1 #include "amd64_edac.h" 2 #include <asm/amd_nb.h> 3 4 static struct edac_pci_ctl_info *pci_ctl; 5 6 static int report_gart_errors; 7 module_param(report_gart_errors, int, 0644); 8 9 /* 10 * Set by command line parameter. If BIOS has enabled the ECC, this override is 11 * cleared to prevent re-enabling the hardware by this driver. 12 */ 13 static int ecc_enable_override; 14 module_param(ecc_enable_override, int, 0644); 15 16 static struct msr __percpu *msrs; 17 18 /* 19 * count successfully initialized driver instances for setup_pci_device() 20 */ 21 static atomic_t drv_instances = ATOMIC_INIT(0); 22 23 /* Per-node stuff */ 24 static struct ecc_settings **ecc_stngs; 25 26 /* 27 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing 28 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching- 29 * or higher value'. 30 * 31 *FIXME: Produce a better mapping/linearisation. 32 */ 33 static const struct scrubrate { 34 u32 scrubval; /* bit pattern for scrub rate */ 35 u32 bandwidth; /* bandwidth consumed (bytes/sec) */ 36 } scrubrates[] = { 37 { 0x01, 1600000000UL}, 38 { 0x02, 800000000UL}, 39 { 0x03, 400000000UL}, 40 { 0x04, 200000000UL}, 41 { 0x05, 100000000UL}, 42 { 0x06, 50000000UL}, 43 { 0x07, 25000000UL}, 44 { 0x08, 12284069UL}, 45 { 0x09, 6274509UL}, 46 { 0x0A, 3121951UL}, 47 { 0x0B, 1560975UL}, 48 { 0x0C, 781440UL}, 49 { 0x0D, 390720UL}, 50 { 0x0E, 195300UL}, 51 { 0x0F, 97650UL}, 52 { 0x10, 48854UL}, 53 { 0x11, 24427UL}, 54 { 0x12, 12213UL}, 55 { 0x13, 6101UL}, 56 { 0x14, 3051UL}, 57 { 0x15, 1523UL}, 58 { 0x16, 761UL}, 59 { 0x00, 0UL}, /* scrubbing off */ 60 }; 61 62 int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset, 63 u32 *val, const char *func) 64 { 65 int err = 0; 66 67 err = pci_read_config_dword(pdev, offset, val); 68 if (err) 69 amd64_warn("%s: error reading F%dx%03x.\n", 70 func, PCI_FUNC(pdev->devfn), offset); 71 72 return err; 73 } 74 75 int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset, 76 u32 val, const char *func) 77 { 78 int err = 0; 79 80 err = pci_write_config_dword(pdev, offset, val); 81 if (err) 82 amd64_warn("%s: error writing to F%dx%03x.\n", 83 func, PCI_FUNC(pdev->devfn), offset); 84 85 return err; 86 } 87 88 /* 89 * Select DCT to which PCI cfg accesses are routed 90 */ 91 static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct) 92 { 93 u32 reg = 0; 94 95 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, ®); 96 reg &= (pvt->model == 0x30) ? ~3 : ~1; 97 reg |= dct; 98 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg); 99 } 100 101 /* 102 * 103 * Depending on the family, F2 DCT reads need special handling: 104 * 105 * K8: has a single DCT only and no address offsets >= 0x100 106 * 107 * F10h: each DCT has its own set of regs 108 * DCT0 -> F2x040.. 109 * DCT1 -> F2x140.. 110 * 111 * F16h: has only 1 DCT 112 * 113 * F15h: we select which DCT we access using F1x10C[DctCfgSel] 114 */ 115 static inline int amd64_read_dct_pci_cfg(struct amd64_pvt *pvt, u8 dct, 116 int offset, u32 *val) 117 { 118 switch (pvt->fam) { 119 case 0xf: 120 if (dct || offset >= 0x100) 121 return -EINVAL; 122 break; 123 124 case 0x10: 125 if (dct) { 126 /* 127 * Note: If ganging is enabled, barring the regs 128 * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx 129 * return 0. (cf. Section 2.8.1 F10h BKDG) 130 */ 131 if (dct_ganging_enabled(pvt)) 132 return 0; 133 134 offset += 0x100; 135 } 136 break; 137 138 case 0x15: 139 /* 140 * F15h: F2x1xx addresses do not map explicitly to DCT1. 141 * We should select which DCT we access using F1x10C[DctCfgSel] 142 */ 143 dct = (dct && pvt->model == 0x30) ? 3 : dct; 144 f15h_select_dct(pvt, dct); 145 break; 146 147 case 0x16: 148 if (dct) 149 return -EINVAL; 150 break; 151 152 default: 153 break; 154 } 155 return amd64_read_pci_cfg(pvt->F2, offset, val); 156 } 157 158 /* 159 * Memory scrubber control interface. For K8, memory scrubbing is handled by 160 * hardware and can involve L2 cache, dcache as well as the main memory. With 161 * F10, this is extended to L3 cache scrubbing on CPU models sporting that 162 * functionality. 163 * 164 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks 165 * (dram) over to cache lines. This is nasty, so we will use bandwidth in 166 * bytes/sec for the setting. 167 * 168 * Currently, we only do dram scrubbing. If the scrubbing is done in software on 169 * other archs, we might not have access to the caches directly. 170 */ 171 172 /* 173 * scan the scrub rate mapping table for a close or matching bandwidth value to 174 * issue. If requested is too big, then use last maximum value found. 175 */ 176 static int __set_scrub_rate(struct amd64_pvt *pvt, u32 new_bw, u32 min_rate) 177 { 178 u32 scrubval; 179 int i; 180 181 /* 182 * map the configured rate (new_bw) to a value specific to the AMD64 183 * memory controller and apply to register. Search for the first 184 * bandwidth entry that is greater or equal than the setting requested 185 * and program that. If at last entry, turn off DRAM scrubbing. 186 * 187 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely 188 * by falling back to the last element in scrubrates[]. 189 */ 190 for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) { 191 /* 192 * skip scrub rates which aren't recommended 193 * (see F10 BKDG, F3x58) 194 */ 195 if (scrubrates[i].scrubval < min_rate) 196 continue; 197 198 if (scrubrates[i].bandwidth <= new_bw) 199 break; 200 } 201 202 scrubval = scrubrates[i].scrubval; 203 204 if (pvt->fam == 0x15 && pvt->model == 0x60) { 205 f15h_select_dct(pvt, 0); 206 pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F); 207 f15h_select_dct(pvt, 1); 208 pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F); 209 } else { 210 pci_write_bits32(pvt->F3, SCRCTRL, scrubval, 0x001F); 211 } 212 213 if (scrubval) 214 return scrubrates[i].bandwidth; 215 216 return 0; 217 } 218 219 static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw) 220 { 221 struct amd64_pvt *pvt = mci->pvt_info; 222 u32 min_scrubrate = 0x5; 223 224 if (pvt->fam == 0xf) 225 min_scrubrate = 0x0; 226 227 if (pvt->fam == 0x15) { 228 /* Erratum #505 */ 229 if (pvt->model < 0x10) 230 f15h_select_dct(pvt, 0); 231 232 if (pvt->model == 0x60) 233 min_scrubrate = 0x6; 234 } 235 return __set_scrub_rate(pvt, bw, min_scrubrate); 236 } 237 238 static int get_scrub_rate(struct mem_ctl_info *mci) 239 { 240 struct amd64_pvt *pvt = mci->pvt_info; 241 u32 scrubval = 0; 242 int i, retval = -EINVAL; 243 244 if (pvt->fam == 0x15) { 245 /* Erratum #505 */ 246 if (pvt->model < 0x10) 247 f15h_select_dct(pvt, 0); 248 249 if (pvt->model == 0x60) 250 amd64_read_pci_cfg(pvt->F2, F15H_M60H_SCRCTRL, &scrubval); 251 } else 252 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval); 253 254 scrubval = scrubval & 0x001F; 255 256 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) { 257 if (scrubrates[i].scrubval == scrubval) { 258 retval = scrubrates[i].bandwidth; 259 break; 260 } 261 } 262 return retval; 263 } 264 265 /* 266 * returns true if the SysAddr given by sys_addr matches the 267 * DRAM base/limit associated with node_id 268 */ 269 static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid) 270 { 271 u64 addr; 272 273 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be 274 * all ones if the most significant implemented address bit is 1. 275 * Here we discard bits 63-40. See section 3.4.2 of AMD publication 276 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1 277 * Application Programming. 278 */ 279 addr = sys_addr & 0x000000ffffffffffull; 280 281 return ((addr >= get_dram_base(pvt, nid)) && 282 (addr <= get_dram_limit(pvt, nid))); 283 } 284 285 /* 286 * Attempt to map a SysAddr to a node. On success, return a pointer to the 287 * mem_ctl_info structure for the node that the SysAddr maps to. 288 * 289 * On failure, return NULL. 290 */ 291 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci, 292 u64 sys_addr) 293 { 294 struct amd64_pvt *pvt; 295 u8 node_id; 296 u32 intlv_en, bits; 297 298 /* 299 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section 300 * 3.4.4.2) registers to map the SysAddr to a node ID. 301 */ 302 pvt = mci->pvt_info; 303 304 /* 305 * The value of this field should be the same for all DRAM Base 306 * registers. Therefore we arbitrarily choose to read it from the 307 * register for node 0. 308 */ 309 intlv_en = dram_intlv_en(pvt, 0); 310 311 if (intlv_en == 0) { 312 for (node_id = 0; node_id < DRAM_RANGES; node_id++) { 313 if (base_limit_match(pvt, sys_addr, node_id)) 314 goto found; 315 } 316 goto err_no_match; 317 } 318 319 if (unlikely((intlv_en != 0x01) && 320 (intlv_en != 0x03) && 321 (intlv_en != 0x07))) { 322 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en); 323 return NULL; 324 } 325 326 bits = (((u32) sys_addr) >> 12) & intlv_en; 327 328 for (node_id = 0; ; ) { 329 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits) 330 break; /* intlv_sel field matches */ 331 332 if (++node_id >= DRAM_RANGES) 333 goto err_no_match; 334 } 335 336 /* sanity test for sys_addr */ 337 if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) { 338 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address" 339 "range for node %d with node interleaving enabled.\n", 340 __func__, sys_addr, node_id); 341 return NULL; 342 } 343 344 found: 345 return edac_mc_find((int)node_id); 346 347 err_no_match: 348 edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n", 349 (unsigned long)sys_addr); 350 351 return NULL; 352 } 353 354 /* 355 * compute the CS base address of the @csrow on the DRAM controller @dct. 356 * For details see F2x[5C:40] in the processor's BKDG 357 */ 358 static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct, 359 u64 *base, u64 *mask) 360 { 361 u64 csbase, csmask, base_bits, mask_bits; 362 u8 addr_shift; 363 364 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) { 365 csbase = pvt->csels[dct].csbases[csrow]; 366 csmask = pvt->csels[dct].csmasks[csrow]; 367 base_bits = GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9); 368 mask_bits = GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9); 369 addr_shift = 4; 370 371 /* 372 * F16h and F15h, models 30h and later need two addr_shift values: 373 * 8 for high and 6 for low (cf. F16h BKDG). 