862 
2863 /* get all cores on this DCT */
2864 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
2865 {
2866 	int cpu;
2867 
2868 	for_each_online_cpu(cpu)
2869 		if (amd_get_nb_id(cpu) == nid)
2870 			cpumask_set_cpu(cpu, mask);
2871 }
2872 
2873 /* check MCG_CTL on all the cpus on this node */
2874 static bool nb_mce_bank_enabled_on_node(u16 nid)
2875 {
2876 	cpumask_var_t mask;
2877 	int cpu, nbe;
2878 	bool ret = false;
2879 
2880 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2881 		amd64_warn("%s: Error allocating mask\n", __func__);
2882 		return false;
2883 	}
2884 
2885 	get_cpus_on_this_dct_cpumask(mask, nid);
2886 
2887 	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2888 
2889 	for_each_cpu(cpu, mask) {
2890 		struct msr *reg = per_cpu_ptr(msrs, cpu);
2891 		nbe = reg->l & MSR_MCGCTL_NBE;
2892 
2893 		edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2894 			 cpu, reg->q,
2895 			 (nbe ? "enabled" : "disabled"));
2896 
2897 		if (!nbe)
2898 			goto out;
2899 	}
2900 	ret = true;
2901 
2902 out:
2903 	free_cpumask_var(mask);
2904 	return ret;
2905 }
2906 
2907 static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
2908 {
2909 	cpumask_var_t cmask;
2910 	int cpu;
2911 
2912 	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2913 		amd64_warn("%s: error allocating mask\n", __func__);
2914 		return -ENOMEM;
2915 	}
2916 
2917 	get_cpus_on_this_dct_cpumask(cmask, nid);
2918 
2919 	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2920 
2921 	for_each_cpu(cpu, cmask) {
2922 
2923 		struct msr *reg = per_cpu_ptr(msrs, cpu);
2924 
2925 		if (on) {
2926 			if (reg->l & MSR_MCGCTL_NBE)
2927 				s->flags.nb_mce_enable = 1;
2928 
2929 			reg->l |= MSR_MCGCTL_NBE;
2930 		} else {
2931 			/*
2932 			 * Turn off NB MCE reporting only when it was off before
2933 			 */
2934 			if (!s->flags.nb_mce_enable)
2935 				reg->l &= ~MSR_MCGCTL_NBE;
2936 		}
2937 	}
2938 	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2939 
2940 	free_cpumask_var(cmask);
2941 
2942 	return 0;
2943 }
2944 
2945 static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
2946 				       struct pci_dev *F3)
2947 {
2948 	bool ret = true;
2949 	u32 value, mask = 0x3;		/* UECC/CECC enable */
2950 
2951 	if (toggle_ecc_err_reporting(s, nid, ON)) {
2952 		amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2953 		return false;
2954 	}
2955 
2956 	amd64_read_pci_cfg(F3, NBCTL, &value);
2957 
2958 	s->old_nbctl   = value & mask;
2959 	s->nbctl_valid = true;
2960 
2961 	value |= mask;
2962 	amd64_write_pci_cfg(F3, NBCTL, value);
2963 
2964 	amd64_read_pci_cfg(F3, NBCFG, &value);
2965 
2966 	edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2967 		 nid, value, !!(value & NBCFG_ECC_ENABLE));
2968 
2969 	if (!(value & NBCFG_ECC_ENABLE)) {
2970 		amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2971 
2972 		s->flags.nb_ecc_prev = 0;
2973 
2974 		/* Attempt to turn on DRAM ECC Enable */
2975 		value |= NBCFG_ECC_ENABLE;
2976 		amd64_write_pci_cfg(F3, NBCFG, value);
2977 
2978 		amd64_read_pci_cfg(F3, NBCFG, &value);
2979 
2980 		if (!(value & NBCFG_ECC_ENABLE)) {
2981 			amd64_warn("Hardware rejected DRAM ECC enable,"
2982 				   "check memory DIMM configuration.\n");
2983 			ret = false;