374 */ 375 } else if (pvt->fam == 0x16 || 376 (pvt->fam == 0x15 && pvt->model >= 0x30)) { 377 csbase = pvt->csels[dct].csbases[csrow]; 378 csmask = pvt->csels[dct].csmasks[csrow >> 1]; 379 380 *base = (csbase & GENMASK_ULL(15, 5)) << 6; 381 *base |= (csbase & GENMASK_ULL(30, 19)) << 8; 382 383 *mask = ~0ULL; 384 /* poke holes for the csmask */ 385 *mask &= ~((GENMASK_ULL(15, 5) << 6) | 386 (GENMASK_ULL(30, 19) << 8)); 387 388 *mask |= (csmask & GENMASK_ULL(15, 5)) << 6; 389 *mask |= (csmask & GENMASK_ULL(30, 19)) << 8; 390 391 return; 392 } else { 393 csbase = pvt->csels[dct].csbases[csrow]; 394 csmask = pvt->csels[dct].csmasks[csrow >> 1]; 395 addr_shift = 8; 396 397 if (pvt->fam == 0x15) 398 base_bits = mask_bits = 399 GENMASK_ULL(30,19) | GENMASK_ULL(13,5); 400 else 401 base_bits = mask_bits = 402 GENMASK_ULL(28,19) | GENMASK_ULL(13,5); 403 } 404 405 *base = (csbase & base_bits) << addr_shift; 406 407 *mask = ~0ULL; 408 /* poke holes for the csmask */ 409 *mask &= ~(mask_bits << addr_shift); 410 /* OR them in */ 411 *mask |= (csmask & mask_bits) << addr_shift; 412 } 413 414 #define for_each_chip_select(i, dct, pvt) \ 415 for (i = 0; i < pvt->csels[dct].b_cnt; i++) 416 417 #define chip_select_base(i, dct, pvt) \ 418 pvt->csels[dct].csbases[i] 419 420 #define for_each_chip_select_mask(i, dct, pvt) \ 421 for (i = 0; i < pvt->csels[dct].m_cnt; i++) 422 423 /* 424 * @input_addr is an InputAddr associated with the node given by mci. Return the 425 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr). 426 */ 427 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr) 428 { 429 struct amd64_pvt *pvt; 430 int csrow; 431 u64 base, mask; 432 433 pvt = mci->pvt_info; 434 435 for_each_chip_select(csrow, 0, pvt) { 436 if (!csrow_enabled(csrow, 0, pvt)) 437 continue; 438 439 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask); 440 441 mask = ~mask; 442 443 if ((input_addr & mask) == (base & mask)) { 444 edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n", 445 (unsigned long)input_addr, csrow, 446 pvt->mc_node_id); 447 448 return csrow; 449 } 450 } 451 edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n", 452 (unsigned long)input_addr, pvt->mc_node_id); 453 454 return -1; 455 } 456 457 /* 458 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094) 459 * for the node represented by mci. Info is passed back in *hole_base, 460 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if 461 * info is invalid. Info may be invalid for either of the following reasons: 462 * 463 * - The revision of the node is not E or greater. In this case, the DRAM Hole 464 * Address Register does not exist. 465 * 466 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register, 467 * indicating that its contents are not valid. 468 * 469 * The values passed back in *hole_base, *hole_offset, and *hole_size are 470 * complete 32-bit values despite the fact that the bitfields in the DHAR 471 * only represent bits 31-24 of the base and offset values. 472 */ 473 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base, 474 u64 *hole_offset, u64 *hole_size) 475 { 476 struct amd64_pvt *pvt = mci->pvt_info; 477 478 /* only revE and later have the DRAM Hole Address Register */ 479 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) { 480 edac_dbg(1, " revision %d for node %d does not support DHAR\n", 481 pvt->ext_model, pvt->mc_node_id); 482 return 1; 483 } 484 485 /* valid for Fam10h and above */ 486 if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) { 487 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n"); 488 return 1; 489 } 490 491 if (!dhar_valid(pvt)) { 492 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n", 493 pvt->mc_node_id); 494 return 1; 495 } 496 497 /* This node has Memory Hoisting */ 498 499 /* +------------------+--------------------+--------------------+----- 500 * | memory | DRAM hole | relocated | 501 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from | 502 * | | | DRAM hole | 503 * | | | [0x100000000, | 504 * | | | (0x100000000+ | 505 * | | | (0xffffffff-x))] | 506 * +------------------+--------------------+--------------------+----- 507 * 508 * Above is a diagram of physical memory showing the DRAM hole and the 509 * relocated addresses from the DRAM hole. As shown, the DRAM hole 510 * starts at address x (the base address) and extends through address 511 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the 512 * addresses in the hole so that they start at 0x100000000. 513 */ 514 515 *hole_base = dhar_base(pvt); 516 *hole_size = (1ULL << 32) - *hole_base; 517 518 *hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt) 519 : k8_dhar_offset(pvt); 520 521 edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n", 522 pvt->mc_node_id, (unsigned long)*hole_base, 523 (unsigned long)*hole_offset, (unsigned long)*hole_size); 524 525 return 0; 526 } 527 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info); 528 529 /* 530 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is 531 * assumed that sys_addr maps to the node given by mci. 532 * 533 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section 534 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a 535 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled, 536 * then it is also involved in translating a SysAddr to a DramAddr. Sections 537 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting. 538 * These parts of the documentation are unclear. I interpret them as follows: 539 * 540 * When node n receives a SysAddr, it processes the SysAddr as follows: 541 * 542 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM 543 * Limit registers for node n. If the SysAddr is not within the range 544 * specified by the base and limit values, then node n ignores the Sysaddr 545 * (since it does not map to node n). Otherwise continue to step 2 below. 546 * 547 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is 548 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within 549 * the range of relocated addresses (starting at 0x100000000) from the DRAM 550 * hole. If not, skip to step 3 below. Else get the value of the 551 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the 552 * offset defined by this value from the SysAddr. 553 * 554 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM 555 * Base register for node n. To obtain the DramAddr, subtract the base 556 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70). 557 */ 558 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr) 559 { 560 struct amd64_pvt *pvt = mci->pvt_info; 561 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr; 562 int ret; 563 564 dram_base = get_dram_base(pvt, pvt->mc_node_id); 565 566 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset, 567 &hole_size); 568 if (!ret) { 569 if ((sys_addr >= (1ULL << 32)) && 570 (sys_addr < ((1ULL << 32) + hole_size))) { 571 /* use DHAR to translate SysAddr to DramAddr */ 572 dram_addr = sys_addr - hole_offset; 573 574 edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n", 575 (unsigned long)sys_addr, 576 (unsigned long)dram_addr); 577 578 return dram_addr; 579 } 580 } 581 582 /* 583 * Translate the SysAddr to a DramAddr as shown near the start of 584 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8 585 * only deals with 40-bit values. Therefore we discard bits 63-40 of 586 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we 587 * discard are all 1s. Otherwise the bits we discard are all 0s. See 588 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture 589 * Programmer's Manual Volume 1 Application Programming. 590 */ 591 dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base; 592 593 edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n", 594 (unsigned long)sys_addr, (unsigned long)dram_addr); 595 return dram_addr; 596 } 597 598 /* 599 * @intlv_en is the value of the IntlvEn field from a DRAM Base register 600 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used 601 * for node interleaving. 602 */ 603 static int num_node_interleave_bits(unsigned intlv_en) 604 { 605 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 }; 606 int n; 607 608 BUG_ON(intlv_en > 7); 609 n = intlv_shift_table[intlv_en]; 610 return n; 611 } 612 613 /* Translate the DramAddr given by @dram_addr to an InputAddr. */ 614 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr) 615 { 616 struct amd64_pvt *pvt; 617 int intlv_shift; 618 u64 input_addr; 619 620 pvt = mci->pvt_info; 621 622 /* 623 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E) 624 * concerning translating a DramAddr to an InputAddr. 625 */ 626 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0)); 627 input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) + 628 (dram_addr & 0xfff); 629 630 edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n", 631 intlv_shift, (unsigned long)dram_addr, 632 (unsigned long)input_addr); 633 634 return input_addr; 635 } 636 637 /* 638 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is 639 * assumed that @sys_addr maps to the node given by mci. 640 */ 641 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr) 642 { 643 u64 input_addr; 644 645 input_addr = 646 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr)); 647 648 edac_dbg(2, "SysAdddr 0x%lx translates to InputAddr 0x%lx\n", 649 (unsigned long)sys_addr, (unsigned long)input_addr); 650 651 return input_addr; 652 } 653 654 /* Map the Error address to a PAGE and PAGE OFFSET. */ 655 static inline void error_address_to_page_and_offset(u64 error_address, 656 struct err_info *err) 657 { 658 err->page = (u32) (error_address >> PAGE_SHIFT); 659 err->offset = ((u32) error_address) & ~PAGE_MASK; 660 } 661 662 /* 663 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address 664 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers 665 * of a node that detected an ECC memory error. mci represents the node that 666 * the error address maps to (possibly different from the node that detected 667 * the error). Return the number of the csrow that sys_addr maps to, or -1 on 668 * error. 669 */ 670 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr) 671 { 672 int csrow; 673 674 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr)); 675 676 if (csrow == -1) 677 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for " 678 "address 0x%lx\n", (unsigned long)sys_addr); 679 return csrow; 680 } 681 682 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16); 683 684 /* 685 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs 686 * are ECC capable. 687 */ 688 static unsigned long determine_edac_cap(struct amd64_pvt *pvt) 689 { 690 u8 bit; 691 unsigned long edac_cap = EDAC_FLAG_NONE; 692 693 bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F) 694 ? 19 695 : 17; 696 697 if (pvt->dclr0 & BIT(bit)) 698 edac_cap = EDAC_FLAG_SECDED; 699 700 return edac_cap; 701 } 702 703 static void debug_display_dimm_sizes(struct amd64_pvt *, u8); 704 705 static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan) 706 { 707 edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr); 708 709 if (pvt->dram_type == MEM_LRDDR3) { 710 u32 dcsm = pvt->csels[chan].csmasks[0]; 711 /* 712 * It's assumed all LRDIMMs in a DCT are going to be of 713 * same 'type' until proven otherwise. So, use a cs 714 * value of '0' here to get dcsm value. 715 */ 716 edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm & 0x3)); 717 } 718 719 edac_dbg(1, "All DIMMs support ECC:%s\n", 720 (dclr & BIT(19)) ? "yes" : "no"); 721 722 723 edac_dbg(1, " PAR/ERR parity: %s\n", 724 (dclr & BIT(8)) ? "enabled" : "disabled"); 725 726 if (pvt->fam == 0x10) 727 edac_dbg(1, " DCT 128bit mode width: %s\n", 728 (dclr & BIT(11)) ? "128b" : "64b"); 729 730 edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n", 731 (dclr & BIT(12)) ? "yes" : "no", 732 (dclr & BIT(13)) ? "yes" : "no", 733 (dclr & BIT(14)) ? "yes" : "no", 734 (dclr & BIT(15)) ? "yes" : "no"); 735 } 736 737 /* Display and decode various NB registers for debug purposes. */ 738 static void dump_misc_regs(struct amd64_pvt *pvt) 739 { 740 edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap); 741 742 edac_dbg(1, " NB two channel DRAM capable: %s\n", 743 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no"); 744 745 edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n", 746 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no", 747 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no"); 748 749 debug_dump_dramcfg_low(pvt, pvt->dclr0, 0); 750 751 edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare); 752 753 edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n", 754 pvt->dhar, dhar_base(pvt), 755 (pvt->fam == 0xf) ? k8_dhar_offset(pvt) 756 : f10_dhar_offset(pvt)); 757 758 edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no"); 759 760 debug_display_dimm_sizes(pvt, 0); 761 762 /* everything below this point is Fam10h and above */ 763 if (pvt->fam == 0xf) 764 return; 765 766 debug_display_dimm_sizes(pvt, 1); 767 768 amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4")); 769 770 /* Only if NOT ganged does dclr1 have valid info */ 771 if (!dct_ganging_enabled(pvt)) 772 debug_dump_dramcfg_low(pvt, pvt->dclr1, 1); 773 } 774 775 /* 776 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60] 777 */ 778 static void prep_chip_selects(struct amd64_pvt *pvt) 779 { 780 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) { 781 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8; 782 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8; 783 } else if (pvt->fam == 0x15 && pvt->model == 0x30) { 784 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4; 785 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2; 786 } else { 787 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8; 788 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4; 789 } 790 } 791 792 /* 793 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers 794 */ 795 static void read_dct_base_mask(struct amd64_pvt *pvt) 796 { 797 int cs; 798 799 prep_chip_selects(pvt); 800 801 for_each_chip_select(cs, 0, pvt) { 802 int reg0 = DCSB0 + (cs * 4); 803 int reg1 = DCSB1 + (cs * 4); 804 u32 *base0 = &pvt->csels[0].csbases[cs]; 805 u32 *base1 = &pvt->csels[1].csbases[cs]; 806 807 if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, base0)) 808 edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n", 809 cs, *base0, reg0); 810 811 if (pvt->fam == 0xf) 812 continue; 813 814 if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, base1)) 815 edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n", 816 cs, *base1, (pvt->fam == 0x10) ? reg1 817 : reg0); 818 } 819 820 for_each_chip_select_mask(cs, 0, pvt) { 821 int reg0 = DCSM0 + (cs * 4); 822 int reg1 = DCSM1 + (cs * 4); 823 u32 *mask0 = &pvt->csels[0].csmasks[cs]; 824 u32 *mask1 = &pvt->csels[1].csmasks[cs]; 825 826 if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, mask0)) 827 edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n", 828 cs, *mask0, reg0); 829 830 if (pvt->fam == 0xf) 831 continue; 832 833 if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, mask1)) 834 edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n", 835 cs, *mask1, (pvt->fam == 0x10) ? reg1 836 : reg0); 837 } 838 } 839 840 static void determine_memory_type(struct amd64_pvt *pvt) 841 { 842 u32 dram_ctrl, dcsm; 843 844 switch (pvt->fam) { 845 case 0xf: 846 if (pvt->ext_model >= K8_REV_F) 847 goto ddr3; 848 849 pvt->dram_type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR; 850 return; 851 852 case 0x10: 853 if (pvt->dchr0 & DDR3_MODE) 854 goto ddr3; 855 856 pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2; 857 return; 858 859 case 0x15: 860 if (pvt->model < 0x60) 861 goto ddr3; 862 863 /* 864 * Model 0x60h needs special handling: 865 * 866 * We use a Chip Select value of '0' to obtain dcsm. 867 * Theoretically, it is possible to populate LRDIMMs of different 868 * 'Rank' value on a DCT. But this is not the common case. So, 869 * it's reasonable to assume all DIMMs are going to be of same 870 * 'type' until proven otherwise. 871 */ 872 amd64_read_dct_pci_cfg(pvt, 0, DRAM_CONTROL, &dram_ctrl); 873 dcsm = pvt->csels[0].csmasks[0]; 874 875 if (((dram_ctrl >> 8) & 0x7) == 0x2) 876 pvt->dram_type = MEM_DDR4; 877 else if (pvt->dclr0 & BIT(16)) 878 pvt->dram_type = MEM_DDR3; 879 else if (dcsm & 0x3) 880 pvt->dram_type = MEM_LRDDR3; 881 else 882 pvt->dram_type = MEM_RDDR3; 883 884 return; 885 886 case 0x16: 887 goto ddr3; 888 889 default: 890 WARN(1, KERN_ERR "%s: Family??? 0x%x\n", __func__, pvt->fam); 891 pvt->dram_type = MEM_EMPTY; 892 } 893 return; 894 895 ddr3: 896 pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3; 897 } 898 899 /* Get the number of DCT channels the memory controller is using. */ 900 static int k8_early_channel_count(struct amd64_pvt *pvt) 901 { 902 int flag; 903 904 if (pvt->ext_model >= K8_REV_F) 905 /* RevF (NPT) and later */ 906 flag = pvt->dclr0 & WIDTH_128; 907 else 908 /* RevE and earlier */ 909 flag = pvt->dclr0 & REVE_WIDTH_128; 910 911 /* not used */ 912 pvt->dclr1 = 0; 913 914 return (flag) ? 2 : 1; 915 } 916 917 /* On F10h and later ErrAddr is MC4_ADDR[47:1] */ 918 static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m) 919 { 920 u16 mce_nid = amd_get_nb_id(m->extcpu); 921 struct mem_ctl_info *mci; 922 u8 start_bit = 1; 923 u8 end_bit = 47; 924 u64 addr; 925 926 mci = edac_mc_find(mce_nid); 927 if (!mci) 928 return 0; 929 930 pvt = mci->pvt_info; 931 932 if (pvt->fam == 0xf) { 933 start_bit = 3; 934 end_bit = 39; 935 } 936 937 addr = m->addr & GENMASK_ULL(end_bit, start_bit); 938 939 /* 940 * Erratum 637 workaround 941 */ 942 if (pvt->fam == 0x15) { 943 u64 cc6_base, tmp_addr; 944 u32 tmp; 945 u8 intlv_en; 946 947 if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7) 948 return addr; 949 950 951 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp); 952 intlv_en = tmp >> 21 & 0x7; 953 954 /* add [47:27] + 3 trailing bits */ 955 cc6_base = (tmp & GENMASK_ULL(20, 0)) << 3; 956 957 /* reverse and add DramIntlvEn */ 958 cc6_base |= intlv_en ^ 0x7; 959 960 /* pin at [47:24] */ 961 cc6_base <<= 24; 962 963 if (!intlv_en) 964 return cc6_base | (addr & GENMASK_ULL(23, 0)); 965 966 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp); 967 968 /* faster log2 */ 969 tmp_addr = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1); 970 971 /* OR DramIntlvSel into bits [14:12] */ 972 tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9; 973 974 /* add remaining [11:0] bits from original MC4_ADDR */ 975 tmp_addr |= addr & GENMASK_ULL(11, 0); 976 977 return cc6_base | tmp_addr; 978 } 979 980 return addr; 981 } 982 983 static struct pci_dev *pci_get_related_function(unsigned int vendor, 984 unsigned int device, 985 struct pci_dev *related) 986 { 987 struct pci_dev *dev = NULL; 988 989 while ((dev = pci_get_device(vendor, device, dev))) { 990 if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) && 991 (dev->bus->number == related->bus->number) && 992 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn))) 993 break; 994 } 995 996 return dev; 997 } 998 999 static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range) 1000 { 1001 struct amd_northbridge *nb; 1002 struct pci_dev *f1 = NULL; 1003 unsigned int pci_func; 1004 int off = range << 3; 1005 u32 llim; 1006 1007 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo); 1008 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo); 1009 1010 if (pvt->fam == 0xf) 1011 return; 1012 1013 if (!dram_rw(pvt, range)) 1014 return; 1015 1016 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi); 1017 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi); 1018 1019 /* F15h: factor in CC6 save area by reading dst node's limit reg */ 1020 if (pvt->fam != 0x15) 1021 return; 1022 1023 nb = node_to_amd_nb(dram_dst_node(pvt, range)); 1024 if (WARN_ON(!nb)) 1025 return; 1026 1027 if (pvt->model == 0x60) 1028 pci_func = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1; 1029 else if (pvt->model == 0x30) 1030 pci_func = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1; 1031 else 1032 pci_func = PCI_DEVICE_ID_AMD_15H_NB_F1; 1033 1034 f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc); 1035 if (WARN_ON(!f1)) 1036 return; 1037 1038 amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim); 1039 1040 pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0); 1041 1042 /* {[39:27],111b} */ 1043 pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16; 1044 1045 pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0); 1046 1047 /* [47:40] */ 1048 pvt->ranges[range].lim.hi |= llim >> 13; 1049 1050 pci_dev_put(f1); 1051 } 1052 1053 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr, 1054 struct err_info *err) 1055 { 1056 struct amd64_pvt *pvt = mci->pvt_info; 1057 1058 error_address_to_page_and_offset(sys_addr, err); 1059 1060 /* 1061 * Find out which node the error address belongs to. This may be 1062 * different from the node that detected the error. 1063 */ 1064 err->src_mci = find_mc_by_sys_addr(mci, sys_addr); 1065 if (!err->src_mci) { 1066 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n", 1067 (unsigned long)sys_addr); 1068 err->err_code = ERR_NODE; 1069 return; 1070 } 1071 1072 /* Now map the sys_addr to a CSROW */ 1073 err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr); 1074 if (err->csrow < 0) { 1075 err->err_code = ERR_CSROW; 1076 return; 1077 } 1078 1079 /* CHIPKILL enabled */ 1080 if (pvt->nbcfg & NBCFG_CHIPKILL) { 1081 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome); 1082 if (err->channel < 0) { 1083 /* 1084 * Syndrome didn't map, so we don't know which of the 1085 * 2 DIMMs is in error. So we need to ID 'both' of them 1086 * as suspect. 1087 */ 1088 amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - " 1089 "possible error reporting race\n", 1090 err->syndrome); 1091 err->err_code = ERR_CHANNEL; 1092 return; 1093 } 1094 } else { 1095 /* 1096 * non-chipkill ecc mode 1097 * 1098 * The k8 documentation is unclear about how to determine the 1099 * channel number when using non-chipkill memory. This method 1100 * was obtained from email communication with someone at AMD. 1101 * (Wish the email was placed in this comment - norsk) 1102 */ 1103 err->channel = ((sys_addr & BIT(3)) != 0); 1104 } 1105 } 1106 1107 static int ddr2_cs_size(unsigned i, bool dct_width) 1108 { 1109 unsigned shift = 0; 1110 1111 if (i <= 2) 1112 shift = i; 1113 else if (!