2984 		} else {
2985 			amd64_info("Hardware accepted DRAM ECC Enable\n");
2986 		}
2987 	} else {
2988 		s->flags.nb_ecc_prev = 1;
2989 	}
2990 
2991 	edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2992 		 nid, value, !!(value & NBCFG_ECC_ENABLE));
2993 
2994 	return ret;
2995 }
2996 
2997 static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
2998 					struct pci_dev *F3)
2999 {
3000 	u32 value, mask = 0x3;		/* UECC/CECC enable */
3001 
3002 	if (!s->nbctl_valid)
3003 		return;
3004 
3005 	amd64_read_pci_cfg(F3, NBCTL, &value);
3006 	value &= ~mask;
3007 	value |= s->old_nbctl;
3008 
3009 	amd64_write_pci_cfg(F3, NBCTL, value);
3010 
3011 	/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
3012 	if (!s->flags.nb_ecc_prev) {
3013 		amd64_read_pci_cfg(F3, NBCFG, &value);
3014 		value &= ~NBCFG_ECC_ENABLE;
3015 		amd64_write_pci_cfg(F3, NBCFG, value);
3016 	}
3017 
3018 	/* restore the NB Enable MCGCTL bit */
3019 	if (toggle_ecc_err_reporting(s, nid, OFF))
3020 		amd64_warn("Error restoring NB MCGCTL settings!\n");
3021 }
3022 
3023 /*
3024  * EDAC requires that the BIOS have ECC enabled before
3025  * taking over the processing of ECC errors. A command line
3026  * option allows to force-enable hardware ECC later in
3027  * enable_ecc_error_reporting().
3028  */
3029 static const char *ecc_msg =
3030 	"ECC disabled in the BIOS or no ECC capability, module will not load.\n"
3031 	" Either enable ECC checking or force module loading by setting "
3032 	"'ecc_enable_override'.\n"
3033 	" (Note that use of the override may cause unknown side effects.)\n";
3034 
3035 static bool ecc_enabled(struct pci_dev *F3, u16 nid)
3036 {
3037 	bool nb_mce_en = false;
3038 	u8 ecc_en = 0, i;
3039 	u32 value;
3040 
3041 	if (boot_cpu_data.x86 >= 0x17) {
3042 		u8 umc_en_mask = 0, ecc_en_mask = 0;
3043 
3044 		for (i = 0; i < NUM_UMCS; i++) {
3045 			u32 base = get_umc_base(i);
3046 
3047 			/* Only check enabled UMCs. */
3048 			if (amd_smn_read(nid, base + UMCCH_SDP_CTRL, &value))
3049 				continue;
3050 
3051 			if (!(value & UMC_SDP_INIT))
3052 				continue;
3053 
3054 			umc_en_mask |= BIT(i);
3055 
3056 			if (amd_smn_read(nid, base + UMCCH_UMC_CAP_HI, &value))
3057 				continue;
3058 
3059 			if (value & UMC_ECC_ENABLED)
3060 				ecc_en_mask |= BIT(i);
3061 		}
3062 
3063 		/* Check whether at least one UMC is enabled: */
3064 		if (umc_en_mask)
3065 			ecc_en = umc_en_mask == ecc_en_mask;
3066 		else
3067 			edac_dbg(0, "Node %d: No enabled UMCs.\n", nid);
3068 
3069 		/* Assume UMC MCA banks are enabled. */
3070 		nb_mce_en = true;
3071 	} else {
3072 		amd64_read_pci_cfg(F3, NBCFG, &value);
3073 
3074 		ecc_en = !!(value & NBCFG_ECC_ENABLE);
3075 
3076 		nb_mce_en = nb_mce_bank_enabled_on_node(nid);
3077 		if (!nb_mce_en)
3078 			edac_dbg(0, "NB MCE bank disabled, set MSR 0x%08x[4] on node %d to enable.\n",
3079 				     MSR_IA32_MCG_CTL, nid);
3080 	}
3081 
3082 	amd64_info("Node %d: DRAM ECC %s.\n",
3083 		   nid, (ecc_en ? "enabled" : "disabled"));
3084 
3085 	if (!ecc_en || !nb_mce_en) {
3086 		amd64_info("%s", ecc_msg);
3087 		return false;
3088 	}
3089 	return true;
3090 }
3091 
3092 static inline void
3093 f17h_determine_edac_ctl_cap(struct mem_ctl_info *mci, struct amd64_pvt *pvt)