(i & 0x1)) 1114 shift = i >> 1; 1115 else 1116 shift = (i + 1) >> 1; 1117 1118 return 128 << (shift + !!dct_width); 1119 } 1120 1121 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, 1122 unsigned cs_mode, int cs_mask_nr) 1123 { 1124 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0; 1125 1126 if (pvt->ext_model >= K8_REV_F) { 1127 WARN_ON(cs_mode > 11); 1128 return ddr2_cs_size(cs_mode, dclr & WIDTH_128); 1129 } 1130 else if (pvt->ext_model >= K8_REV_D) { 1131 unsigned diff; 1132 WARN_ON(cs_mode > 10); 1133 1134 /* 1135 * the below calculation, besides trying to win an obfuscated C 1136 * contest, maps cs_mode values to DIMM chip select sizes. The 1137 * mappings are: 1138 * 1139 * cs_mode CS size (mb) 1140 * ======= ============ 1141 * 0 32 1142 * 1 64 1143 * 2 128 1144 * 3 128 1145 * 4 256 1146 * 5 512 1147 * 6 256 1148 * 7 512 1149 * 8 1024 1150 * 9 1024 1151 * 10 2048 1152 * 1153 * Basically, it calculates a value with which to shift the 1154 * smallest CS size of 32MB. 1155 * 1156 * ddr[23]_cs_size have a similar purpose. 1157 */ 1158 diff = cs_mode/3 + (unsigned)(cs_mode > 5); 1159 1160 return 32 << (cs_mode - diff); 1161 } 1162 else { 1163 WARN_ON(cs_mode > 6); 1164 return 32 << cs_mode; 1165 } 1166 } 1167 1168 /* 1169 * Get the number of DCT channels in use. 1170 * 1171 * Return: 1172 * number of Memory Channels in operation 1173 * Pass back: 1174 * contents of the DCL0_LOW register 1175 */ 1176 static int f1x_early_channel_count(struct amd64_pvt *pvt) 1177 { 1178 int i, j, channels = 0; 1179 1180 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */ 1181 if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128)) 1182 return 2; 1183 1184 /* 1185 * Need to check if in unganged mode: In such, there are 2 channels, 1186 * but they are not in 128 bit mode and thus the above 'dclr0' status 1187 * bit will be OFF. 1188 * 1189 * Need to check DCT0[0] and DCT1[0] to see if only one of them has 1190 * their CSEnable bit on. If so, then SINGLE DIMM case. 1191 */ 1192 edac_dbg(0, "Data width is not 128 bits - need more decoding\n"); 1193 1194 /* 1195 * Check DRAM Bank Address Mapping values for each DIMM to see if there 1196 * is more than just one DIMM present in unganged mode. Need to check 1197 * both controllers since DIMMs can be placed in either one. 1198 */ 1199 for (i = 0; i < 2; i++) { 1200 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0); 1201 1202 for (j = 0; j < 4; j++) { 1203 if (DBAM_DIMM(j, dbam) > 0) { 1204 channels++; 1205 break; 1206 } 1207 } 1208 } 1209 1210 if (channels > 2) 1211 channels = 2; 1212 1213 amd64_info("MCT channel count: %d\n", channels); 1214 1215 return channels; 1216 } 1217 1218 static int ddr3_cs_size(unsigned i, bool dct_width) 1219 { 1220 unsigned shift = 0; 1221 int cs_size = 0; 1222 1223 if (i == 0 || i == 3 || i == 4) 1224 cs_size = -1; 1225 else if (i <= 2) 1226 shift = i; 1227 else if (i == 12) 1228 shift = 7; 1229 else if (!(i & 0x1)) 1230 shift = i >> 1; 1231 else 1232 shift = (i + 1) >> 1; 1233 1234 if (cs_size != -1) 1235 cs_size = (128 * (1 << !!dct_width)) << shift; 1236 1237 return cs_size; 1238 } 1239 1240 static int ddr3_lrdimm_cs_size(unsigned i, unsigned rank_multiply) 1241 { 1242 unsigned shift = 0; 1243 int cs_size = 0; 1244 1245 if (i < 4 || i == 6) 1246 cs_size = -1; 1247 else if (i == 12) 1248 shift = 7; 1249 else if (!(i & 0x1)) 1250 shift = i >> 1; 1251 else 1252 shift = (i + 1) >> 1; 1253 1254 if (cs_size != -1) 1255 cs_size = rank_multiply * (128 << shift); 1256 1257 return cs_size; 1258 } 1259 1260 static int ddr4_cs_size(unsigned i) 1261 { 1262 int cs_size = 0; 1263 1264 if (i == 0) 1265 cs_size = -1; 1266 else if (i == 1) 1267 cs_size = 1024; 1268 else 1269 /* Min cs_size = 1G */ 1270 cs_size = 1024 * (1 << (i >> 1)); 1271 1272 return cs_size; 1273 } 1274 1275 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, 1276 unsigned cs_mode, int cs_mask_nr) 1277 { 1278 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0; 1279 1280 WARN_ON(cs_mode > 11); 1281 1282 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE) 1283 return ddr3_cs_size(cs_mode, dclr & WIDTH_128); 1284 else 1285 return ddr2_cs_size(cs_mode, dclr & WIDTH_128); 1286 } 1287 1288 /* 1289 * F15h supports only 64bit DCT interfaces 1290 */ 1291 static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, 1292 unsigned cs_mode, int cs_mask_nr) 1293 { 1294 WARN_ON(cs_mode > 12); 1295 1296 return ddr3_cs_size(cs_mode, false); 1297 } 1298 1299 /* F15h M60h supports DDR4 mapping as well.. */ 1300 static int f15_m60h_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, 1301 unsigned cs_mode, int cs_mask_nr) 1302 { 1303 int cs_size; 1304 u32 dcsm = pvt->csels[dct].csmasks[cs_mask_nr]; 1305 1306 WARN_ON(cs_mode > 12); 1307 1308 if (pvt->dram_type == MEM_DDR4) { 1309 if (cs_mode > 9) 1310 return -1; 1311 1312 cs_size = ddr4_cs_size(cs_mode); 1313 } else if (pvt->dram_type == MEM_LRDDR3) { 1314 unsigned rank_multiply = dcsm & 0xf; 1315 1316 if (rank_multiply == 3) 1317 rank_multiply = 4; 1318 cs_size = ddr3_lrdimm_cs_size(cs_mode, rank_multiply); 1319 } else { 1320 /* Minimum cs size is 512mb for F15hM60h*/ 1321 if (cs_mode == 0x1) 1322 return -1; 1323 1324 cs_size = ddr3_cs_size(cs_mode, false); 1325 } 1326 1327 return cs_size; 1328 } 1329 1330 /* 1331 * F16h and F15h model 30h have only limited cs_modes. 1332 */ 1333 static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, 1334 unsigned cs_mode, int cs_mask_nr) 1335 { 1336 WARN_ON(cs_mode > 12); 1337 1338 if (cs_mode == 6 || cs_mode == 8 || 1339 cs_mode == 9 || cs_mode == 12) 1340 return -1; 1341 else 1342 return ddr3_cs_size(cs_mode, false); 1343 } 1344 1345 static void read_dram_ctl_register(struct amd64_pvt *pvt) 1346 { 1347 1348 if (pvt->fam == 0xf) 1349 return; 1350 1351 if (!amd64_read_pci_cfg(pvt->F2, DCT_SEL_LO, &pvt->dct_sel_lo)) { 1352 edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n", 1353 pvt->dct_sel_lo, dct_sel_baseaddr(pvt)); 1354 1355 edac_dbg(0, " DCTs operate in %s mode\n", 1356 (dct_ganging_enabled(pvt) ? "ganged" : "unganged")); 1357 1358 if (!dct_ganging_enabled(pvt)) 1359 edac_dbg(0, " Address range split per DCT: %s\n", 1360 (dct_high_range_enabled(pvt) ? "yes" : "no")); 1361 1362 edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n", 1363 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"), 1364 (dct_memory_cleared(pvt) ? "yes" : "no")); 1365 1366 edac_dbg(0, " channel interleave: %s, " 1367 "interleave bits selector: 0x%x\n", 1368 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"), 1369 dct_sel_interleave_addr(pvt)); 1370 } 1371 1372 amd64_read_pci_cfg(pvt->F2, DCT_SEL_HI, &pvt->dct_sel_hi); 1373 } 1374 1375 /* 1376 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG, 1377 * 2.10.12 Memory Interleaving Modes). 1378 */ 1379 static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr, 1380 u8 intlv_en, int num_dcts_intlv, 1381 u32 dct_sel) 1382 { 1383 u8 channel = 0; 1384 u8 select; 1385 1386 if (!(intlv_en)) 1387 return (u8)(dct_sel); 1388 1389 if (num_dcts_intlv == 2) { 1390 select = (sys_addr >> 8) & 0x3; 1391 channel = select ? 0x3 : 0; 1392 } else if (num_dcts_intlv == 4) { 1393 u8 intlv_addr = dct_sel_interleave_addr(pvt); 1394 switch (intlv_addr) { 1395 case 0x4: 1396 channel = (sys_addr >> 8) & 0x3; 1397 break; 1398 case 0x5: 1399 channel = (sys_addr >> 9) & 0x3; 1400 break; 1401 } 1402 } 1403 return channel; 1404 } 1405 1406 /* 1407 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory 1408 * Interleaving Modes. 1409 */ 1410 static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr, 1411 bool hi_range_sel, u8 intlv_en) 1412 { 1413 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1; 1414 1415 if (dct_ganging_enabled(pvt)) 1416 return 0; 1417 1418 if (hi_range_sel) 1419 return dct_sel_high; 1420 1421 /* 1422 * see F2x110[DctSelIntLvAddr] - channel interleave mode 1423 */ 1424 if (dct_interleave_enabled(pvt)) { 1425 u8 intlv_addr = dct_sel_interleave_addr(pvt); 1426 1427 /* return DCT select function: 0=DCT0, 1=DCT1 */ 1428 if (!intlv_addr) 1429 return sys_addr >> 6 & 1; 1430 1431 if (intlv_addr & 0x2) { 1432 u8 shift = intlv_addr & 0x1 ? 9 : 6; 1433 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2; 1434 1435 return ((sys_addr >> shift) & 1) ^ temp; 1436 } 1437 1438 return (sys_addr >> (12 + hweight8(intlv_en))) & 1; 1439 } 1440 1441 if (dct_high_range_enabled(pvt)) 1442 return ~dct_sel_high & 1; 1443 1444 return 0; 1445 } 1446 1447 /* Convert the sys_addr to the normalized DCT address */ 1448 static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range, 1449 u64 sys_addr, bool hi_rng, 1450 u32 dct_sel_base_addr) 1451 { 1452 u64 chan_off; 1453 u64 dram_base = get_dram_base(pvt, range); 1454 u64 hole_off = f10_dhar_offset(pvt); 1455 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16; 1456 1457 if (hi_rng) { 1458 /* 1459 * if 1460 * base address of high range is below 4Gb 1461 * (bits [47:27] at [31:11]) 1462 * DRAM address space on this DCT is hoisted above 4Gb && 1463 * sys_addr > 4Gb 1464 * 1465 * remove hole offset from sys_addr 1466 * else 1467 * remove high range offset from sys_addr 1468 */ 1469 if ((!(dct_sel_base_addr >> 16) || 1470 dct_sel_base_addr < dhar_base(pvt)) && 1471 dhar_valid(pvt) && 1472 (sys_addr >= BIT_64(32))) 1473 chan_off = hole_off; 1474 else 1475 chan_off = dct_sel_base_off; 1476 } else { 1477 /* 1478 * if 1479 * we have a valid hole && 1480 * sys_addr > 4Gb 1481 * 1482 * remove hole 1483 * else 1484 * remove dram base to normalize to DCT address 1485 */ 1486 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32))) 1487 chan_off = hole_off; 1488 else 1489 chan_off = dram_base; 1490 } 1491 1492 return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23)); 1493 } 1494 1495 /* 1496 * checks if the csrow passed in is marked as SPARED, if so returns the new 1497 * spare row 1498 */ 1499 static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow) 1500 { 1501 int tmp_cs; 1502 1503 if (online_spare_swap_done(pvt, dct) && 1504 csrow == online_spare_bad_dramcs(pvt, dct)) { 1505 1506 for_each_chip_select(tmp_cs, dct, pvt) { 1507 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) { 1508 csrow = tmp_cs; 1509 break; 1510 } 1511 } 1512 } 1513 return csrow; 1514 } 1515 1516 /* 1517 * Iterate over the DRAM DCT "base" and "mask" registers looking for a 1518 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID' 1519 * 1520 * Return: 1521 * -EINVAL: NOT FOUND 1522 * 0..csrow = Chip-Select Row 1523 */ 1524 static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct) 1525 { 1526 struct mem_ctl_info *mci; 1527 struct amd64_pvt *pvt; 1528 u64 cs_base, cs_mask; 1529 int cs_found = -EINVAL; 1530 int csrow; 1531 1532 mci = edac_mc_find(nid); 1533 if (!mci) 1534 return cs_found; 1535 1536 pvt = mci->pvt_info; 1537 1538 edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct); 1539 1540 for_each_chip_select(csrow, dct, pvt) { 1541 if (!csrow_enabled(csrow, dct, pvt)) 1542 continue; 1543 1544 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask); 1545 1546 edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n", 1547 csrow, cs_base, cs_mask); 1548 1549 cs_mask = ~cs_mask; 1550 1551 edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n", 1552 (in_addr & cs_mask), (cs_base & cs_mask)); 1553 1554 if ((in_addr & cs_mask) == (cs_base & cs_mask)) { 1555 if (pvt->fam == 0x15 && pvt->model >= 0x30) { 1556 cs_found = csrow; 1557 break; 1558 } 1559 cs_found = f10_process_possible_spare(pvt, dct, csrow); 1560 1561 edac_dbg(1, " MATCH csrow=%d\n", cs_found); 1562 break; 1563 } 1564 } 1565 return cs_found; 1566 } 1567 1568 /* 1569 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is 1570 * swapped with a region located at the bottom of memory so that the GPU can use 1571 * the interleaved region and thus two channels. 1572 */ 1573 static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr) 1574 { 1575 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr; 1576 1577 if (pvt->fam == 0x10) { 1578 /* only revC3 and revE have that feature */ 1579 if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3)) 1580 return sys_addr; 1581 } 1582 1583 amd64_read_pci_cfg(pvt->F2, SWAP_INTLV_REG, &swap_reg); 1584 1585 if (!(swap_reg & 0x1)) 1586 return sys_addr; 1587 1588 swap_base = (swap_reg >> 3) & 0x7f; 1589 swap_limit = (swap_reg >> 11) & 0x7f; 1590 rgn_size = (swap_reg >> 20) & 0x7f; 1591 tmp_addr = sys_addr >> 27; 1592 1593 if (!(sys_addr >> 34) && 1594 (((tmp_addr >= swap_base) && 1595 (tmp_addr <= swap_limit)) || 1596 (tmp_addr < rgn_size))) 1597 return sys_addr ^ (u64)swap_base << 27; 1598 1599 return sys_addr; 1600 } 1601 1602 /* For a given @dram_range, check if @sys_addr falls within it. */ 1603 static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range, 1604 u64 sys_addr, int *chan_sel) 1605 { 1606 int cs_found = -EINVAL; 1607 u64 chan_addr; 1608 u32 dct_sel_base; 1609 u8 channel; 1610 bool high_range = false; 1611 1612 u8 node_id = dram_dst_node(pvt, range); 1613 u8 intlv_en = dram_intlv_en(pvt, range); 1614 u32 intlv_sel = dram_intlv_sel(pvt, range); 1615 1616 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n", 1617 range, sys_addr, get_dram_limit(pvt, range)); 1618 1619 if (dhar_valid(pvt) && 1620 dhar_base(pvt) <= sys_addr && 1621 sys_addr < BIT_64(32)) { 1622 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n", 1623 sys_addr); 1624 return -EINVAL; 1625 } 1626 1627 if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en))) 1628 return -EINVAL; 1629 1630 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr); 1631 1632 dct_sel_base = dct_sel_baseaddr(pvt); 1633 1634 /* 1635 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to 1636 * select between DCT0 and DCT1. 1637 */ 1638 if (dct_high_range_enabled(pvt) && 1639 !dct_ganging_enabled(pvt) && 1640 ((sys_addr >> 27) >= (dct_sel_base >> 11))) 1641 high_range = true; 1642 1643 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en); 1644 1645 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr, 1646 high_range, dct_sel_base); 1647 1648 /* Remove node interleaving, see F1x120 */ 1649 if (intlv_en) 1650 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) | 1651 (chan_addr & 0xfff); 1652 1653 /* remove channel interleave */ 1654 if (dct_interleave_enabled(pvt) && 1655 !dct_high_range_enabled(pvt) && 1656 !dct_ganging_enabled(pvt)) { 1657 1658 if (dct_sel_interleave_addr(pvt) != 1) { 1659 if (dct_sel_interleave_addr(pvt) == 0x3) 1660 /* hash 9 */ 1661 chan_addr = ((chan_addr >> 10) << 9) | 1662 (chan_addr & 0x1ff); 1663 else 1664 /* A[6] or hash 6 */ 1665 chan_addr = ((chan_addr >> 7) << 6) | 1666 (chan_addr & 0x3f); 1667 } else 1668 /* A[12] */ 1669 chan_addr = ((chan_addr >> 13) << 12) | 1670 (chan_addr & 0xfff); 1671 } 1672 1673 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr); 1674 1675 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel); 1676 1677 if (cs_found >= 0) 1678 *chan_sel = channel; 1679 1680 return cs_found; 1681 } 1682 1683 static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range, 1684 u64 sys_addr, int *chan_sel) 1685 { 1686 int cs_found = -EINVAL; 1687 int num_dcts_intlv = 0; 1688 u64 chan_addr, chan_offset; 1689 u64 dct_base, dct_limit; 1690 u32 dct_cont_base_reg, dct_cont_limit_reg, tmp; 1691 u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en; 1692 1693 u64 dhar_offset = f10_dhar_offset(pvt); 1694 u8 intlv_addr = dct_sel_interleave_addr(pvt); 1695 u8 node_id = dram_dst_node(pvt, range); 1696 u8 intlv_en = dram_intlv_en(pvt, range); 1697 1698 amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg); 1699 amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg); 1700 1701 dct_offset_en = (u8) ((dct_cont_base_reg >> 3) & BIT(0)); 1702 dct_sel = (u8) ((dct_cont_base_reg >> 4) & 0x7); 1703 1704 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n", 1705 range, sys_addr, get_dram_limit(pvt, range)); 1706 1707 if (!(get_dram_base(pvt, range) <= sys_addr) && 1708 !(get_dram_limit(pvt, range) >= sys_addr)) 1709 return -EINVAL; 1710 1711 if (dhar_valid(pvt) && 1712 dhar_base(pvt) <= sys_addr && 1713 sys_addr < BIT_64(32)) { 1714 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n", 1715 sys_addr); 1716 return -EINVAL; 1717 } 1718 1719 /* Verify sys_addr is within DCT Range. */ 1720 dct_base = (u64) dct_sel_baseaddr(pvt); 1721 dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF; 1722 1723 if (!(dct_cont_base_reg & BIT(0)) && 1724 !(dct_base <= (sys_addr >> 27) && 1725 dct_limit >= (sys_addr >> 27))) 1726 return -EINVAL; 1727 1728 /* Verify number of dct's that participate in channel interleaving. */ 1729 num_dcts_intlv = (int) hweight8(intlv_en); 1730 1731 if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4)) 1732 return -EINVAL; 1733 1734 channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en, 1735 num_dcts_intlv, dct_sel); 1736 1737 /* Verify we stay within the MAX number of channels allowed */ 1738 if (channel > 3) 1739 return -EINVAL; 1740 1741 leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0)); 1742 1743 /* Get normalized DCT addr */ 1744 if (leg_mmio_hole && (sys_addr >= BIT_64(32))) 1745 chan_offset = dhar_offset; 1746 else 1747 chan_offset = dct_base << 27; 1748 1749 chan_addr = sys_addr - chan_offset; 1750 1751 /* remove channel interleave */ 1752 if (num_dcts_intlv == 2) { 1753 if (intlv_addr == 0x4) 1754 chan_addr = ((chan_addr >> 9) << 8) | 1755 (chan_addr & 0xff); 1756 else if (intlv_addr == 0x5) 1757 chan_addr = ((chan_addr >> 10) << 9) | 1758 (chan_addr & 0x1ff); 1759 else 1760 return -EINVAL; 1761 1762 } else if (num_dcts_intlv == 4) { 1763 if (intlv_addr == 0x4) 1764 chan_addr = ((chan_addr >> 10) << 8) | 1765 (chan_addr & 0xff); 1766 else if (intlv_addr == 0x5) 1767 chan_addr = ((chan_addr >> 11) << 9) | 1768 (chan_addr & 0x1ff); 1769 else 1770 return -EINVAL; 1771 } 1772 1773 if (dct_offset_en) { 1774 amd64_read_pci_cfg(pvt->F1, 1775 DRAM_CONT_HIGH_OFF + (int) channel * 4, 1776 &tmp); 1777 chan_addr += (u64) ((tmp >> 11) & 0xfff) << 27; 1778 } 1779 1780 f15h_select_dct(pvt, channel); 1781 1782 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr); 1783 1784 /* 1785 * Find Chip select: 1786 * if channel = 3, then alias it to 1. This is because, in F15 M30h, 1787 * there is support for 4 DCT's, but only 2 are currently functional. 1788 * They are DCT0 and DCT3. But we have read all registers of DCT3 into 1789 * pvt->csels[1]. So we need to use '1' here to get correct info. 1790 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications. 1791 */ 1792 alias_channel = (channel == 3) ? 1 : channel; 1793 1794 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel); 1795 1796 if (cs_found >= 0) 1797 *chan_sel = alias_channel; 1798 1799 return cs_found; 1800 } 1801 1802 static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, 1803 u64 sys_addr, 1804 int *chan_sel) 1805 { 1806 int cs_found = -EINVAL; 1807 unsigned range; 1808 1809 for (range = 0; range < DRAM_RANGES; range++) { 1810 if (!dram_rw(pvt, range)) 1811 continue; 1812 1813 if (pvt->fam == 0x15 && pvt->model >= 0x30) 1814 cs_found = f15_m30h_match_to_this_node(pvt, range, 1815 sys_addr, 1816 chan_sel); 1817 1818 else if ((get_dram_base(pvt, range) <= sys_addr) && 1819 (get_dram_limit(pvt, range) >= sys_addr)) { 1820 cs_found = f1x_match_to_this_node(pvt, range, 1821 sys_addr, chan_sel); 1822 if (cs_found >= 0) 1823 break; 1824 } 1825 } 1826 return cs_found; 1827 } 1828 1829 /* 1830 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps 1831 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW). 1832 * 1833 * The @sys_addr is usually an error address received from the hardware 1834 * (MCX_ADDR). 1835 */ 1836 static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr, 1837 struct err_info *err) 1838 { 1839 struct amd64_pvt *pvt = mci->pvt_info; 1840 1841 error_address_to_page_and_offset(sys_addr, err); 1842 1843 err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel); 1844 if (err->csrow < 0) { 1845 err->err_code = ERR_CSROW; 1846 return; 1847 } 1848 1849 /* 1850 * We need the syndromes for channel detection only when we're 1851 * ganged. Otherwise @chan should already contain the channel at 1852 * this point. 1853 */ 1854 if (dct_ganging_enabled(pvt)) 1855 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome); 1856 } 1857 1858 /* 1859 * debug routine to display the memory sizes of all logical DIMMs and its 1860 * CSROWs 1861 */ 1862 static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl) 1863 { 1864 int dimm, size0, size1; 1865 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases; 1866 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0; 1867 1868 if (pvt->fam == 0xf) { 1869 /* K8 families < revF not supported yet */ 1870 if (pvt->ext_model < K8_REV_F) 1871 return; 1872 else 1873 WARN_ON(ctrl != 0); 1874 } 1875 1876 if (pvt->fam == 0x10) { 1877 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 1878 : pvt->dbam0; 1879 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? 1880 pvt->csels[1].csbases : 1881 pvt->csels[0].csbases; 1882 } else if (ctrl) { 1883 dbam = pvt->dbam0; 1884 dcsb = pvt->csels[1].csbases; 1885 } 1886 edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", 1887 ctrl, dbam); 1888 1889 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl); 1890 1891 /* Dump memory sizes for DIMM and its CSROWs */ 1892 for (dimm = 0; dimm < 4; dimm++) { 1893 1894 size0 = 0; 1895 if (dcsb[dimm*2] & DCSB_CS_ENABLE) 1896 /* For f15m60h, need multiplier for LRDIMM cs_size 1897 * calculation. We pass 'dimm' value to the dbam_to_cs 1898 * mapper so we can find the multiplier from the 1899 * corresponding DCSM. 1900 */ 1901 size0 = pvt->ops->dbam_to_cs(pvt, ctrl, 1902 DBAM_DIMM(dimm, dbam), 1903 dimm); 1904 1905 size1 = 0; 1906 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE) 1907 size1 = pvt->ops->dbam_to_cs(pvt, ctrl, 1908 DBAM_DIMM(dimm, dbam), 1909 dimm); 1910 1911 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n", 1912 dimm * 2, size0, 1913 dimm * 2 + 1, size1); 1914 } 1915 } 1916 1917 static struct amd64_family_type family_types[] = { 1918 [K8_CPUS] = { 1919 .ctl_name = "K8", 1920 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP, 1921 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC, 1922 .ops = { 1923 .early_channel_count = k8_early_channel_count, 1924 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow, 1925 .dbam_to_cs = k8_dbam_to_chip_select, 1926 } 1927 }, 1928 [F10_CPUS] = { 1929 .ctl_name = "F10h", 1930 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP, 1931 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC, 1932 .ops = { 1933 .early_channel_count = f1x_early_channel_count, 1934 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, 1935 .dbam_to_cs = f10_dbam_to_chip_select, 1936 } 1937 }, 1938 [F15_CPUS] = { 1939 .ctl_name = "F15h", 1940 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1, 1941 .