3094 {
3095 	u8 i, ecc_en = 1, cpk_en = 1;
3096 
3097 	for (i = 0; i < NUM_UMCS; i++) {
3098 		if (pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) {
3099 			ecc_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_ENABLED);
3100 			cpk_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_CHIPKILL_CAP);
3101 		}
3102 	}
3103 
3104 	/* Set chipkill only if ECC is enabled: */
3105 	if (ecc_en) {
3106 		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
3107 
3108 		if (cpk_en)
3109 			mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
3110 	}
3111 }
3112 
3113 static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
3114 				 struct amd64_family_type *fam)
3115 {
3116 	struct amd64_pvt *pvt = mci->pvt_info;
3117 
3118 	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
3119 	mci->edac_ctl_cap	= EDAC_FLAG_NONE;
3120 
3121 	if (pvt->umc) {
3122 		f17h_determine_edac_ctl_cap(mci, pvt);
3123 	} else {
3124 		if (pvt->nbcap & NBCAP_SECDED)
3125 			mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
3126 
3127 		if (pvt->nbcap & NBCAP_CHIPKILL)
3128 			mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
3129 	}
3130 
3131 	mci->edac_cap		= determine_edac_cap(pvt);
3132 	mci->mod_name		= EDAC_MOD_STR;
3133 	mci->ctl_name		= fam->ctl_name;
3134 	mci->dev_name		= pci_name(pvt->F3);
3135 	mci->ctl_page_to_phys	= NULL;
3136 
3137 	/* memory scrubber interface */
3138 	mci->set_sdram_scrub_rate = set_scrub_rate;
3139 	mci->get_sdram_scrub_rate = get_scrub_rate;
3140 }
3141 
3142 /*
3143  * returns a pointer to the family descriptor on success, NULL otherwise.
3144  */
3145 static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt)
3146 {
3147 	struct amd64_family_type *fam_type = NULL;
3148 
3149 	pvt->ext_model  = boot_cpu_data.x86_model >> 4;
3150 	pvt->stepping	= boot_cpu_data.x86_stepping;
3151 	pvt->model	= boot_cpu_data.x86_model;
3152 	pvt->fam	= boot_cpu_data.x86;
3153 
3154 	switch (pvt->fam) {
3155 	case 0xf:
3156 		fam_type	= &family_types[K8_CPUS];
3157 		pvt->ops	= &family_types[K8_CPUS].ops;
3158 		break;
3159 
3160 	case 0x10:
3161 		fam_type	= &family_types[F10_CPUS];
3162 		pvt->ops	= &family_types[F10_CPUS].ops;
3163 		break;
3164 
3165 	case 0x15:
3166 		if (pvt->model == 0x30) {
3167 			fam_type = &family_types[F15_M30H_CPUS];
3168 			pvt->ops = &family_types[F15_M30H_CPUS].ops;
3169 			break;
3170 		} else if (pvt->model == 0x60) {
3171 			fam_type = &family_types[F15_M60H_CPUS];
3172 			pvt->ops = &family_types[F15_M60H_CPUS].ops;
3173 			break;
3174 		}
3175 
3176 		fam_type	= &family_types[F15_CPUS];
3177 		pvt->ops	= &family_types[F15_CPUS].ops;
3178 		break;
3179 
3180 	case 0x16:
3181 		if (pvt->model == 0x30) {
3182 			fam_type = &family_types[F16_M30H_CPUS];
3183 			pvt->ops = &family_types[F16_M30H_CPUS].ops;
3184 			break;
3185 		}
3186 		fam_type	= &family_types[F16_CPUS];
3187 		pvt->ops	= &family_types[F16_CPUS].ops;
3188 		break;
3189 
3190 	case 0x17:
3191 		fam_type	= &family_types[F17_CPUS];
3192 		pvt->ops	= &family_types[F17_CPUS].ops;
3193 		break;
3194 
3195 	default:
3196 		amd64_err("Unsupported family!\n");
3197 		return NULL;
3198 	}
3199 
3200 	amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
3201 		     (pvt->fam == 0xf ?