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3, 1942 .ops = { 1943 .early_channel_count = f1x_early_channel_count, 1944 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, 1945 .dbam_to_cs = f15_dbam_to_chip_select, 1946 } 1947 }, 1948 [F15_M30H_CPUS] = { 1949 .ctl_name = "F15h_M30h", 1950 .f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1, 1951 .f3_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F3, 1952 .ops = { 1953 .early_channel_count = f1x_early_channel_count, 1954 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, 1955 .dbam_to_cs = f16_dbam_to_chip_select, 1956 } 1957 }, 1958 [F15_M60H_CPUS] = { 1959 .ctl_name = "F15h_M60h", 1960 .f1_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1, 1961 .f3_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F3, 1962 .ops = { 1963 .early_channel_count = f1x_early_channel_count, 1964 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, 1965 .dbam_to_cs = f15_m60h_dbam_to_chip_select, 1966 } 1967 }, 1968 [F16_CPUS] = { 1969 .ctl_name = "F16h", 1970 .f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1, 1971 .f3_id = PCI_DEVICE_ID_AMD_16H_NB_F3, 1972 .ops = { 1973 .early_channel_count = f1x_early_channel_count, 1974 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, 1975 .dbam_to_cs = f16_dbam_to_chip_select, 1976 } 1977 }, 1978 [F16_M30H_CPUS] = { 1979 .ctl_name = "F16h_M30h", 1980 .f1_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F1, 1981 .f3_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F3, 1982 .ops = { 1983 .early_channel_count = f1x_early_channel_count, 1984 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, 1985 .dbam_to_cs = f16_dbam_to_chip_select, 1986 } 1987 }, 1988 }; 1989 1990 /* 1991 * These are tables of eigenvectors (one per line) which can be used for the 1992 * construction of the syndrome tables. The modified syndrome search algorithm 1993 * uses those to find the symbol in error and thus the DIMM. 1994 * 1995 * Algorithm courtesy of Ross LaFetra from AMD. 1996 */ 1997 static const u16 x4_vectors[] = { 1998 0x2f57, 0x1afe, 0x66cc, 0xdd88, 1999 0x11eb, 0x3396, 0x7f4c, 0xeac8, 2000 0x0001, 0x0002, 0x0004, 0x0008, 2001 0x1013, 0x3032, 0x4044, 0x8088, 2002 0x106b, 0x30d6, 0x70fc, 0xe0a8, 2003 0x4857, 0xc4fe, 0x13cc, 0x3288, 2004 0x1ac5, 0x2f4a, 0x5394, 0xa1e8, 2005 0x1f39, 0x251e, 0xbd6c, 0x6bd8, 2006 0x15c1, 0x2a42, 0x89ac, 0x4758, 2007 0x2b03, 0x1602, 0x4f0c, 0xca08, 2008 0x1f07, 0x3a0e, 0x6b04, 0xbd08, 2009 0x8ba7, 0x465e, 0x244c, 0x1cc8, 2010 0x2b87, 0x164e, 0x642c, 0xdc18, 2011 0x40b9, 0x80de, 0x1094, 0x20e8, 2012 0x27db, 0x1eb6, 0x9dac, 0x7b58, 2013 0x11c1, 0x2242, 0x84ac, 0x4c58, 2014 0x1be5, 0x2d7a, 0x5e34, 0xa718, 2015 0x4b39, 0x8d1e, 0x14b4, 0x28d8, 2016 0x4c97, 0xc87e, 0x11fc, 0x33a8, 2017 0x8e97, 0x497e, 0x2ffc, 0x1aa8, 2018 0x16b3, 0x3d62, 0x4f34, 0x8518, 2019 0x1e2f, 0x391a, 0x5cac, 0xf858, 2020 0x1d9f, 0x3b7a, 0x572c, 0xfe18, 2021 0x15f5, 0x2a5a, 0x5264, 0xa3b8, 2022 0x1dbb, 0x3b66, 0x715c, 0xe3f8, 2023 0x4397, 0xc27e, 0x17fc, 0x3ea8, 2024 0x1617, 0x3d3e, 0x6464, 0xb8b8, 2025 0x23ff, 0x12aa, 0xab6c, 0x56d8, 2026 0x2dfb, 0x1ba6, 0x913c, 0x7328, 2027 0x185d, 0x2ca6, 0x7914, 0x9e28, 2028 0x171b, 0x3e36, 0x7d7c, 0xebe8, 2029 0x4199, 0x82ee, 0x19f4, 0x2e58, 2030 0x4807, 0xc40e, 0x130c, 0x3208, 2031 0x1905, 0x2e0a, 0x5804, 0xac08, 2032 0x213f, 0x132a, 0xadfc, 0x5ba8, 2033 0x19a9, 0x2efe, 0xb5cc, 0x6f88, 2034 }; 2035 2036 static const u16 x8_vectors[] = { 2037 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480, 2038 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80, 2039 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80, 2040 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80, 2041 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780, 2042 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080, 2043 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080, 2044 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080, 2045 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80, 2046 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580, 2047 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880, 2048 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280, 2049 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180, 2050 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580, 2051 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280, 2052 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180, 2053 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080, 2054 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 2055 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000, 2056 }; 2057 2058 static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs, 2059 unsigned v_dim) 2060 { 2061 unsigned int i, err_sym; 2062 2063 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) { 2064 u16 s = syndrome; 2065 unsigned v_idx = err_sym * v_dim; 2066 unsigned v_end = (err_sym + 1) * v_dim; 2067 2068 /* walk over all 16 bits of the syndrome */ 2069 for (i = 1; i < (1U << 16); i <<= 1) { 2070 2071 /* if bit is set in that eigenvector... */ 2072 if (v_idx < v_end && vectors[v_idx] & i) { 2073 u16 ev_comp = vectors[v_idx++]; 2074 2075 /* ... and bit set in the modified syndrome, */ 2076 if (s & i) { 2077 /* remove it. */ 2078 s ^= ev_comp; 2079 2080 if (!s) 2081 return err_sym; 2082 } 2083 2084 } else if (s & i) 2085 /* can't get to zero, move to next symbol */ 2086 break; 2087 } 2088 } 2089 2090 edac_dbg(0, "syndrome(%x) not found\n", syndrome); 2091 return -1; 2092 } 2093 2094 static int map_err_sym_to_channel(int err_sym, int sym_size) 2095 { 2096 if (sym_size == 4) 2097 switch (err_sym) { 2098 case 0x20: 2099 case 0x21: 2100 return 0; 2101 break; 2102 case 0x22: 2103 case 0x23: 2104 return 1; 2105 break; 2106 default: 2107 return err_sym >> 4; 2108 break; 2109 } 2110 /* x8 symbols */ 2111 else 2112 switch (err_sym) { 2113 /* imaginary bits not in a DIMM */ 2114 case 0x10: 2115 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n", 2116 err_sym); 2117 return -1; 2118 break; 2119 2120 case 0x11: 2121 return 0; 2122 break; 2123 case 0x12: 2124 return 1; 2125 break; 2126 default: 2127 return err_sym >> 3; 2128 break; 2129 } 2130 return -1; 2131 } 2132 2133 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome) 2134 { 2135 struct amd64_pvt *pvt = mci->pvt_info; 2136 int err_sym = -1; 2137 2138 if (pvt->ecc_sym_sz == 8) 2139 err_sym = decode_syndrome(syndrome, x8_vectors, 2140 ARRAY_SIZE(x8_vectors), 2141 pvt->ecc_sym_sz); 2142 else if (pvt->ecc_sym_sz == 4) 2143 err_sym = decode_syndrome(syndrome, x4_vectors, 2144 ARRAY_SIZE(x4_vectors), 2145 pvt->ecc_sym_sz); 2146 else { 2147 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz); 2148 return err_sym; 2149 } 2150 2151 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz); 2152 } 2153 2154 static void __log_bus_error(struct mem_ctl_info *mci, struct err_info *err, 2155 u8 ecc_type) 2156 { 2157 enum hw_event_mc_err_type err_type; 2158 const char *string; 2159 2160 if (ecc_type == 2) 2161 err_type = HW_EVENT_ERR_CORRECTED; 2162 else if (ecc_type == 1) 2163 err_type = HW_EVENT_ERR_UNCORRECTED; 2164 else { 2165 WARN(1, "Something is rotten in the state of Denmark.\n"); 2166 return; 2167 } 2168 2169 switch (err->err_code) { 2170 case DECODE_OK: 2171 string = ""; 2172 break; 2173 case ERR_NODE: 2174 string = "Failed to map error addr to a node"; 2175 break; 2176 case ERR_CSROW: 2177 string = "Failed to map error addr to a csrow"; 2178 break; 2179 case ERR_CHANNEL: 2180 string = "unknown syndrome - possible error reporting race"; 2181 break; 2182 default: 2183 string = "WTF error"; 2184 break; 2185 } 2186 2187 edac_mc_handle_error(err_type, mci, 1, 2188 err->page, err->offset, err->syndrome, 2189 err->csrow, err->channel, -1, 2190 string, ""); 2191 } 2192 2193 static inline void decode_bus_error(int node_id, struct mce *m) 2194 { 2195 struct mem_ctl_info *mci; 2196 struct amd64_pvt *pvt; 2197 u8 ecc_type = (m->status >> 45) & 0x3; 2198 u8 xec = XEC(m->status, 0x1f); 2199 u16 ec = EC(m->status); 2200 u64 sys_addr; 2201 struct err_info err; 2202 2203 mci = edac_mc_find(node_id); 2204 if (!mci) 2205 return; 2206 2207 pvt = mci->pvt_info; 2208 2209 /* Bail out early if this was an 'observed' error */ 2210 if (PP(ec) == NBSL_PP_OBS) 2211 return; 2212 2213 /* Do only ECC errors */ 2214 if (xec && xec != F10_NBSL_EXT_ERR_ECC) 2215 return; 2216 2217 memset(&err, 0, sizeof(err)); 2218 2219 sys_addr = get_error_address(pvt, m); 2220 2221 if (ecc_type == 2) 2222 err.syndrome = extract_syndrome(m->status); 2223 2224 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err); 2225 2226 __log_bus_error(mci, &err, ecc_type); 2227 } 2228 2229 /* 2230 * Use pvt->F2 which contains the F2 CPU PCI device to get the related 2231 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error. 2232 */ 2233 static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id) 2234 { 2235 /* Reserve the ADDRESS MAP Device */ 2236 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2); 2237 if (!pvt->F1) { 2238 amd64_err("error address map device not found: " 2239 "vendor %x device 0x%x (broken BIOS?)\n", 2240 PCI_VENDOR_ID_AMD, f1_id); 2241 return -ENODEV; 2242 } 2243 2244 /* Reserve the MISC Device */ 2245 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2); 2246 if (!pvt->F3) { 2247 pci_dev_put(pvt->F1); 2248 pvt->F1 = NULL; 2249 2250 amd64_err("error F3 device not found: " 2251 "vendor %x device 0x%x (broken BIOS?)\n", 2252 PCI_VENDOR_ID_AMD, f3_id); 2253 2254 return -ENODEV; 2255 } 2256 edac_dbg(1, "F1: %s\n", pci_name(pvt->F1)); 2257 edac_dbg(1, "F2: %s\n", pci_name(pvt->F2)); 2258 edac_dbg(1, "F3: %s\n", pci_name(pvt->F3)); 2259 2260 return 0; 2261 } 2262 2263 static void free_mc_sibling_devs(struct amd64_pvt *pvt) 2264 { 2265 pci_dev_put(pvt->F1); 2266 pci_dev_put(pvt->F3); 2267 } 2268 2269 /* 2270 * Retrieve the hardware registers of the memory controller (this includes the 2271 * 'Address Map' and 'Misc' device regs) 2272 */ 2273 static void read_mc_regs(struct amd64_pvt *pvt) 2274 { 2275 unsigned range; 2276 u64 msr_val; 2277 u32 tmp; 2278 2279 /* 2280 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since 2281 * those are Read-As-Zero 2282 */ 2283 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem); 2284 edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem); 2285 2286 /* check first whether TOP_MEM2 is enabled */ 2287 rdmsrl(MSR_K8_SYSCFG, msr_val); 2288 if (msr_val & (1U << 21)) { 2289 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2); 2290 edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2); 2291 } else 2292 edac_dbg(0, " TOP_MEM2 disabled\n"); 2293 2294 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap); 2295 2296 read_dram_ctl_register(pvt); 2297 2298 for (range = 0; range < DRAM_RANGES; range++) { 2299 u8 rw; 2300 2301 /* read settings for this DRAM range */ 2302 read_dram_base_limit_regs(pvt, range); 2303 2304 rw = dram_rw(pvt, range); 2305 if (!rw) 2306 continue; 2307 2308 edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n", 2309 range, 2310 get_dram_base(pvt, range), 2311 get_dram_limit(pvt, range)); 2312 2313 edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n", 2314 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled", 2315 (rw & 0x1) ? "R" : "-", 2316 (rw & 0x2) ? "W" : "-", 2317 dram_intlv_sel(pvt, range), 2318 dram_dst_node(pvt, range)); 2319 } 2320 2321 read_dct_base_mask(pvt); 2322 2323 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar); 2324 amd64_read_dct_pci_cfg(pvt, 0, DBAM0, &pvt->dbam0); 2325 2326 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare); 2327 2328 amd64_read_dct_pci_cfg(pvt, 0, DCLR0, &pvt->dclr0); 2329 amd64_read_dct_pci_cfg(pvt, 0, DCHR0, &pvt->dchr0); 2330 2331 if (!dct_ganging_enabled(pvt)) { 2332 amd64_read_dct_pci_cfg(pvt, 1, DCLR0, &pvt->dclr1); 2333 amd64_read_dct_pci_cfg(pvt, 1, DCHR0, &pvt->dchr1); 2334 } 2335 2336 pvt->ecc_sym_sz = 4; 2337 determine_memory_type(pvt); 2338 edac_dbg(1, " DIMM type: %s\n", edac_mem_types[pvt->dram_type]); 2339 2340 if (pvt->fam >= 0x10) { 2341 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp); 2342 /* F16h has only DCT0, so no need to read dbam1 */ 2343 if (pvt->fam != 0x16) 2344 amd64_read_dct_pci_cfg(pvt, 1, DBAM0, &pvt->dbam1); 2345 2346 /* F10h, revD and later can do x8 ECC too */ 2347 if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25)) 2348 pvt->ecc_sym_sz = 8; 2349 } 2350 dump_misc_regs(pvt); 2351 } 2352 2353 /* 2354 * NOTE: CPU Revision Dependent code 2355 * 2356 * Input: 2357 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1) 2358 * k8 private pointer to --> 2359 * DRAM Bank Address mapping register 2360 * node_id 2361 * DCL register where dual_channel_active is 2362 * 2363 * The DBAM register consists of 4 sets of 4 bits each definitions: 2364 * 2365 * Bits: CSROWs 2366 * 0-3 CSROWs 0 and 1 2367 * 4-7 CSROWs 2 and 3 2368 * 8-11 CSROWs 4 and 5 2369 * 12-15 CSROWs 6 and 7 2370 * 2371 * Values range from: 0 to 15 2372 * The meaning of the values depends on CPU revision and dual-channel state, 2373 * see relevant BKDG more info. 2374 * 2375 * The memory controller provides for total of only 8 CSROWs in its current 2376 * architecture. Each "pair" of CSROWs normally represents just one DIMM in 2377 * single channel or two (2) DIMMs in dual channel mode. 2378 * 2379 * The following code logic collapses the various tables for CSROW based on CPU 2380 * revision. 2381 * 2382 * Returns: 2383 * The number of PAGE_SIZE pages on the specified CSROW number it 2384 * encompasses 2385 * 2386 */ 2387 static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr) 2388 { 2389 u32 cs_mode, nr_pages; 2390 u32 dbam = dct ? pvt->dbam1 : pvt->dbam0; 2391 2392 2393 /* 2394 * The math on this doesn't look right on the surface because x/2*4 can 2395 * be simplified to x*2 but this expression makes use of the fact that 2396 * it is integral math where 1/2=0. This intermediate value becomes the 2397 * number of bits to shift the DBAM register to extract the proper CSROW 2398 * field. 2399 */ 2400 cs_mode = DBAM_DIMM(csrow_nr / 2, dbam); 2401 2402 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode, (csrow_nr / 2)) 2403 << (20 - PAGE_SHIFT); 2404 2405 edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n", 2406 csrow_nr, dct, cs_mode); 2407 edac_dbg(0, "nr_pages/channel: %u\n", nr_pages); 2408 2409 return nr_pages; 2410 } 2411 2412 /* 2413 * Initialize the array of csrow attribute instances, based on the values 2414 * from pci config hardware registers. 2415 */ 2416 static int init_csrows(struct mem_ctl_info *mci) 2417 { 2418 struct amd64_pvt *pvt = mci->pvt_info; 2419 struct csrow_info *csrow; 2420 struct dimm_info *dimm; 2421 enum edac_type edac_mode; 2422 int i, j, empty = 1; 2423 int nr_pages = 0; 2424 u32 val; 2425 2426 amd64_read_pci_cfg(pvt->F3, NBCFG, &val); 2427 2428 pvt->nbcfg = val; 2429 2430 edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n", 2431 pvt->mc_node_id, val, 2432 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE)); 2433 2434 /* 2435 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed. 2436 */ 2437 for_each_chip_select(i, 0, pvt) { 2438 bool row_dct0 = !!csrow_enabled(i, 0, pvt); 2439 bool row_dct1 = false; 2440 2441 if (pvt->fam != 0xf) 2442 row_dct1 = !!csrow_enabled(i, 1, pvt); 2443 2444 if (!row_dct0 && !row_dct1) 2445 continue; 2446 2447 csrow = mci->csrows[i]; 2448 empty = 0; 2449 2450 edac_dbg(1, "MC node: %d, csrow: %d\n", 2451 pvt->mc_node_id, i); 2452 2453 if (row_dct0) { 2454 nr_pages = get_csrow_nr_pages(pvt, 0, i); 2455 csrow->channels[0]->dimm->nr_pages = nr_pages; 2456 } 2457 2458 /* K8 has only one DCT */ 2459 if (pvt->fam != 0xf && row_dct1) { 2460 int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i); 2461 2462 csrow->channels[1]->dimm->nr_pages = row_dct1_pages; 2463 nr_pages += row_dct1_pages; 2464 } 2465 2466 edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages); 2467 2468 /* 2469 * determine whether CHIPKILL or JUST ECC or NO ECC is operating 2470 */ 2471 if (pvt->nbcfg & NBCFG_ECC_ENABLE) 2472 edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ? 2473 EDAC_S4ECD4ED : EDAC_SECDED; 2474 else 2475 edac_mode = EDAC_NONE; 2476 2477 for (j = 0; j < pvt->channel_count; j++) { 2478 dimm = csrow->channels[j]->dimm; 2479 dimm->mtype = pvt->dram_type; 2480 dimm->edac_mode = edac_mode; 2481 } 2482 } 2483 2484 return empty; 2485 } 2486 2487 /* get all cores on this DCT */ 2488 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid) 2489 { 2490 int cpu; 2491 2492 for_each_online_cpu(cpu) 2493 if (amd_get_nb_id(cpu) == nid) 2494 cpumask_set_cpu(cpu, mask); 2495 } 2496 2497 /* check MCG_CTL on all the cpus on this node */ 2498 static bool nb_mce_bank_enabled_on_node(u16 nid) 2499 { 2500 cpumask_var_t mask; 2501 int cpu, nbe; 2502 bool ret = false; 2503 2504 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) { 2505 amd64_warn("%s: Error allocating mask\n", __func__); 2506 return false; 2507 } 2508 2509 get_cpus_on_this_dct_cpumask(mask, nid); 2510 2511 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs); 2512 2513 for_each_cpu(cpu, mask) { 2514 struct msr *reg = per_cpu_ptr(msrs, cpu); 2515 nbe = reg->l & MSR_MCGCTL_NBE; 2516 2517 edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n", 2518 cpu, reg->q, 2519 (nbe ? "enabled" : "disabled")); 2520 2521 if (!nbe) 2522 goto out; 2523 } 2524 ret = true; 2525 2526 out: 2527 free_cpumask_var(mask); 2528 return ret; 2529 } 2530 2531 static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on) 2532 { 2533 cpumask_var_t cmask; 2534 int cpu; 2535 2536 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) { 2537 amd64_warn("%s: error allocating mask\n", __func__); 2538 return false; 2539 } 2540 2541 get_cpus_on_this_dct_cpumask(cmask, nid); 2542 2543 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs); 2544 2545 for_each_cpu(cpu, cmask) { 2546 2547 struct msr *reg = per_cpu_ptr(msrs, cpu); 2548 2549 if (on) { 2550 if (reg->l & MSR_MCGCTL_NBE) 2551 s->flags.nb_mce_enable = 1; 2552 2553 reg->l |= MSR_MCGCTL_NBE; 2554 } else { 2555 /* 2556 * Turn off NB MCE reporting only when it was off before 2557 */ 2558 if (!s->flags.nb_mce_enable) 2559 reg->l &= ~MSR_MCGCTL_NBE; 2560 } 2561 } 2562 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs); 2563 2564 free_cpumask_var(cmask); 2565 2566 return 0; 2567 } 2568 2569 static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid, 2570 struct pci_dev *F3) 2571 { 2572 bool ret = true; 2573 u32 value, mask = 0x3; /* UECC/CECC enable */ 2574 2575 if (toggle_ecc_err_reporting(s, nid, ON)) { 2576 amd64_warn("Error enabling ECC reporting over MCGCTL!\n"); 2577 return false; 2578 } 2579 2580 amd64_read_pci_cfg(F3, NBCTL, &value); 2581 2582 s->old_nbctl = value & mask; 2583 s->nbctl_valid = true; 2584 2585 value |= mask; 2586 amd64_write_pci_cfg(F3, NBCTL, value); 2587 2588 amd64_read_pci_cfg(F3, NBCFG, &value); 2589 2590 edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n", 2591 nid, value, !!(value & NBCFG_ECC_ENABLE)); 2592 2593 if (!(value & NBCFG_ECC_ENABLE)) { 2594 amd64_warn("DRAM ECC disabled on this node, enabling...\n"); 2595 2596 s->flags.nb_ecc_prev = 0; 2597 2598 /* Attempt to turn on DRAM ECC Enable */ 2599 value |= NBCFG_ECC_ENABLE; 2600 amd64_write_pci_cfg(F3, NBCFG, value); 2601 2602 amd64_read_pci_cfg(F3, NBCFG, &value); 2603 2604 if (!(value & NBCFG_ECC_ENABLE)) { 2605 amd64_warn("Hardware rejected DRAM ECC enable," 2606 "check memory DIMM configuration.\n"); 2607 ret = false; 2608 } else { 2609 amd64_info("Hardware accepted DRAM ECC Enable\n"); 2610 } 2611 } else { 2612 s->flags.nb_ecc_prev = 1; 2613 } 2614 2615 edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n", 2616 nid, value, !!(value & NBCFG_ECC_ENABLE)); 2617 2618 return ret; 2619 } 2620 2621 static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid, 2622 struct pci_dev *F3) 2623 { 2624 u32 value, mask = 0x3; /* UECC/CECC enable */ 2625 2626 2627 if (!s->nbctl_valid) 2628 return; 2629 2630 amd64_read_pci_cfg(F3, NBCTL, &value); 2631 value &= ~mask; 2632 value |= s->old_nbctl; 2633 2634 amd64_write_pci_cfg(F3, NBCTL, value); 2635 2636 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */ 2637 if (!s->flags.nb_ecc_prev) { 2638 amd64_read_pci_cfg(F3, NBCFG, &value); 2639 value &= ~NBCFG_ECC_ENABLE; 2640 amd64_write_pci_cfg(F3, NBCFG, value); 2641 } 2642 2643 /* restore the NB Enable MCGCTL bit */ 2644 if (toggle_ecc_err_reporting(s, nid, OFF)) 2645 amd64_warn("Error restoring NB MCGCTL settings!\n"); 2646 } 2647 2648 /* 2649 * EDAC requires that the BIOS have ECC enabled before 2650 * taking over the processing of ECC errors. A command line 2651 * option allows to force-enable hardware ECC later in 2652 * enable_ecc_error_reporting(). 2653 */ 2654 static const char *ecc_msg = 2655 "ECC disabled in the BIOS or no ECC capability, module will not load.\n" 2656 " Either enable ECC checking or force module loading by setting " 2657 "'ecc_enable_override'.\n" 2658 " (Note that use of the override may cause unknown side effects.)\n"; 2659 2660 static bool ecc_enabled(struct pci_dev *F3, u16 nid) 2661 { 2662 u32 value; 2663 u8 ecc_en = 0; 2664 bool nb_mce_en = false; 2665 2666 amd64_read_pci_cfg(F3, NBCFG, &value); 2667 2668 ecc_en = !!