3202 				(pvt->ext_model >= K8_REV_F  ? "revF or later "
3203 							     : "revE or earlier ")
3204 				 : ""), pvt->mc_node_id);
3205 	return fam_type;
3206 }
3207 
3208 static const struct attribute_group *amd64_edac_attr_groups[] = {
3209 #ifdef CONFIG_EDAC_DEBUG
3210 	&amd64_edac_dbg_group,
3211 #endif
3212 #ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION
3213 	&amd64_edac_inj_group,
3214 #endif
3215 	NULL
3216 };
3217 
3218 static int init_one_instance(unsigned int nid)
3219 {
3220 	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
3221 	struct amd64_family_type *fam_type = NULL;
3222 	struct mem_ctl_info *mci = NULL;
3223 	struct edac_mc_layer layers[2];
3224 	struct amd64_pvt *pvt = NULL;
3225 	u16 pci_id1, pci_id2;
3226 	int err = 0, ret;
3227 
3228 	ret = -ENOMEM;
3229 	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
3230 	if (!pvt)
3231 		goto err_ret;
3232 
3233 	pvt->mc_node_id	= nid;
3234 	pvt->F3 = F3;
3235 
3236 	ret = -EINVAL;
3237 	fam_type = per_family_init(pvt);
3238 	if (!fam_type)
3239 		goto err_free;
3240 
3241 	if (pvt->fam >= 0x17) {
3242 		pvt->umc = kcalloc(NUM_UMCS, sizeof(struct amd64_umc), GFP_KERNEL);
3243 		if (!pvt->umc) {
3244 			ret = -ENOMEM;
3245 			goto err_free;
3246 		}
3247 
3248 		pci_id1 = fam_type->f0_id;
3249 		pci_id2 = fam_type->f6_id;
3250 	} else {
3251 		pci_id1 = fam_type->f1_id;
3252 		pci_id2 = fam_type->f2_id;
3253 	}
3254 
3255 	err = reserve_mc_sibling_devs(pvt, pci_id1, pci_id2);
3256 	if (err)
3257 		goto err_post_init;
3258 
3259 	read_mc_regs(pvt);
3260 
3261 	/*
3262 	 * We need to determine how many memory channels there are. Then use
3263 	 * that information for calculating the size of the dynamic instance
3264 	 * tables in the 'mci' structure.
3265 	 */
3266 	ret = -EINVAL;
3267 	pvt->channel_count = pvt->ops->early_channel_count(pvt);
3268 	if (pvt->channel_count < 0)
3269 		goto err_siblings;
3270 
3271 	ret = -ENOMEM;
3272 	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
3273 	layers[0].size = pvt->csels[0].b_cnt;
3274 	layers[0].is_virt_csrow = true;
3275 	layers[1].type = EDAC_MC_LAYER_CHANNEL;
3276 
3277 	/*
3278 	 * Always allocate two channels since we can have setups with DIMMs on
3279 	 * only one channel. Also, this simplifies handling later for the price
3280 	 * of a couple of KBs tops.