(value & NBCFG_ECC_ENABLE); 2669 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled")); 2670 2671 nb_mce_en = nb_mce_bank_enabled_on_node(nid); 2672 if (!nb_mce_en) 2673 amd64_notice("NB MCE bank disabled, set MSR " 2674 "0x%08x[4] on node %d to enable.\n", 2675 MSR_IA32_MCG_CTL, nid); 2676 2677 if (!ecc_en || !nb_mce_en) { 2678 amd64_notice("%s", ecc_msg); 2679 return false; 2680 } 2681 return true; 2682 } 2683 2684 static void setup_mci_misc_attrs(struct mem_ctl_info *mci, 2685 struct amd64_family_type *fam) 2686 { 2687 struct amd64_pvt *pvt = mci->pvt_info; 2688 2689 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2; 2690 mci->edac_ctl_cap = EDAC_FLAG_NONE; 2691 2692 if (pvt->nbcap & NBCAP_SECDED) 2693 mci->edac_ctl_cap |= EDAC_FLAG_SECDED; 2694 2695 if (pvt->nbcap & NBCAP_CHIPKILL) 2696 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED; 2697 2698 mci->edac_cap = determine_edac_cap(pvt); 2699 mci->mod_name = EDAC_MOD_STR; 2700 mci->mod_ver = EDAC_AMD64_VERSION; 2701 mci->ctl_name = fam->ctl_name; 2702 mci->dev_name = pci_name(pvt->F2); 2703 mci->ctl_page_to_phys = NULL; 2704 2705 /* memory scrubber interface */ 2706 mci->set_sdram_scrub_rate = set_scrub_rate; 2707 mci->get_sdram_scrub_rate = get_scrub_rate; 2708 } 2709 2710 /* 2711 * returns a pointer to the family descriptor on success, NULL otherwise. 2712 */ 2713 static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt) 2714 { 2715 struct amd64_family_type *fam_type = NULL; 2716 2717 pvt->ext_model = boot_cpu_data.x86_model >> 4; 2718 pvt->stepping = boot_cpu_data.x86_mask; 2719 pvt->model = boot_cpu_data.x86_model; 2720 pvt->fam = boot_cpu_data.x86; 2721 2722 switch (pvt->fam) { 2723 case 0xf: 2724 fam_type = &family_types[K8_CPUS]; 2725 pvt->ops = &family_types[K8_CPUS].ops; 2726 break; 2727 2728 case 0x10: 2729 fam_type = &family_types[F10_CPUS]; 2730 pvt->ops = &family_types[F10_CPUS].ops; 2731 break; 2732 2733 case 0x15: 2734 if (pvt->model == 0x30) { 2735 fam_type = &family_types[F15_M30H_CPUS]; 2736 pvt->ops = &family_types[F15_M30H_CPUS].ops; 2737 break; 2738 } else if (pvt->model == 0x60) { 2739 fam_type = &family_types[F15_M60H_CPUS]; 2740 pvt->ops = &family_types[F15_M60H_CPUS].ops; 2741 break; 2742 } 2743 2744 fam_type = &family_types[F15_CPUS]; 2745 pvt->ops = &family_types[F15_CPUS].ops; 2746 break; 2747 2748 case 0x16: 2749 if (pvt->model == 0x30) { 2750 fam_type = &family_types[F16_M30H_CPUS]; 2751 pvt->ops = &family_types[F16_M30H_CPUS].ops; 2752 break; 2753 } 2754 fam_type = &family_types[F16_CPUS]; 2755 pvt->ops = &family_types[F16_CPUS].ops; 2756 break; 2757 2758 default: 2759 amd64_err("Unsupported family!\n"); 2760 return NULL; 2761 } 2762 2763 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name, 2764 (pvt->fam == 0xf ? 2765 (pvt->ext_model >= K8_REV_F ? "revF or later " 2766 : "revE or earlier ") 2767 : ""), pvt->mc_node_id); 2768 return fam_type; 2769 } 2770 2771 static const struct attribute_group *amd64_edac_attr_groups[] = { 2772 #ifdef CONFIG_EDAC_DEBUG 2773 &amd64_edac_dbg_group, 2774 #endif 2775 #ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION 2776 &amd64_edac_inj_group, 2777 #endif 2778 NULL 2779 }; 2780 2781 static int init_one_instance(struct pci_dev *F2) 2782 { 2783 struct amd64_pvt *pvt = NULL; 2784 struct amd64_family_type *fam_type = NULL; 2785 struct mem_ctl_info *mci = NULL; 2786 struct edac_mc_layer layers[2]; 2787 int err = 0, ret; 2788 u16 nid = amd_pci_dev_to_node_id(F2); 2789 2790 ret = -ENOMEM; 2791 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL); 2792 if (!pvt) 2793 goto err_ret; 2794 2795 pvt->mc_node_id = nid; 2796 pvt->F2 = F2; 2797 2798 ret = -EINVAL; 2799 fam_type = per_family_init(pvt); 2800 if (!fam_type) 2801 goto err_free; 2802 2803 ret = -ENODEV; 2804 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id); 2805 if (err) 2806 goto err_free; 2807 2808 read_mc_regs(pvt); 2809 2810 /* 2811 * We need to determine how many memory channels there are. Then use 2812 * that information for calculating the size of the dynamic instance 2813 * tables in the 'mci' structure. 2814 */ 2815 ret = -EINVAL; 2816 pvt->channel_count = pvt->ops->early_channel_count(pvt); 2817 if (pvt->channel_count < 0) 2818 goto err_siblings; 2819 2820 ret = -ENOMEM; 2821 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; 2822 layers[0].size = pvt->csels[0].b_cnt; 2823 layers[0].is_virt_csrow = true; 2824 layers[1].type = EDAC_MC_LAYER_CHANNEL; 2825 2826 /* 2827 * Always allocate two channels since we can have setups with DIMMs on 2828 * only one channel. Also, this simplifies handling later for the price 2829 * of a couple of KBs tops. 2830 */ 2831 layers[1].size = 2; 2832 layers[1].is_virt_csrow = false; 2833 2834 mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0); 2835 if (!mci) 2836 goto err_siblings; 2837 2838 mci->pvt_info = pvt; 2839 mci->pdev = &pvt->F2->dev; 2840 2841 setup_mci_misc_attrs(mci, fam_type); 2842 2843 if (init_csrows(mci)) 2844 mci->edac_cap = EDAC_FLAG_NONE; 2845 2846 ret = -ENODEV; 2847 if (edac_mc_add_mc_with_groups(mci, amd64_edac_attr_groups)) { 2848 edac_dbg(1, "failed edac_mc_add_mc()\n"); 2849 goto err_add_mc; 2850 } 2851 2852 /* register stuff with EDAC MCE */ 2853 if (report_gart_errors) 2854 amd_report_gart_errors(true); 2855 2856 amd_register_ecc_decoder(decode_bus_error); 2857 2858 atomic_inc(&drv_instances); 2859 2860 return 0; 2861 2862 err_add_mc: 2863 edac_mc_free(mci); 2864 2865 err_siblings: 2866 free_mc_sibling_devs(pvt); 2867 2868 err_free: 2869 kfree(pvt); 2870 2871 err_ret: 2872 return ret; 2873 } 2874 2875 static int probe_one_instance(struct pci_dev *pdev, 2876 const struct pci_device_id *mc_type) 2877 { 2878 u16 nid = amd_pci_dev_to_node_id(pdev); 2879 struct pci_dev *F3 = node_to_amd_nb(nid)->misc; 2880 struct ecc_settings *s; 2881 int ret = 0; 2882 2883 ret = pci_enable_device(pdev); 2884 if (ret < 0) { 2885 edac_dbg(0, "ret=%d\n", ret); 2886 return -EIO; 2887 } 2888 2889 ret = -ENOMEM; 2890 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL); 2891 if (!s) 2892 goto err_out; 2893 2894 ecc_stngs[nid] = s; 2895 2896 if (!ecc_enabled(F3, nid)) { 2897 ret = -ENODEV; 2898 2899 if (!ecc_enable_override) 2900 goto err_enable; 2901 2902 amd64_warn("Forcing ECC on!\n"); 2903 2904 if (!enable_ecc_error_reporting(s, nid, F3)) 2905 goto err_enable; 2906 } 2907 2908 ret = init_one_instance(pdev); 2909 if (ret < 0) { 2910 amd64_err("Error probing instance: %d\n", nid); 2911 restore_ecc_error_reporting(s, nid, F3); 2912 } 2913 2914 return ret; 2915 2916 err_enable: 2917 kfree(s); 2918 ecc_stngs[nid] = NULL; 2919 2920 err_out: 2921 return ret; 2922 } 2923 2924 static void remove_one_instance(struct pci_dev *pdev) 2925 { 2926 struct mem_ctl_info *mci; 2927 struct amd64_pvt *pvt; 2928 u16 nid = amd_pci_dev_to_node_id(pdev); 2929 struct pci_dev *F3 = node_to_amd_nb(nid)->misc; 2930 struct ecc_settings *s = ecc_stngs[nid]; 2931 2932 mci = find_mci_by_dev(&pdev->dev); 2933 WARN_ON(!mci); 2934 2935 /* Remove from EDAC CORE tracking list */ 2936 mci = edac_mc_del_mc(&pdev->dev); 2937 if (!mci) 2938 return; 2939 2940 pvt = mci->pvt_info; 2941 2942 restore_ecc_error_reporting(s, nid, F3); 2943 2944 free_mc_sibling_devs(pvt); 2945 2946 /* unregister from EDAC MCE */ 2947 amd_report_gart_errors(false); 2948 amd_unregister_ecc_decoder(decode_bus_error); 2949 2950 kfree(ecc_stngs[nid]); 2951 ecc_stngs[nid] = NULL; 2952 2953 /* Free the EDAC CORE resources */ 2954 mci->pvt_info = NULL; 2955 2956 kfree(pvt); 2957 edac_mc_free(mci); 2958 } 2959 2960 /* 2961 * This table is part of the interface for loading drivers for PCI devices. The 2962 * PCI core identifies what devices are on a system during boot, and then 2963 * inquiry this table to see if this driver is for a given device found. 2964 */ 2965 static const struct pci_device_id amd64_pci_table[] = { 2966 { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_K8_NB_MEMCTL) }, 2967 { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_10H_NB_DRAM) }, 2968 { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_NB_F2) }, 2969 { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_M30H_NB_F2) }, 2970 { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_M60H_NB_F2) }, 2971 { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_16H_NB_F2) }, 2972 { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_16H_M30H_NB_F2) }, 2973 {0, } 2974 }; 2975 MODULE_DEVICE_TABLE(pci, amd64_pci_table); 2976 2977 static struct pci_driver amd64_pci_driver = { 2978 .name = EDAC_MOD_STR, 2979 .probe = probe_one_instance, 2980 .remove = remove_one_instance, 2981 .id_table = amd64_pci_table, 2982 .driver.probe_type = PROBE_FORCE_SYNCHRONOUS, 2983 }; 2984 2985 static void setup_pci_device(void) 2986 { 2987 struct mem_ctl_info *mci; 2988 struct amd64_pvt *pvt; 2989 2990 if (pci_ctl) 2991 return; 2992 2993 mci = edac_mc_find(0); 2994 if (!mci) 2995 return; 2996 2997 pvt = mci->pvt_info; 2998 pci_ctl = edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR); 2999 if (!pci_ctl) { 3000 pr_warn("%s(): Unable to create PCI control\n", __func__); 3001 pr_warn("%s(): PCI error report via EDAC not set\n", __func__); 3002 } 3003 } 3004 3005 static int __init amd64_edac_init(void) 3006 { 3007 int err = -ENODEV; 3008 3009 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION); 3010 3011 opstate_init(); 3012 3013 if (amd_cache_northbridges() < 0) 3014 goto err_ret; 3015 3016 err = -ENOMEM; 3017 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL); 3018 if (!ecc_stngs) 3019 goto err_free; 3020 3021 msrs = msrs_alloc(); 3022 if (!msrs) 3023 goto err_free; 3024 3025 err = pci_register_driver(&amd64_pci_driver); 3026 if (err) 3027 goto err_pci; 3028 3029 err = -ENODEV; 3030 if (!atomic_read(&drv_instances)) 3031 goto err_no_instances; 3032 3033 setup_pci_device(); 3034 3035 #ifdef CONFIG_X86_32 3036 amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR); 3037 #endif 3038 3039 return 0; 3040 3041 err_no_instances: 3042 pci_unregister_driver(&amd64_pci_driver); 3043 3044 err_pci: 3045 msrs_free(msrs); 3046 msrs = NULL; 3047 3048 err_free: 3049 kfree(ecc_stngs); 3050 ecc_stngs = NULL; 3051 3052 err_ret: 3053 return err; 3054 } 3055 3056 static void __exit amd64_edac_exit(void) 3057 { 3058 if (pci_ctl) 3059 edac_pci_release_generic_ctl(pci_ctl); 3060 3061 pci_unregister_driver(&amd64_pci_driver); 3062 3063 kfree(ecc_stngs); 3064 ecc_stngs = NULL; 3065 3066 msrs_free(msrs); 3067 msrs = NULL; 3068 } 3069 3070 module_init(amd64_edac_init); 3071 module_exit(amd64_edac_exit); 3072 3073 MODULE_LICENSE("GPL"); 3074 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, " 3075 "Dave Peterson, Thayne Harbaugh"); 3076 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - " 3077 EDAC_AMD64_VERSION); 3078 3079 module_param(edac_op_state, int, 0444); 3080 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); 3081