3281 	 */
3282 	layers[1].size = 2;
3283 	layers[1].is_virt_csrow = false;
3284 
3285 	mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
3286 	if (!mci)
3287 		goto err_siblings;
3288 
3289 	mci->pvt_info = pvt;
3290 	mci->pdev = &pvt->F3->dev;
3291 
3292 	setup_mci_misc_attrs(mci, fam_type);
3293 
3294 	if (init_csrows(mci))
3295 		mci->edac_cap = EDAC_FLAG_NONE;
3296 
3297 	ret = -ENODEV;
3298 	if (edac_mc_add_mc_with_groups(mci, amd64_edac_attr_groups)) {
3299 		edac_dbg(1, "failed edac_mc_add_mc()\n");
3300 		goto err_add_mc;
3301 	}
3302 
3303 	return 0;
3304 
3305 err_add_mc:
3306 	edac_mc_free(mci);
3307 
3308 err_siblings:
3309 	free_mc_sibling_devs(pvt);
3310 
3311 err_post_init:
3312 	if (pvt->fam >= 0x17)
3313 		kfree(pvt->umc);
3314 
3315 err_free:
3316 	kfree(pvt);
3317 
3318 err_ret:
3319 	return ret;
3320 }
3321 
3322 static int probe_one_instance(unsigned int nid)
3323 {
3324 	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
3325 	struct ecc_settings *s;
3326 	int ret;
3327 
3328 	ret = -ENOMEM;
3329 	s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
3330 	if (!s)
3331 		goto err_out;
3332 
3333 	ecc_stngs[nid] = s;
3334 
3335 	if (!ecc_enabled(F3, nid)) {
3336 		ret = 0;
3337 
3338 		if (!ecc_enable_override)
3339 			goto err_enable;
3340 
3341 		if (boot_cpu_data.x86 >= 0x17) {
3342 			amd64_warn("Forcing ECC on is not recommended on newer systems. Please enable ECC in BIOS.");
3343 			goto err_enable;
3344 		} else
3345 			amd64_warn("Forcing ECC on!\n");
3346 
3347 		if (!enable_ecc_error_reporting(s, nid, F3))
3348 			goto err_enable;
3349 	}
3350 
3351 	ret = init_one_instance(nid);
3352 	if (ret < 0) {
3353 		amd64_err("Error probing instance: %d\n", nid);
3354 
3355 		if (boot_cpu_data.x86 < 0x17)
3356 			restore_ecc_error_reporting(s, nid, F3);
3357 
3358 		goto err_enable;
3359 	}
3360 
3361 	return ret;
3362 
3363 err_enable:
3364 	kfree(s);
3365 	ecc_stngs[nid] = NULL;
3366 
3367 err_out:
3368 	return ret;
3369 }
3370 
3371 static void remove_one_instance(unsigned int nid)
3372 {
3373 	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
3374 	struct ecc_settings *s = ecc_stngs[nid];
3375 	struct mem_ctl_info *mci;
3376 	struct amd64_pvt *pvt;
3377 
3378 	mci = find_mci_by_dev(&F3->dev);
3379 	WARN_ON(!mci);
3380 
3381 	/* Remove from EDAC CORE tracking list */
3382 	mci = edac_mc_del_mc(&F3->dev);
3383 	if (!mci)
3384 		return;
3385 
3386 	pvt = mci->pvt_info;
3387 
3388 	restore_ecc_error_reporting(s, nid, F3);
3389 
3390 	free_mc_sibling_devs(pvt);
3391 
3392 	kfree(ecc_stngs[nid]);
3393 	ecc_stngs[nid] = NULL;
3394 
3395 	/* Free the EDAC CORE resources */
3396 	mci->pvt_info = NULL;
3397 
3398 	kfree(pvt);
3399 	edac_mc_free(mci);
3400 }
3401 
3402 static void setup_pci_device(void)
3403 {
3404 	struct mem_ctl_info *mci;
3405 	struct amd64_pvt *pvt;
3406 
3407 	if (pci_ctl)
3408 		return;
3409 
3410 	mci = edac_mc_find(0);
3411 	if (!mci)
3412 		return;
3413 
3414 	pvt = mci->pvt_info;
3415 	if (pvt->umc)
3416 		pci_ctl = edac_pci_create_generic_ctl(&pvt->F0->dev, EDAC_MOD_STR);
3417 	else
3418 		pci_ctl = edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
3419 	if (!pci_ctl) {
3420 		pr_warn("%s(): Unable to create PCI control\n", __func__);
3421 		pr_warn("%s(): PCI error report via EDAC not set\n", __func__);
3422 	}
3423 }
3424 
3425 static const struct x86_cpu_id amd64_cpuids[] = {
3426 	{ X86_VENDOR_AMD, 0xF,	X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
3427 	{ X86_VENDOR_AMD, 0x10, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
3428 	{ X86_VENDOR_AMD, 0x15, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
3429 	{ X86_VENDOR_AMD, 0x16, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
3430 	{ X86_VENDOR_AMD, 0x17, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
3431 	{ }
3432 };
3433 MODULE_DEVICE_TABLE(x86cpu, amd64_cpuids);
3434 
3435 static int __init amd64_edac_init(void)
3436 {
3437 	const char *owner;
3438 	int err = -ENODEV;
3439 	int i;
3440 
3441 	owner = edac_get_owner();
3442 	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
3443 		return -EBUSY;
3444 
3445 	if (!x86_match_cpu(amd64_cpuids))
3446 		return -ENODEV;
3447 
3448 	if (amd_cache_northbridges() < 0)
3449 		return -ENODEV;
3450 
3451 	opstate_init();
3452 
3453 	err = -ENOMEM;
3454 	ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
3455 	if (!ecc_stngs)
3456 		goto err_free;
3457 
3458 	msrs = msrs_alloc();
3459 	if (!msrs)
3460 		goto err_free;
3461 
3462 	for (i = 0; i < amd_nb_num(); i++) {
3463 		err = probe_one_instance(i);
3464 		if (err) {
3465 			/* unwind properly */
3466 			while (--i >= 0)
3467 				remove_one_instance(i);
3468 
3469 			goto err_pci;
3470 		}
3471 	}
3472 
3473 	if (!edac_has_mcs()) {
3474 		err = -ENODEV;
3475 		goto err_pci;
3476 	}
3477 
3478 	/* register stuff with EDAC MCE */
3479 	if (report_gart_errors)
3480 		amd_report_gart_errors(true);
3481 
3482 	if (boot_cpu_data.x86 >= 0x17)
3483 		amd_register_ecc_decoder(decode_umc_error);
3484 	else
3485 		amd_register_ecc_decoder(decode_bus_error);
3486 
3487 	setup_pci_device();
3488 
3489 #ifdef CONFIG_X86_32
3490 	amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR);
3491 #endif
3492 
3493 	printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
3494 
3495 	return 0;
3496 
3497 err_pci:
3498 	msrs_free(msrs);
3499 	msrs = NULL;
3500 
3501 err_free:
3502 	kfree(ecc_stngs);
3503 	ecc_stngs = NULL;
3504 
3505 	return err;
3506 }
3507 
3508 static void __exit amd64_edac_exit(void)
3509 {
3510 	int i;
3511 
3512 	if (pci_ctl)
3513 		edac_pci_release_generic_ctl(pci_ctl);
3514 
3515 	/* unregister from EDAC MCE */
3516 	amd_report_gart_errors(false);
3517 
3518 	if (boot_cpu_data.x86 >= 0x17)
3519 		amd_unregister_ecc_decoder(decode_umc_error);
3520 	else
3521 		amd_unregister_ecc_decoder(decode_bus_error);
3522 
3523 	for (i = 0; i < amd_nb_num(); i++)
3524 		remove_one_instance(i);
3525 
3526 	kfree(ecc_stngs);
3527 	ecc_stngs = NULL;
3528 
3529 	msrs_free(msrs);
3530 	msrs = NULL;
3531 }
3532 
3533 module_init(amd64_edac_init);
3534 module_exit(amd64_edac_exit);
3535 
3536 MODULE_LICENSE("GPL");
3537 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
3538 		"Dave Peterson, Thayne Harbaugh");
3539 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
3540 		EDAC_AMD64_VERSION);
3541 
3542 module_param(edac_op_state, int, 0444);
3543 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
3544